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Composite fermions on a torus
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We achieve an explicit construction of the lowest Landau level (LLL) projected wave functions for composite
fermions in the periodic (torus) geometry. To this end, we first demonstrate how the vortex attachment of the
composite fermion (CF) theory can be accomplished in the torus geometry to produce the “unprojected” wave
functions satisfying the correct (quasi)periodic boundary conditions. We then consider two methods for projecting
these wave functions into the LLL. The direct projection produces valid wave functions but can be implemented
only for very small systems. The more powerful and more useful projection method of Jain and Kamilla fails in
the torus geometry because it does not preserve the periodic boundary conditions and thus takes us out of the
original Hilbert space. We have succeeded in constructing a modified projection method that is consistent with
both the periodic boundary conditions and the general structure of the CF theory. This method is valid for a large
class of states of composite fermions, called “proper states,” which includes the incompressible ground states
at electron filling factors ν = n

2pn+1 , their charged and neutral excitations, and also the quasidegenerate ground

states at arbitrary filling factors of the form ν = ν∗
2pν∗+1 , where n and p are integers and ν∗ is the CF filling

factor. Comparison with exact results known for small systems for the ground and excited states at filling factors
ν = 1/3, 2/5, and 3/7 demonstrates our LLL-projected wave functions to be extremely accurate representations
of the actual Coulomb eigenstates. Our construction enables the study of large systems of composite
fermions on the torus, thereby opening the possibility of investigating numerous interesting questions and
phenomena.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is one of the
most wonderful collective states discovered in nature, serving
as a quintessential prototype for emergent topological order
and triggering a wealth of novel physics and concepts [2–4]. A
central role in its explanation is played by explicit microscopic
wave functions, which reveal the underlying physics, allow an
explicit confirmation of this physics through comparisons to
exact wave functions known for small systems, and enable
calculation of observables that can be compared quantitatively
with experimental measurements.

In 1983 Laughlin constructed wave functions for the
incompressible states at ν = 1/(2p + 1), p integer, using
the symmetric gauge of the planer geometry [5] in which
the vector potential is given by A = 1

2Br × ẑ. The Laughlin
wave function was generalized by Haldane [6] to the spherical
geometry, in which electrons move on the surface of a sphere
subject to a radial magnetic field.

Explicit wave functions for a broader class of fractional
quantum Hall (FQH) states and their excitations were con-
structed within the composite fermion (CF) theory [4,7].
Composite fermions are topological bound states of electrons
and an even number (2p) of quantized vortices, often viewed
as bound states of electrons and 2p magnetic flux quanta.
They experience an effective magnetic field B∗ = B − 2pρφ0,
where B is the external magnetic field, ρ is the electron or the
CF density, and φ0 = hc/e is the flux quantum. Composite
fermions form Landau-like levels in the effective magnetic
field, called � levels (�Ls), and have a filling factor ν∗ given
by ν = ν∗/(2pν∗ ± 1). The CF theory provides a qualitative
explanation of the phenomenology of the FQHE in the lowest

Landau level (LLL). In particular, the FQHE of electrons at
ν = n/(2pn ± 1) is explained as the integer quantum Hall
effect (IQHE) of composite fermions at CF filling factors
ν∗ = n, with the + (−) sign corresponding to the binding
of positive (negative) vortices.

The Jain CF wave functions are constructed by “composite-
fermionizing” the known wave function of IQHE states of
noninteracting electrons at filling factor ν∗. The construction
proceeds by first binding vortices to electrons to convert them
into composite fermions, and then projecting the resulting
wave function into the LLL. For this purpose Laughlin’s sym-
metric gauge of the planer geometry is the most convenient,
because it allows a transparent definition for vortex attachment
and a straightforward prescription for LLL projection [7–10].
However, the disk geometry is not very suitable for calculations
of the bulk properties of the FQHE because of the presence of
edges, which necessitates going to very large systems before
the bulk behavior manifests itself, and also because each LL
has an infinite degeneracy, thus making the definition of n

filled LL states ambiguous. Haldane’s spherical geometry [6]
has proved more useful for practical calculations. Because of
the compactness of this geometry, each Landau level (LL) has
a finite degeneracy, and thus incompressible states are sharply
defined. The CF theory has been generalized to the spherical
geometry [9–12]. Furthermore, a LLL projection method has
been developed by Jain and Kamilla (JK) [9,10] that allows
calculations for large numbers of composite fermions for both
disk and spherical geometries. This has enabled the study of
many states and phenomena that are not manifest in small
systems, and also played an important role in carrying out
detailed quantitative comparisons between the CF theory and
experiment [4].
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FIG. 1. Composite fermions on a torus.

Another important geometry for the study of the FQHE is
the periodic, or the torus, geometry [13], which is the topic
of this article. Already in 1985, Haldane and Rezayi [14]
generalized the Laughlin wave function to the torus geometry
and showed that it has a 2p + 1-fold center-of-mass (CM)
degeneracy. The periodic boundary conditions of the torus ge-
ometry are widely used in condensed matter physics, and in the
context of FQHE, this geometry provides crucial information
about the topological content of various FQH states through
their ground state degeneracies. The torus geometry is also
the most natural geometry for the study of crystal and stripe
phases [15], Hall viscosity [16], the thin-torus limit [17–19],
mapping into spin models [20,21], entanglement properties
[22], and edge structure [23]. This geometry is necessary
for studying FQHE for interacting particles on a Hofstadter
lattice [24,25]. In recent years, there has been interest in
the feasibility of “fractional Chern insulators,” which refer
to FQH states of interacting particles in Haldane-type lattice
models [26] where the net magnetic field through a unit cell
is zero. Various articles have investigated fractional Chern
insulators by numerical diagonalization in the torus geometry
[27–33], and wave functions for certain FQH states have been
constructed [34–36]. Finally, the torus geometry is very useful
for studying competition between different candidate states at
a given filling factor. In the spherical geometry, such candidate
states often occur at different Nφ for a finite system (although
ν = limN→∞ N/Nφ is the same for all of them), making it
difficult to carry out a direct comparison or to study the phase
transition between them. (Here N is the number of electrons
and Nφ is the number of flux quanta φ0 = hc/e passing through
the sample.)

It would therefore be extremely useful to have explicit
wave functions of composite fermions on a torus (Fig. 1) for
the investigation of general FQH states and their excitations.
A generalization of the CF theory to the torus geometry
has proved nontrivial, however. One of the stumbling blocks
appears to be that the natural gauge for the torus geometry is the
Landau gauge, whereas the most natural gauge for composite
fermionization is the symmetric gauge. In the symmetric
gauge, vortex attachment is accomplished by multiplication
by the factor

∏
j<k(zj − zk) and LLL projection amounts,

essentially, to the replacement z̄ → 2∂/∂z, where z = x + iy

denotes the electron coordinates; analogous simple forms are
not available in the Landau gauge. Additionally, it is not

immediately clear how to represent derivatives in the periodic
geometry, which are an integral part of the LLL-projected Jain
wave functions.

One may wonder why it should be easier to construct,
in the torus geometry, the Laughlin wave function than to
construct the wave functions for other FQH states. The reason
is that the Laughlin wave function has a Jastrow form with a
simple analytic structure: In this wave function, all zeros of
a given particle coordinate sit exactly on other particles; i.e.,
there are no wasted zeros. The Laughlin wave function is thus
fully determined, with the LLL restriction, by specifying the
short-distance behavior as two particles are brought together.
Ensuring the short-distance behavior along with the correct
periodic boundary conditions is sufficient to uniquely identify
the Jastrow form for the Laughlin wave function on the torus,
modulo the CM degree of freedom [14]. It is evident that
this principle cannot be extended for the construction of wave
functions for the general FQH states, because they do not
have a Jastrow form and are not uniquely determined by their
short-distance behavior. For example, with the exception of
the ground state at ν = 1/3, all LLL wave functions at filling
factors of the form ν = n/(2n + 1) must vanish as a single
power of the distance between two particles as they are brought
close. Thus there is only one zero on each particle, with the
remaining zeros distributed in a very complex fashion [37].
Even the wave function of a single quasiparticle of the 1/3
state was left as an open problem in Ref. [14]. The CF theory
circumvents this issue by approaching the problem from a
different paradigm, which shows that the seemingly complex
LLL wave functions are “adiabatically connected to,” and LLL
projections of, simpler wave functions that reveal the physics
of the more general states in terms of composite fermions
occupying �Ls.

Significant progress has been made in writing wave func-
tions for general FQH states in the torus geometry based
on a conformal field theory (CFT) formulation of composite
fermions [16,38–50] and an explicit construction of their
wave functions as CFT correlators [51,52]. Hermanns et al.
[40] constructed wave functions for the ground states at ν =
n/(2pn + 1) in the torus geometry. They demonstrated that
the resulting wave function for the 2/5 state has a high overlap
with the exact Coulomb wave function. This construction
was generalized to arbitrary fractions by Bergholtz et al.
[41]. Hansson et al. [42,43] constructed wave functions for
the quasiparticles of both Abelian and non-Abelian FQH
states, again with guidance from CFT. More recently, Her-
manns [48] constructed the ground state wave functions for
ν = n/(2pn + 1) following the standard approach [4,7], and
demonstrated, for small systems, that projection into the LLL
produces wave functions that have very high overlap with
the exact Coulomb eigenstates. Quasiparticles of the Laughlin
state were also considered by Greiter et al. [53]. Fremling
et al. [54] have developed an energy projection method to
produce LLL CF wave functions in the torus geometry. These
advances notwithstanding, exact diagonalization has remained
the primary method for studying the general FQH states
in the torus geometry, because the currently available wave
functions are not easy to work with and cannot be evaluated for
systems larger than those accessible to exact diagonalization
studies.
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We present in this work a different construction for the LLL
wave functions of composite fermions. The advantage of our
method is that we can construct wave functions for a large
class of ground and excited states at arbitrary filling factors
of the form ν = ν∗/(2pν∗ + 1), and also evaluate them on
the computer for much larger systems than possible in exact
diagonalization studies. We give here a brief outline of our
method, which should be useful for the reader who is not
interested in the technical details. More complete derivations
and explicit expressions can be found in the subsequent
sections and appendices.

We consider a torus defined by two edges of the parallelo-
gram ξ1 = L1 and ξ2 = L1τ , where τ is a complex number that
specifies the geometry of the torus (see Fig. 1). The magnetic
field must be chosen so that an integer number Nφ flux quanta
pass through the system. A crucial step below is to express
the single particle wave functions in the torus geometry in the
symmetric gauge [53], reviewed in Sec. II. The single-particle
wave functions are chosen to satisfy the boundary conditions

t(L1)ψ(z) = eiφ1ψ(z), t(L1τ )ψ(z) = eiφτ ψ(z), (1)

where t(L1) and t(L1τ ) are magnetic translation operators.
The phases φ1 and φτ define the Hilbert space. It is convenient
to write the single-particle wave functions as

ψ(z) = e
z2−|z|2

4l2 f (z), (2)

where l = √
h̄c/eB is the magnetic length. The wave function

of n filled LLs is denoted as


n ≡ e
∑

i

z2
i
−|zi |2
4l2 χn(fi(zj )), (3)

where χn(fi(zj )) is a Slater determinant formed from the
single-particle wave functions fi(zj ), where the subscript
i denotes collectively the quantum numbers (LL index,
momentum) of the single-particle state. In particular, the wave
function of one filled LL, 
1, assumes the simple form


1[zi,z̄i] ∼ e
∑

i

z2
i
−|zi |2
4l2 F1(Z)

∏
j<k

θ

(
zj − zk

L1
|τ
)

, (4)

where θ is the odd Jacobi theta function [55] and

Z =
N∑

i=1

zi (5)

is the CM coordinate for a system of N electrons.
In Sec. III A we show how a product of three single-

particle wave functions produces, with an appropriate choice
of boundary conditions for each factor, a valid wave function
in our Hilbert space. The magnetic field of the product is the
sum of the magnetic fields of the individual factors. It thus
follows that the standard unprojected Jain wave functions



unproj

n
2pn+1

= 
n

2p

1 (6)

are legitimate wave functions, where 
n is wave function of
n filled LLs in an effective magnetic field corresponding to
magnetic flux

N∗
φ = Nφ − 2pN, (7)

where Nφ is the physical magnetic flux, and 
1 is constructed
at magnetic flux N

(ν=1)
φ = N . The states 
unproj are in general

not confined to the LLL, however, and ought to be projected
into the LLL to calculate quantities appropriate for the large
magnetic field limit where admixture with higher LLs is
negligible.

The use of symmetric gauge allows us to accomplish
the LLL projection exactly as in the disk geometry, i.e.,
by moving all z̄’s to the left and replacing z̄ → 2l2∂/∂z

with the understanding that the derivatives do not act on the
Gaussian factor e−|z|2/4l2

. This produces the LLL-projected
wave function


 n
2pn+1

= e
∑

i

z2
i
−|zi |2
4l2 χn[f̂i(∂/∂zj ,zj )]F 2p

1 (Z)

×
∏
j<k

[
θ

(
zj − zk

L1

∣∣∣∣τ
)]2p

, (8)

where the operator f̂i(∂/∂zj ,zj ) is obtained from the single-
particle wave function fi(z̄j ,zj ) by moving z̄j to the left and
making the replacement z̄j → 2l2∂/∂zj + zj , where the last

term arises from commuting through ez2
j /4l2

. This is analogous
to the original method for projection, called “direct projection”
in the disk and spherical geometries [11,12,56], and the
resulting wave functions are equivalent, modulo gauge choice,
to those obtained by Hermanns [48]. The direct projection
corresponds to expanding the unprojected wave function in
terms of the Slater determinant basis functions and keeping
only the part residing in the LLL. This projection originally
played a crucial role in establishing the validity of the CF
theory, but is not useful for practical calculations, because it
allows projection for only small systems [11,12,56,57]. The
reason is that one needs to keep track of all individual LLL
Slater determinant basis functions, the number of which grows
exponentially with the system size and soon becomes too
large to store. A more useful form for LLL projection was
obtained by JK [9,10], which can be implemented for large
systems of composite fermions, allowing a determination of
thermodynamic limits for many quantities of interest. Both the
direct and the JK projection methods produce very accurate,
though not identical, LLL wave functions.

We implement the JK projection in the following fashion.
We show in Appendix E that in Eq. (8) the CM part F

2p

1 (Z)
can be commuted through χn. Then, in the spirit of the JK
projection method (briefly reviewed in Sec. III E), we write


JK
n

2pn+1
= e

∑
i

z2
i
−|zi |2
4l2 F

2p

1 (Z)χn

[
f̂i(∂/∂zj ,zj )Jp

j

]
, (9)

where

Jj =
∏

k(k �=j )

θ

(
zj − zk

L1

∣∣∣∣τ
)

. (10)

In Sec. III F we show that the JK projection method fails in
the torus geometry, because it does not preserve the periodic
boundary conditions and thus takes us out of our original
Hilbert space.

The principal achievement of our work is to show that,
for the so-called “proper states” defined below, it is possible
to construct a modified projection method that produces LLL
wave functions that have the CF structure and also satisfy the
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FIG. 2. (a) An example of a “proper state.” No composite fermion
in any � level has a hole directly underneath it in any � level. (A
composite fermion is depicted as an electron bound to two flux quanta
represented by vertical arrows.) (b) An example of a state that is not
proper.

correct boundary conditions. In essence, we derive a closely
related operator ĝ such that


 n
2pn+1

= e
∑

i

z2
i
−|zi |2
4l2 F

2p

1 (Z)χn

[
ĝi(∂/∂zj ,zj )Jp

j

]
(11)

satisfies the correct boundary conditions. It is shown in
Sec. III G and Appendix F that ĝi(∂/∂zj ,zj ) is obtained from
f̂i(∂/∂zj ,zj ) by making the replacement ∂/∂zk → 2∂/∂zk for
all derivatives acting on J

p

j . We note that F
2p

1 (Z) does not
account for the entire CM coordinate dependence of the wave
function.

It is known from general considerations that there are
2pn + 1 degenerate eigenstates at ν = n/(2pn + 1), which
are related by CM translation operator. The natural wave
function obtained in the CF theory is in general not an
eigenstate of the CM translation operator, but is a specific
linear superposition of the 2pn + 1 degenerate ground states.
Appendix D shows how, within our approach, we can construct
2pn + 1 eigenstates of the CM translation operator.

We further show that our method provides legitimate wave
functions for a much broader class of states, which we term
“proper states.” A proper state is defined by the condition
that if the orbital of a given “momentum” quantum number
is occupied in the nth �L, then it is occupied in all of the
lower �Ls. An example of a proper state is shown in Fig. 2,
along with a state that is not proper. Proper states include
(i) the ground states at ν = n/(2pn + 1); (ii) CF quasiholes,
which contain n �Ls fully occupied except for a single hole
in the nth �L; (iii) CF quasiparticles, which contain a single
composite fermion in the (n + 1)st �L with the lowest n �Ls
fully occupied; (iv) neutral excitations, which contain a CF
particle–hole pair, provided that the particle is not directly
above the hole. These are depicted in Fig. 3. In all of these
cases, we first construct the Slater determinant χν∗ for the
corresponding state at ν∗, and composite-fermionize it to
obtain


 ν∗
2pν∗+1

= e
∑

i

z2
i
−z̄2

i

4l2 F
2p

1 (Z)χν∗
(
ĝi(∂/∂zj ,zj )Jp

j

)
. (12)

We show in Appendix B that the construction is also valid for
the Jain states at ν = ν∗/(2pν∗ − 1) requiring negative vortex
(or flux) attachment; however, we will not consider these states
explicitly because their evaluation is much more complicated
than that of the states ν = ν∗/(2pν∗ + 1).

The evaluation of the wave functions in Eq. (12) does not
require expansion into Slater determinant basis functions, and
thus can be performed for very large systems. For illustration,
we show below results for up to N = 40 particles. We have

FIG. 3. Examples of certain important types of proper states:
(a) the 2/5 ground state, (b) a CF quasihole at ν = 2/5, (c) a CF
quasiparticle at ν = 2/5, and (d) a neutral CF exciton at ν = 2/5.

not made any attempt to ascertain the largest N for which
calculations are possible.

The fact that we have constructed LLL wave functions does
not guarantee, by any means, that these wave functions are
accurate representations of the actual eigenstates of electrons
interacting via the repulsive Coulomb interaction. That must
be checked by explicit calculation. We demonstrate the
quantitative accuracy of our LLL-projected wave functions
by comparison with exact results known for small systems.
In particular, in Sec. IV we calculate the Coulomb energies
of our wave functions for the CF quasiparticle at 1/3 and
for the ground states, CF quasiparticles, and CF quasiholes at
ν = 2/5 and 3/7. These energies are very close to the Coulomb
energies obtained from exact diagonalization, establishing the
quantitative validity of our torus wave functions.

A remark on units is in order. We will quote the energies
in units of e2/εl, where l is the magnetic length and ε is the
dielectric function of the background material. We will not
use, as is the general practice, the magnetic length l as the unit
of length, but will explicitly display it.

II. SINGLE-PARTICLE WAVE FUNCTIONS ON A TORUS

A torus is topologically equivalent to a parallelogram with
periodic boundary conditions. We define the two edges of the
parallelogram to be ξ1 = L1,ξ2 = L1τ , where τ is a complex
number that represents the aspect ratio of the torus. The
magnetic field is perpendicular to the plane of parallelogram
B = −B ẑ. We choose the symmetric gauge A = 1

2Br × ẑ,
which would be crucial for accomplishing LLL projection. In
this subsection we describe the single-particle wave functions
following the conventions in Ref. [53].

We use z = x + iy,z̄ = x − iy as the coordinates for par-
ticles. To describe the cyclotron and guiding-center variables,
we define two sets of ladder operators:

a =
√

2l

(
∂z̄ + 1

4l2
z

)
, a† =

√
2l

(
−∂z + 1

4l2
z̄

)
,

b =
√

2l

(
∂z + 1

4l2
z̄

)
, b† =

√
2l

(
−∂z̄ + 1

4l2
z

)
. (13)

These satisfy

[a,a†] = [b,b†] = 1, (14)
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and all other commutators vanish. In terms of the ladder
operators, the single-particle Hamiltonian can be recast as

H = 1

2M

(
p + e

c
A
)2

= h̄ωc

(
a†a + 1

2

)
, (15)

where ωc = eB/Mc is the cyclotron frequency and M is the
electron mass.

On torus geometry, the wave functions are taken to satisfy
the (quasi)periodic boundary conditions:

t(L1)ψ(z) = eiφ1ψ(z), t(L1τ )ψ(z) = eiφτ ψ(z), (16)

where the magnetic translation operator is defined as

t(ξ ) = e
− i

2l2
ẑ·(ξ×r )

T (ξ ) = e
1√
2l

(ξb−ξ̄ b†)
. (17)

In our convention, t represents the magnetic translation
operator and T represents the usual translation operator

T (ξ ) = exp(ξ∂z + ξ̄ ∂z̄). (18)

The following relationship between t and T will be very useful
later:

t(αL1)e
z2−|z|2

4l2 = e
z2−|z|2

4l2 T (αL1), (19)

t(αL1τ )e
z2−|z|2

4l2 = e
z2−|z|2

4l2 eiαπNφ (2z/L1+ατ )T (αL1τ ), (20)

where α is a real number between 0 and 1. It is evident from
Eq. (17) that the magnetic translation operators commute with
the ladder operators a and a†:

[t,a] = [t,a†] = 0. (21)

The commutation relation [t(L1),t(L1τ )] = 0 imposes the
condition that the number of flux quanta through the surface
of the torus, i.e.,

Nφ = L2
1Im(τ )B

φ0
, (22)

is an integer. Here a flux quantum is defined as φ0 = hc/e.

A. Lowest Landau level

We first review the construction of single-particle wave
functions in the LLL in the symmetric gauge, closely following
Greiter et al. [53]. For this purpose it is convenient to write

ψ1(z) = e
z2−|z|2

4l2 f1(z), (23)

where the subscript n = 1 refers to the LLL. (We stress that our
convention is different from most other literature, where the
LLL is defined as n = 0.) Combining Eq. (16) with Eq. (23),
and making use of Eq. (19), we get the periodic boundary
conditions for f1(z):

T (L1)f1(z)

f1(z)
= f1(z + L1)

f1(z)
= eiφ1 ,

T (L1τ )f1(z)

f1(z)
= f1(z + L1τ )

f1(z)
= ei[φτ −πNφ (2z/L1+τ )]. (24)

The solutions for Eq. (24) are given by [14]:

f1(z) = eikz

Nφ∏
ν=1

θ (z/L1 − wν |τ ), (25)

where θ (z|τ ) is the odd Jacobi theta function [55]:

θ (z|τ ) =
∞∑

n=−∞
eiπ(n+ 1

2 )2τ ei2π(n+ 1
2 )(z+ 1

2 ). (26)

The odd Jacobi theta function is variously denoted as θ 1
2 , 1

2
(z|τ )

or θ1(z|τ ) in the literature. For simplicity we shall suppress the
subscript and use θ (z|τ ), because we do not use other types of
Jacobi theta functions in this work.

The dimension of the Hilbert space in the LLL is Nφ . To
form a complete and orthogonal basis for this Hilbert space,
we make the following choice for ψ

(n)
1 (z):

ψ
(n)
1 (z) = e

z2−|z|2
4l2 f

(n)
1 (z),

f
(n)
1 (z) = eik(n)z

Nφ∏
ν=1

θ
(
z/L1 − w(n)

ν

∣∣τ),
n = 0,1, . . . ,Nφ − 1,

k(n) = φ1 − πNφ + 2πn

L1
,

w(n)
ν = 1

2πNφ

[φτ − φ1τ − πNφ(2 − τ )

− 2πnτ + π + 2π (ν − 1)]. (27)

The relations

t

(
L1

Nφ

)
ψ

(n)
1 (z) = −e

i
k(n)L1

Nφ ψ
(n)
1 (z),

t

(
L1τ

Nφ

)
ψ

(n)
1 (z) = e

iτ (π+ k(n)L1
Nφ

)
ψ

(n+1)
1 (z),

n = 0, . . . ,Nφ − 2,

t

(
L1τ

Nφ

)
ψ

(Nφ−1)
1 (z) = e

i(πτ+ k
(Nφ−1)

L1τ

Nφ
+φτ −φ1τ )

ψ
(0)
1 (z),

n = Nφ − 1, (28)

show that ψ
(n)
1 (z) are eigenfunctions of t( L1

Nφ
), and are related

to one another by application of t(L1τ
Nφ

). We will call k(n) the

“momentum” of ψ
(n)
1 (z).

B. Higher Landau levels

In the CF construction of the FQHE states, we need wave
functions for higher LLs. Using

a†e
z2−|z|2

4l2 = e
z2−|z|2

4l2
√

2l

(
z̄ − z

2l2
− ∂z

)
, (29)

the single-particle wave function in the mth LL is given by

ψ (n)
m (z,z̄) = e

z2−|z|2
4l2

(a†
f )m−1

√
(m − 1)!

f
(n)
1 (z), (30)

where

a
†
f ≡

√
2l

(
z̄ − z

2l2
− ∂z

)
. (31)
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For future reference, the single-particle wave functions in the
second and third LLs are

ψ
(n)
2 (z,z̄) = e

z2−|z|2
4l2

√
2l

(
z̄ − z

2l2
f

(n)
1 (z) − ∂f

(n)
1 (z)

∂z

)
, (32)

ψ
(n)
3 (z,z̄) = e

z2−|z|2
4l2

√
2l2

[(
z̄ − z

2l2

)2

f
(n)
1 (z)

− z̄ − z

l2

∂f
(n)
1 (z)

∂z
+ 1

2l2
f

(n)
1 (z) + ∂2f

(n)
1 (z)

∂z2

]
.

(33)

That ψ (n)
m (z,z̄) satisfies periodic boundary conditions of

Eq. (16) follows because a† commutes with the magnetic
translation operators. For the same reason, ψ (n)

m (z,z̄) also
satisfies Eq. (28), and thus is labeled by the momentum k(n).
It should be clear that the dimension of the Hilbert space is
Nφ in all LLs. (This should be contrasted with the spherical
geometry, for which the dimension increases by two for each
successive LL.)

In what follows below, we will omit the overall normaliza-
tion factors for various wave functions. These are not important
when we consider many-body wave functions that are derived
from a single Slater determinant, as will be the case in this
article.

With apologies, we note that the symbols n and m will be
used to label both the momentum and the LL or �L indices.
In the wave function ψ (n)

m or f (n)
m , the lower index refers to the

LL or the �L index and the upper to the momentum. We hope
this will not lead to any confusion.

C. Wave function for one filled LL

With the knowledge of the single-particle wave functions
we can construct many particle wave functions as linear
superpositions of Slater determinants. In particular, the ground
state wave function 
n[zi,z̄i] at filling ν = n is a single Slater
determinant. Of special relevance below will be the wave
function 
1 of one filled LL:


1[zi,z̄i] = e
∑

i

z2
i
−|z|2

i

4l2 χ1[fi(zj )], (34)

χ1[fi(zj )] =

∣∣∣∣∣∣∣∣∣∣∣

f
(0)
1 (z1) . . . f

(0)
1 (zN )

f
(1)
1 (z1) . . . f

(1)
1 (zN )

...
...

...

f
(Nφ−1)
1 (z1) . . . f

(Nφ−1)
1 (zN )

∣∣∣∣∣∣∣∣∣∣∣
. (35)

As shown in Appendix A, 
1 has the simple form


1[zi,z̄i] = N e
∑

i

z2
i
−|z|2

i

4l2 F1(Z)
∏
j<k

θ

(
zj − zk

L1

∣∣∣∣τ
)

, (36)

whereN is a normalization factor. In particular, χ1 is a product
of a factor that depends only on the CM coordinate defined in
Eq. (5) and a factor that contains only the relative coordinates.
The last expression in the above equation follows because it is
the only function that depends only on zi’s, vanishes as a single
power of the distance when two particles are brought together,

and is consistent with the periodic boundary conditions.
Appendix A shows that the wave functions in Eqs. (35) and
(36) have the same behavior under CM translation.

III. COMPOSITE FERMIONS

In this section, we construct wave functions for low-energy
states at arbitrary filling factors of the form ν = ν∗

2pν∗+1 in
terms of composite fermions at filling ν∗. Our construction is
valid for all “proper” states defined in the introduction, which
include the incompressible ground states at ν = n/(2pn + 1),
their charged and neutral excitations (except the neutral exciton
in which the excited CF particle is directly above the CF hole
left behind), and the quasidegenerate ground states at arbitrary
fillings. For this purpose, we first prove that the product of
single-particle wave functions preserves the periodic boundary
conditions. Then we construct the unprojected Jain wave
functions and their Direct projection into the LLL. We finally
show that the standard JK projection method fails for the torus
geometry, but a modified projection method yields legitimate
LLL wave functions for all proper states. In the following
section, we explicitly evaluate the Coulomb energies of ground
and excited states at ν = 1

3 , ν = 2
5 , and ν = 3

7 and find that they
are extremely close to the corresponding exact energies.

A. Products of single-particle wave functions

The general wave functions for composite fermions are
the products of Slater determinants. Therefore, we begin by
asking what periodic boundary conditions should be imposed
on each factor to ensure the product satisfies the right periodic
boundary conditions. To this end, we consider products of
single-particle wave functions:

ψ(z,z̄) =
∏

i

ψ (i)(z,z̄)

=
∏

i

e
z2−|z|2

4l(i)2 f (i)(z,z̄)

= e
z2−|z|2

4l2
∏

i

f (i)(z,z̄). (37)

The magnetic length l of the product is related to the magnetic
lengths of the individual factors as

1

l2
=
∑

i

1

l(i)2
, (38)

which implies that

Nφ =
∑

i

N
(i)
φ . (39)

The boundary conditions for ψ(z,z̄) with phases φ1 and φτ

translates into

T (L1)
[∏

f (i)(z)
]

[∏
f (i)(z)

] =
∏

i

eiφ
(i)
1 = eiφ1 ,

T (L1τ )
[∏

f (i)(z)
]

[∏
f (i)(z)

] =
∏

i

ei[φ(i)
τ −πN

(i)
φ (2z/L1+τ )]

= ei[φτ −πNφ (2z/L1+τ )], (40)
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where φ
(i)
1 and φ(i)

τ are the phases for the boundary conditions
on the individual factors f (i)(z). Equations (40) are satisfied
provided we set

φ1 =
∑

i

φ
(i)
1 , φτ =

∑
i

φ(i)
τ , (41)

and also make use of Eq. (39).
The above proof works for a product of any number of

single-particle wave functions. As shown in Appendix B,
the product also satisfies the correct boundary conditions
if the first single-particle wave function is evaluated at a
“negative” magnetic field; i.e., ψ (1)(z) is replaced by its
complex conjugate. (We thank Mikael Fremling for pointing
out that a similar construction works in the Landau or τ

gauge, which helped us eliminate an error in an earlier
version of the manuscript.) We will consider only the states
at ν = ν∗/(2ν∗ + 1) in what follows because the LLL pro-
jection for states at ν = ν∗/(2ν∗ − 1) is much harder to
evaluate.

B. Unprojected wave functions

A composite fermion is the bound state of an electron and
even number 2p of quantized vortices. For the ground states
of ν = n

2pn+1 , we write the unprojected wave functions:



unproj

n
2pn+1

= 
n

2p

1 , (42)

where 
n is the wave function of n filled LLs at the effective
flux quanta N∗

φ = N/n and 
1 is the wave function of 1 filled

LL at the effective flux quanta N
(1)
φ = N . The product wave

function 

unproj

n
2pn+1

occurs at flux

Nφ = N∗
φ + 2pN (43)

and thus corresponds to

ν = N

Nφ

= n

2pn + 1
. (44)

Recalling that the translation operators for different particles
commute, the results of the previous section regarding products
of single-particle wave functions imply that 
unproj

n
2pn+1

satisfies the

correct boundary conditions. Because the number of states in
each LL is precisely equal to Nφ in the periodic geometry, the
relation Eq. (44) has no shift for small systems (in contrast to
the spherical geometry).


n is a determinant composed of the appropriate
single-particle states. It is convenient to express the wave
function as



unproj

n
2pn+1

[zi,z̄i] = e

∑
i (z2

i
−|zi |2)

4l2 χn[fi(zj )]{χ1[fi(zj )]}2p, (45)

where

χn[fi(zj )] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(1)
1 (z1) f

(1)
1 (z2) . . . f

(1)
1 (zN )

f
(2)
1 (z1) f

(2)
1 (z2) . . . f

(2)
1 (zN )

...
...

...

f
(Nφ )
1 (z1) f

(Nφ )
1 (z2) . . . f

(Nφ )
1 (zN )

f
(1)
2 (z1,z̄1) f

(1)
2 (z2,z̄2) . . . f

(1)
2 (zN,z̄N )

f
(2)
2 (z1,z̄1) f

(2)
2 (z2,z̄2) . . . f

(2)
2 (zN,z̄N )

...
...

...

f
(Nφ )
n (z1,z̄1) f

(Nφ )
n (z2,z̄2) . . . f

(Nφ )
n (zN,z̄N )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(46)

The single-particle wave functions f (i)
n (z1,z̄1) were given in

Eq. (29).
The wave function 
 satisfies the periodic boundary

conditions given in Eq. (16) provided that the single-particle
wave functions in χn and χ1 satisfy Eq. (16), and the various
phases satisfy

φ1 = φ
(n)
1 + 2pφ

(1)
1 , φτ = φ(n)

τ + 2pφ(1)
τ . (47)

We note that the wave function in Eq. (42) does not, in general,
have a well-defined CM momentum. To see this, we recall that
the CM momentum is defined by the eigenvalue of the CM
magnetic translation operator

tCM

(
L1

Nφ

)
=

N∏
i=1

t

(
L1

Nφ

)
, (48)

where L1/Nφ is the smallest discrete value that preserves the
boundary conditions [30,58]. While 
n is the eigenstate of
tCM( L1

N∗
φ

) and 
1 is the eigenstate of tCM(L1
N

), the product 
unproj
n

2pn+1

is not an eigenstate of tCM( L1
Nφ

), since L1
Nφ

is smaller than both
L1
N∗

φ
and L1

N
.

It is known from general considerations [14,30,53,58] that
the ground state at ν = n/(2pn + 1) has a degeneracy of
2pn + 1, with the different ground states related by the CM
magnetic translation. The wave function for ground state
at ν = n

2pn+1 obtained above is thus a superposition of the
2pn + 1 CM eigenstates. That is not a problem for the
calculation of many observable quantities, such as the energy
or the pair correlation function, because they do not depend
on the CM part of the wave function. Nonetheless, it would
be important to derive explicitly the correct degeneracy of the
ground state. For Laughlin’s wave function at ν = 1/(2p + 1),
the CM part factors out which allows an explicit construction
of the 2p + 1 wave functions that are eigenstates of the CM
operator, as shown in Appendix C. In Appendix D we show
how, starting from the wave function in Eq. (45), we can
construct 2pn + 1 degenerate states at ν = n/(2pn + 1) with
well-defined CM momenta.

C. LLL projection of products of single-particle wave functions

In the CF theory, we need to project the products of wave
functions to the LLL. An advantage of using the symmetric
gauge is that in the torus geometry the projection method is
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analogous to that in the disk geometry [4,9,10]. However, we
need to check that the projected wave functions satisfy the
correct periodic boundary conditions for individual particles.

In this section, we prove the following result:

PLLLψnψ
′
1ψ

′′
1 = e

z2−|z|2
4l2 f̂nf

′
1f

′′
1 , (49)

where f̂n is an operator that does not act on the Gaussian and
exponential factors (which have been moved to the left) and
does not depend on the wave function (e.g., f ′

1f
′′
1 ) on which

it is acting (provided it is in the LLL). Following the standard
method of LLL projection, we have

e
z2−|z|2

4l2 f̂n = e
−|z|2
4l2 fn(z̄ → 2l2∂/∂z,z)e

z2

4l2 . (50)

It should be understood here and below that in fn(z̄ →
2l2∂/∂z,z), z̄ is moved to the far left before making the
replacement z̄ → 2l2∂/∂z.

Let us illustrate how to derive f̂n by taking an example
in the second LL. First, we write out the unprojected wave

function with the Gaussian factor e
− |z|2

4l2 on the far left:

ψ(z,z̄) = ψ2(z,z̄)ψ ′
1(z,z̄)ψ ′′

1 (z,z̄)

= e
−|z|2
4l2

{
z̄

2l∗2
e

z2

4l2 f1(z)f ′
1(z)f ′′

1 (z)

−
[ z

2l∗2
f1(z) + ∂zf1(z)

]
e

z2

4l2 f ′
1(z)f ′′

1 (z)

}
. (51)

Here l is the physical magnetic length and l∗ is the effective
magnetic length for composite fermions satisfying

l∗2

l2
= Nφ

|N∗
φ | . (52)

Next, we replace z̄ with 2l2∂z and let it act on the rest of the
wave function:

PLLLψ2(z,z̄)ψ ′
1(z,z̄)ψ ′′

1 (z,z̄)

= e
z2−|z|2

4l2

[
l2 − l∗2

l∗2

∂f1

∂z
f ′

1f
′′
1 + l2

l∗2
f1∂z(f

′
1f

′′
1 )

]

= e
z2−|z|2

4l2 f̂2f
′
1f

′′
1

≡ e
z2−|z|2

4l2 f (z) (53)

with

f̂
(n)
2 (z) = l2 − l∗2

l∗2

∂f
(n)
1

∂z
+ l2

l∗2
f

(n)
1

∂

∂z
, (54)

where we have now restored the momentum index n. (We shall
often suppress the dependence on z̄ or ∂/∂z to avoid clutter.)
The important point is that the form of f̂

(n)
2 (z) does not depend

on the wave function on which it acts, so long as the wave
function is in the LLL.

We need to check whether Eq. (53) satisfies the correct
periodic boundary conditions. From the periodic boundary
conditions on the product of unprojected single-particle wave

functions, we know the following:

N
(1)
φ + N

(2)
φ + N

(3)
φ = Nφ,

φ
(1)
1 + φ

(2)
1 + φ

(3)
1 = φ1,

φ(1)
τ + φ(2)

τ + φ(3)
τ = φτ . (55)

From algebra it follows that f (z) defined in Eq. (53) satisfies
the first equation of Eq. (24):

T (L1)f (z)

f (z)
= eiφ1 . (56)

To check that f (z) also satisfies the second equation of
Eq. (24), let us apply T (L1τ ) on f (z):

T (L1τ )f (z) = l2 − l∗2

l∗2

[
− i2π

L1
N

(1)
φ e

i[φτ −πNφ ( 2z
L1

+τ )]

× f1f
′
1f

′′
1 + e

i[φτ −πNφ ( 2z
L1

+τ )] ∂f1

∂z
f ′

1f
′′
1

]

+ l2

l∗2

[
− i2π

L1

(
N

(2)
φ + N

(3)
φ

)
e
i[φτ −πNφ ( 2z

L1
+τ )]

× f1f
′
1f

′′
1 + e

i[φτ −πNφ ( 2z
L1

+τ )]
f1∂z(f

′
1f

′′
1 )

]
.

(57)

The first terms inside both sets of large square brackets cancel
because

(l∗2 − l2)N (1)
φ = l2

(
N

(2)
φ + N

(3)
φ

)
. (58)

Then we have

T (L1τ )f (z) = e
i[φτ −πNφ ( 2z

L1
+τ )]

f (z). (59)

The periodic boundary conditions are therefore indeed pre-
served. Of course, that is expected from the fact that the
unprojected product wave function satisfies the correct peri-
odic boundary conditions, and because its LLL and higher LL
components are orthogonal, they must both separately satisfy
the correct periodic boundary conditions.

Similarly, it can be shown that the operator corresponding
to a single-particle wave function in the third �L is (with the
momentum index n)

f̂
(n)
3 (z) = l∗2 − l2

2l∗4
f

(n)
1 (z) + (l∗2 − l2)2

l∗4

∂2f
(n)
1 (z)

∂z2

+ 2l2(l2 − l∗2)

l∗4

∂f
(n)
1 (z)

∂z

∂

∂z
+ l4

l∗4
f

(n)
1 (z)

∂2

∂z2
.

(60)
D. Direct projection

Using the results from the previous section, the LLL-
projected wave function can be written as


Direct
ν∗

2pν∗+1
[zi,z̄i] = e

∑
i (z2

i
−|zi |2)

4l2 χν∗ [f̂i(∂/∂zj ,zj )]χ2p

1

= e

∑
i (z2

i
−|zi |2)

4l2 χν∗ [f̂i(∂/∂zj ,zj )]F 2p

1 (Z)

×
N∏

i<j

[
θ

(
zi − zj

L1

∣∣∣∣τ
)]2p

. (61)
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Even though Eq. (61) gives a LLL-projected wave function
with correct periodic boundary conditions, it is not possible to
explicitly evaluate it except for small systems. The reason
is that the projection requires keeping track of all Slater
determinant basis functions, the number of which grows
exponentially with the number of particles, N . This problem
was circumvented in the disk and spherical geometries through
another projection method, called the JK projection, to which
we now come.

E. JK projection: Review for disk geometry

Let us briefly review the JK projection for the disk
geometry. The notation in this subsection will be slightly
different from that in the rest of the paper, but should be
self-explanatory.

The unprojected wave functions in the disk geometry have
the form



unproj

ν∗
2ν∗+1

= e
−∑j

|zj |2
4l2 χν∗ (fi(z̄j ,zj ))

∏
j<k

(zj − zk)2p, (62)

where fi(z̄j ,zj ) are single-particle wave functions, with i col-
lectively denoting the LL and momentum quantum numbers.
The Direct projection is obtained as


 ν∗
2ν∗+1

= e
−∑j

|zj |2
4l2 χν∗ (f̂i(∂/∂zj ,zj ))

∏
j<k

(zj − zk)2p, (63)

where f̂i(∂/∂zj ,zj ) = fi(z̄j → 2l2∂/∂zj ,zj ). As discussed
above, it is not possible to evaluate this wave function for
large N . To make further progress, we write, following JK,


JK
ν∗

2ν∗+1
= e

−∑j

|zj |2
4l2 χν∗

(
f̂i(∂/∂zj ,zj )Jp

j

)
, (64)

where

Ji =
∏

j (j �=i)

(zi − zj ). (65)

In the JK wave function, one projects each term of the Slater
determinant χ individually. One thus needs to evaluate a single
Slater determinant for the FQH ground and excited states,
which enables a study of very large systems.

F. Failure of JK projection for the torus geometry

In this section, we show that if we directly apply the JK
projection method as it is implemented in disk and spherical
geometries, it does not produce a valid wave function in the
torus geometry, because the resulting wave function does not
satisfy the correct periodic boundary conditions.

Seeking to generalize the JK projection to the torus
geometry, we note that the factor

∏N
i<j [θ ( zi−zj

L1
|τ )]2p is quite

analogous to the Jastrow factor of the disk geometry, but
the presence of the CM factor F 2

1 (Z) seems to pose a
difficulty. Fortunately, as shown in Appendix E, the operator
χν∗ [f̂i(∂/∂zj ,zj )] commutes with F 2

1 (Z) for all proper states.
We can thus incorporate the Jastrow factor

∏N
i<j [θ ( zi−zj

L1
|τ )]2p

into χν∗ [f̂i(∂/∂zj ,zj )] as follows:


JK
ν∗

2pν∗+1
[zi,z̄i] = e

∑
i (z2

i
−|zi |2)

4l2 F 2
1 (Z)χ JK

ν∗
[
f̂i(∂/∂zj ,zj )Jp

j

]
(66)

with

Ji =
∏

j (j �=i)

θ

(
zi − zj

L1

∣∣τ). (67)

This is not a valid wave function, however. To show that it
violates the periodic boundary conditions, we take the ν =
2/5 state with N = 2,Nφ = 5 as an example. In this case,
we can write the determinant explicitly (note that there is
only one eigenstate in each Landau level, so we suppress the
superscript):

χ JK
2 [f̂i(∂/∂zj ,zj )Jj ] =

∣∣∣∣∣∣
f1(z1)θ

(
z1−z2

L1
|τ) f1(z2)θ

(
z2−z1

L1
|τ)

− 4
5

∂f1(z1)
∂z1

θ
(

z1−z2
L1

|τ)+ 1
5f1(z1)

∂θ

(
z1−z2

L1
|τ
)

∂z1
− 4

5
∂f1(z2)

∂z2
θ
(

z2−z1
L1

|τ)+ 1
5f1(z2)

∂θ

(
z2−z1

L1
|τ
)

∂z2

∣∣∣∣∣∣. (68)

Here we have

f̂
(n)
2 (z,z̄) = −4

5

∂f
(n)
1 (z)

∂z
+ 1

5
f

(n)
1 (z)

∂

∂z
, (69)

which follows from Eq. (54) noting that at filling factor ν = 2/5, we have l∗2

l2 = 5.
To satisfy the periodic boundary condition in the L1τ direction, χ JK

2 needs to satisfy (for a translation of the particle 1)

T1(L1τ )χ JK
2 = ei[2π(2Z/L1+τ )−πNφ (2z1/L1+τ )]χ JK

2 . (70)

However, an explicit calculation gives

T1(L1τ )χ JK
2 = ei[2π(2Z/L1+τ )−πNφ (2z1/L1+τ )]χ JK

2

+ 1

5

i2π

L1
ei[2π(2Z/L1+τ )−πNφ (2z1/L1+τ )]f1(z1)f1(z2)θ

(
z1 − z2

L1

∣∣∣∣τ
)

θ

(
z2 − z1

L1

∣∣∣∣τ
)

, (71)

indicating that the wave function does not satisfy the periodic boundary conditions. This may seem to make the JK projection
method unimplementable in the torus geometry, which would make it impractical to do calculations with the CF theory in the
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torus geometry. However, we show in the next section that, fortunately, it is possible to modify the JK projection method to
obtain legitimate LLL wave functions.

G. Modified LLL projection method

The two-particle problem considered in the previous section gives us a clue that leads us to an elegant solution for how the
JK projection method can be modified to produce legitimate wave functions. Let us first go back to the direct projection of the
system:


Direct
2
5

[zi,z̄i] = e

∑
i (z2

i
−|zi |2)

4l2 F 2
1 (Z)χ2(f̂i(∂/∂zj ,zj ))J 2, (72)

where J = θ ( z1−z2
L1

|τ ). This of course satisfies the correct periodic boundary conditions. The factor χ2[f̂i(∂/∂zj ,zj )]J 2 can be
written as

χ2[f̂i(∂/∂zj ,zj )]J 2 =
∣∣∣∣∣

f1(z1) f1(z2)

− 4
5

∂f1(z1)
∂z1

+ 1
5f1(z1) ∂

∂z1
− 4

5
∂f1(z2)

∂z2
+ 1

5f1(z2) ∂
∂z2

∣∣∣∣∣J 2

=
∣∣∣∣∣

f1(z1) f1(z2)

− 4
5

∂f1(z1)
∂z1

J 2 + 1
5f1(z1) ∂J 2

∂z1
− 4

5
∂f1(z2)

∂z2
J 2 + 1

5f1(z2) ∂J 2

∂z2

∣∣∣∣∣
=
∣∣∣∣∣

f1(z1)J f1(z2)J

− 4
5

∂f1(z1)
∂z1

J + 2
5f1(z1) ∂J

∂z1
− 4

5
∂f1(z2)

∂z2
J + 2

5f1(z2) ∂J
∂z2

∣∣∣∣∣. (73)

We notice that this form is almost the same as that in Eq. (68), except that the coefficient of f1(zi) ∂J
∂zi

is 2
5 instead of 1

5 . [The reader
may notice that the second columns of Eq. (68) and Eq. (73) have opposite signs, but that merely contributes an unimportant −1
to the overall normalization factor.]

This suggests a possible way to modify the JK projection. We ask whether replacing f̂ (m)
n by a related operator ĝ(m)

n could give
a wave function with the correct boundary conditions. Let us specialize to the second �L and try the form for ĝ

(m)
2 :

ĝ
(n)
2 (z) = −Nφ − N∗

φ

Nφ

∂f
(n)
1 (z)

∂z
+ α

N∗
φ

Nφ

f
(n)
1 (z)

∂

∂z
, (74)

where α is an unknown coefficient. We now ask whether a value for α can be found that produces a wave function that satisfies
correct boundary conditions.

We consider a general wave function of the type

ψ[zi,z̄i] = e

∑
i (z2

i
−|zi |2)

4l2 F
2p

1 (Z)χ
[
ĝi(zj )Jp

j

]
, (75)

χ
[
ĝi(zj )Jp

j

] =

∣∣∣∣∣∣∣∣∣∣∣

ĝ1
(1)(z1)Jp

1 . . . ĝ1
(1)(zN )Jp

N

...
...

...

ĝ2
(1)(z1)Jp

1 . . . ĝ2
(1)(zN )Jp

N

...
...

...

∣∣∣∣∣∣∣∣∣∣∣
, (76)

where we assume that in χ the LLL is fully occupied, the second LL is arbitrarily occupied, and third and higher LLs are
unoccupied. This includes the 2/5 ground state (χ has second LL fully occupied), a CF quasiparticle of the 1/3 state (χ has only
a single electron in the second LL), a CF quasihole of 2/5 (χ has a single hole in the second LL), and quasidegenerate ground
states at arbitrary fillings in the range 2/5 � ν � 1/3.

The wave function in Eq. (75) should satisfy the periodic boundary conditions:

Ti(L1)F 2p

1 (Z)χ
[
ĝi(zj )Jp

j

]
F

2p

1 (Z)χ
[
ĝi(zj )Jp

j

] = eiφ1 ,
Ti(L1τ )F 2p

1 (Z)χ
[
ĝi(zj )Jp

j

]
F

2p

1 (Z)χ
[
ĝi(zj )Jp

j

] = ei[φτ −πNφ (2zi/L1+τ )]. (77)

For convenience, we will take φ1 = 0,φτ = 0. Considering the periodic properties of F 2
1 (Z), the periodic boundary conditions

for χ [ĝi(zj )] are

Ti(L1)χ
[
ĝi(zj )Jp

j

]
χ
[
ĝi(zj )Jp

j

] = 1,
Ti(L1τ )χ

[
ĝi(zj )Jp

j

]
χ
[
ĝi(zj )Jp

j

] = ei[2pπ(2Z/L1+τ )−πNφ (2zi/L1+τ )]. (78)

Explicit calculation shows that the first equation in Eq. (78) is automatically satisfied for ĝ
(m)
2 with any value of α. The key is the

second equation in Eq. (78).
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Translating zi by L1τ gives

Ti(L1τ )ĝ(n)
1 (zj )Jp

j = e
ipπ

(
2(zj −zi )

L1
−τ+1

)
ĝ

(n)
1 (zj )Jp

j , j �= i, (79)

Ti(L1τ )ĝ(n)
1 (zi)J

p

i = e
−iπN∗

φ

(
2zi
L1

+τ

) ∏
j (j �=i)

e
−ipπ

(
2(zi−zj )

L1
+τ+1

)
ĝ

(n)
1 (zi)J

p

i , (80)

Ti(L1τ )ĝ(n)
2 (zj )Jp

j = e
ipπ

(
2(zj −zi )

L1
−τ+1

)
ĝ

(n)
2 (zj )Jp

j + [pα]
i2πN∗

φ

L1Nφ

e
ipπ

(
2(zj −zi )

L1
−τ+1

)
ĝ

(n)
1 (zj )Jp

j , j �= i, (81)

Ti(L1τ )ĝ(n)
2 (zi)J

p

i = e
−iπN∗

φ

(
2zi
L1

+τ

) ∏
j (j �=i)

e
−ipπ

(
2(zi−zj )

L1
+τ+1

)
ĝ

(n)
2 (zi)J

p

i + [Nφ − N∗
φ − pαN + pα]

× i2πN∗
φ

L1Nφ

e
−iπN∗

φ

(
2zi
L1

+τ

) ∏
j (j �=i)

e
−ipπ

(
2(zi−zj )

L1
+τ+1

)
ĝ

(n)
1 (zi)J

p

i . (82)

It is the second terms in Eqs. (81) and (82) that violate the periodic boundary conditions. Without those terms, it can be seen, by
taking the product of the factors from each column, that χ [ĝi(zj )Jp

j ] would satisfy the correct boundary conditions in Eq. (78).
It turns out that the second terms are eliminated if we choose the terms in the square brackets [. . .] in Eqs. (81) and (82) to be
equal:

pα = Nφ − N∗
φ − pαN + pα, (83)

which, with Nφ = N∗
φ + 2pN , reduces to α = 2. With this choice, the second terms in Eqs. (81) and (82) are expunged from the

Slater determinant χ of Eq. (76), because they are proportional to the corresponding row in the LLL containing the terms given
in Eqs. (79) and (80).

Thus we have

ĝ
(n)
2 (z) = −Nφ − N∗

φ

Nφ

∂f
(n)
1 (z)

∂z
+ N∗

φ

Nφ

f
(n)
1 (z)2

∂

∂z
. (84)

A similar but more lengthy algebra (which we leave out) shows that for the third LL, the choice

ĝ
(n)
3 (z) = Nφ − N∗

φ

2N2
φ

f
(n)
1 (z) + (Nφ − N∗

φ )2

N2
φ

∂2f
(n)
1 (z)

∂z2
− 2N∗

φ (Nφ − N∗
φ )

N2
φ

∂f
(n)
1 (z)

∂z
2

∂

∂z
+ N∗2

φ

N2
φ

f
(n)
1 (z)

(
2

∂

∂z

)2

(85)

produces wave functions with the correct boundary conditions,
provided that the lowest two �Ls are fully occupied. The
operators ĝ in Eqs. (84) and (85) differ from f̂ in Eqs. (54)
and (60) only through the factors highlighted in boldface.

One may ask whether ĝ(m)
n (zj ) exists for yet higher LLs.

The answer is in the affirmative. The derivation for ĝ(m)
n (zj )

for arbitrary LLs is given in Appendix F. Interestingly, the
general rule is that we can go from f̂ to ĝ by making the

TABLE I. The Coulomb energy per particle for the ground state
at ν = 1/3. The energy is quoted in units of e2/εl and includes
self-interaction.

N CF Exact

4 −0.41412 ± 0.00004 −0.41519
6 −0.41156 ± 0.00003 −0.41190
8 −0.41091 ± 0.00004 −0.41132
10 −0.41058 ± 0.00004 −0.41106
15 −0.41025 ± 0.00004
20 −0.41005 ± 0.00005
25 −0.40996 ± 0.00005
30 −0.40991 ± 0.00005
40 −0.40985 ± 0.00003
∞ −0.40956 ± 0.00002

replacement ∂/∂z → 2∂/∂z for the derivatives acting on Ji ;
Eqs. (84) and (85) for ĝ

(m)
2 (zj ) and ĝ

(m)
3 (zj ) are written so as

to make this explicit.
The crucial aspect that renders the wave functions in

Eq. (75) valid is that the unwanted terms in each row are
eliminated by the rows corresponding to single-particle states
in lower levels with the same momentum quantum numbers.
This implies that the modified projection method produces

TABLE II. The Coulomb energy per particle for the ground state
at ν = 2/5. The energy is quoted in units of e2/εl and includes
self-interaction.

N CF Exact

4 −0.43992 ± 0.00002 −0.44026
8 −0.43409 ± 0.00006 −0.43430
10 −0.43376 ± 0.00007 −0.43395
12 −0.43345 ± 0.00007 −0.43374
14 −0.4333 ± 0.0001
20 −0.43306 ± 0.00008
26 −0.4330 ± 0.0001
30 −0.43290 ± 0.00006
40 −0.4328 ± 0.0001
∞ −0.43245 ± 0.00004
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TABLE III. The Coulomb energy per particle for the ground state
at ν = 3/7. The energy is quoted in units of e2/εl and includes
self-interaction.

N CF Exact

3 −0.4431 ± 0.0001 −0.4438
6 −0.4436 ± 0.0001 −0.4438
9 −0.4447 ± 0.0001 −0.4448
12 −0.44340 ± 0.00008 −0.44360
15 −0.44303 ± 0.00006
21 −0.44262 ± 0.00008
24 −0.44258 ± 0.00008
30 −0.44245 ± 0.00004
39 −0.44239 ± 0.00006
∞ −0.44188 ± 0.00006

valid wave functions for all proper states defined in the
introduction.

IV. TESTING THE ACCURACY OF THE
LLL-PROJECTED STATES

In the previous section, we have shown how we can
modify the JK projection method in the torus geometry to
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FIG. 4. The Coulomb energy per particle for the ground states
at (a) ν = 1/3, (b) ν = 2/5, and (c) ν = 3/7. The circles are the CF
energies and the squares are the energies from exact diagonalizations.
The energy is quoted in units of e2/εl and includes self-interaction.

FIG. 5. The pair correlation functions for an N = 30 particle
system at ν = 2/5.

obtain LLL wave functions that satisfy the correct boundary
conditions. However, there is no guarantee that they are
accurate representations of the Coulomb eigenstates. That
must be ascertained by a direct comparison. In this section,
we perform such comparisons for the ground states, CF
quasiparticles, and CF quasiholes at ν = 1/3 and ν = 2/5.
We also evaluate the pair correlation function. The reader may
refer to Appendix G for the standard definition of the periodic
Coulomb interaction in the torus geometry, as well as certain
other technical details for our Monte Carlo calculations. In
all our numerical evaluations, we choose a square torus, i.e.,
τ = i.

The ground state energies for ν = 1/3, 2/5, and 3/7 are
shown in Tables I, II, and III. The exact diagonalization
energies are also given wherever available. The thermo-
dynamic limits are shown in Fig. 4 (small systems not
used in the extrapolation are not shown) as well as in
Tables I–III.

Comparison with exact diagonalization results establishes
that our wave functions are quantitatively extremely accurate.
For example, for 12 particles the energies of the Jain wave
functions for 2/5 and 3/7 are within 0.07% and 0.05%,
respectively, of the corresponding exact Coulomb energies.
This level of accuracy is comparable to what has been found
in the spherical geometry. Furthermore, our modified wave

TABLE IV. The Coulomb energy per particle for Nφ = 3N + 1,
which corresponds to a single CF quasihole of the ν = 1/3 state. The
energy is quoted in units of e2/εl and includes self-interaction.

N CF Exact

4 −0.39552 ± 0.00008 −0.39750
6 −0.39873 ± 0.00003 −0.39943
8 −0.40097 ± 0.00002 −0.40170
10 −0.40248 ± 0.00005 −0.40319
15 −0.40467 ± 0.00005
20 −0.40575 ± 0.00004
25 −0.40648 ± 0.00003
30 −0.40699 ± 0.00005
40 −0.40761 ± 0.00007
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TABLE V. The Coulomb energy per particle for Nφ = 3N − 1,
which corresponds to a single CF quasiparticle of the ν = 1/3 state.
The energy is quoted in units of e2/εl and includes self-interaction.

N CF Exact

4 −0.42050 ± 0.00005 −0.42190
6 −0.41415 ± 0.00007 −0.41467
8 −0.41241 ± 0.00005 −0.41303
10 −0.41157 ± 0.00006 −0.41216
15 −0.41068 ± 0.00006
20 −0.41024 ± 0.00004
25 −0.41005 ± 0.00008
30 −0.41000 ± 0.00005
40 −0.40988 ± 0.00009

functions can be evaluated for much larger systems than those
available to exact diagonalization. We have shown results for
up to 40 particles in this article, and much larger systems
should be accessible with our method.

An important property of a liquid state is its pair correlation
function, defined as

g(r) = L1L2

N2

〈∑
i �=j

δ(r i − rj − r)

〉
. (86)

It gives us the probability of finding two particles at a distance
r , normalized so that it approaches unity for |r| → ∞. The
pair correlation function at ν = 2/5 for N = 30 particles is
shown in Fig. 5.

We have also evaluated at several filling factors the
energies of the CF quasiparticle, the CF quasihole, and the
excitation gap to creating a far-separated CF quasiparticle–CF
quasihole pair. (Because we create the CF quasiparticle and CF
quasihole separately, the sum of their energies does not include
the interaction between them, and therefore corresponds to the
limit of large separation.) This gap is to be identified with
the activation energy measured from the Arrhenius behavior
of the longitudinal resistance at low temperatures. The CF
quasihole and CF quasiparticle states for ν = 1/3 occur for
Nφ = 3N + 1 and Nφ = 3N − 1, respectively. The Coulomb
energies for these states are shown in Tables IV and V. We

TABLE VI. The excitation gap for the ν = 1/3 state in units of
e2/εl.

N CF gap Exact gap

4 0.0489 ± 0.0005 0.0439
6 0.0614 ± 0.0006 0.0582
8 0.0675 ± 0.0007 0.0633
10 0.071 ± 0.001 0.0677
15 0.077 ± 0.002
20 0.082 ± 0.002
25 0.085 ± 0.003
30 0.085 ± 0.004
40 0.088 ± 0.005
∞ 0.095 ± 0.001
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FIG. 6. The excitation gap for (a) ν = 1/3 and (b) ν = 2/5 in
units of e2/εl.

define the gap at ν = 1/3 as

�1/3(N ) = E−(N,Nφ = 3N − 1) + E+(N,Nφ = 3N + 1)

− 2E0(N,Nφ = 3N ), (87)

where the first (second) term on the right-hand side is the total
Coulomb energy of the N particle state containing a single
CF quasiparticle (CF quasihole), and E0(N,Nφ = 3N ) is the
energy of the N particle incompressible ground state. The
gaps are shown in Table VI. The extrapolation of the gap to
the thermodynamic limit, 1

N
→ 0, is shown in Fig. 6(a).

At ν = 2/5, the incompressible ground state has an even
particle number N , but the states containing a single CF
quasiparticle or CF quasihole have an odd number of electrons.

TABLE VII. The Coulomb energy per particle for several systems
containing a single CF quasiparticle of the ν = 2/5 state. The energy
is quoted in units of e2/εl and includes self-interaction.

N Nφ CF Exact

5 12 −0.43868 ± 0.00007 −0.43882
9 22 −0.4354 ± 0.0001 −0.4361
11 27 −0.43450 ± 0.00006 −0.43482
15 37 −0.43393 ± 0.00006
21 52 −0.43340 ± 0.00009
31 77 −0.43307 ± 0.00003
41 102 −0.43295 ± 0.00009
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TABLE VIII. The Coulomb energy per particle for several states
containing a single CF quasihole of the ν = 2/5 state. The energy is
quoted in units of e2/εl and includes self-interaction.

N Nφ CF Exact

9 23 −0.42877 ± 0.00007 −0.42957
13 33 −0.42958 ± 0.00005
19 48 −0.43043 ± 0.00008
29 73 −0.43115 ± 0.00006
39 98 −0.43154 ± 0.00005

We define the gap as

�2/5(N ) = E−
(

N + 1,Nφ = 5N

2
+ 2

)

+E+
(

N − 1,Nφ = 5N

2
− 2

)

− 2E0

(
N,Nφ = 5N

2

)
. (88)

Again, the first and second terms on the right-hand side give the
total Coulomb energies of states containing a CF quasiparticle
and a CF quasihole, and the last term corresponds to the ground
state. All of these correspond to the same effective flux N∗

φ =
N/2. The total Coulomb energies for these states are shown in
Tables VII and VIII and the gaps in Table IX and Fig. 6(b).

The gap energies are not as accurate as the per particle
energies of the incompressible ground states, which is expected
because the gaps are O(1) energies obtained by subtracting
O(N ) energies. Nonetheless, the gap energies are reasonably
accurate. They can be further improved, if needed, by
modifying the method of CF diagonalization [59] to the torus
wave functions, but that is outside the scope of the current
work where our goal is to demonstrate how to construct
accurate wave functions for incompressible ground states,
their excitations, and other proper configurations of composite
fermions.

We have also calculated the overlaps between our CF
wave functions and exact eigenstates of Coulomb interaction.
For this purpose, we calculate the inner product of the CF
wave function with each Slater determinant basis function.
To deal with large-dimensional Hilbert spaces, we initially
perform 2 × 105 iterations to obtain all inner products, and
then perform 1.5 × 106 to 5 × 106 iterations for those basis
functions whose squared inner product is larger than some
number (0.001 for systems whose dimension is smaller than

TABLE IX. The excitation gap for ν = 2
5 in units of e2/εl.

N CF Exact

10 0.037 ± 0.002 0.030
14 0.039 ± 0.003
20 0.043 ± 0.004
30 0.045 ± 0.004
40 0.043 ± 0.009
∞ 0.049 ± 0.002

TABLE X. Overlaps of CF wave functions with exact Coulomb
eigenstates for several systems. The number D is the Hilbert space
dimension, i.e., the number of linearly independent basis states in the
subspace with the relevant CM momentum quantum number.

N Nφ State Overlap D

2 5 2/5 ground state 1.000000 ± 0.000000 2

4 10 2/5 ground state 0.99781 ± 0.00008 22

6 15 2/5 ground state 0.9967 ± 0.0002 335

8 20 2/5 ground state 0.962 ± 0.002 6310

3 7 3/7 ground state 0.99532 ± 0.00006 5

6 14 3/7 ground state 0.9942 ± 0.0001 217

4 11 CF quasiparticle at 1/3 0.9825 ± 0.0003 30

5 14 CF quasiparticle at 1/3 0.9923 ± 0.0004 143

6 17 CF quasiparticle at 1/3 0.979 ± 0.001 728

3 8 CF quasihole at 2/5 0.99887 ± 0.00003 7

5 13 CF quasihole at 2/5 0.9912 ± 0.0004 99

7 18 CF quasihole at 2/5 0.987 ± 0.002 1768

5 12 CF quasiparticle at 2/5 0.9979 ± 0.0001 66

7 17 CF quasiparticle at 2/5 0.9852 ± 0.0005 1144

1000 and 0.0001 for systems whose dimension is over 1000).
The resulting overlaps for the incompressible ground states at
ν = 2/5,3/7 and the CF quasiholes and CF quasiparticles at
ν = 2/5 are given in Table X, along with the statistical error
in the Monte Carlo evaluation of the overlap integral.

V. CONCLUSIONS AND FUTURE OUTLOOK

We have succeeded in constructing LLL wave functions for
composite fermions on a torus for a large class of states called
proper states. These include the ground states and charged
and neutral excitations at filling factors ν = n/(2pn + 1), as
well as all quasidegenerate ground states at arbitrary filling
factors of the form ν = ν∗/(2pν∗ + 1). These wave functions
satisfy the correct boundary conditions, and are demonstrated,
by explicit calculation, to be almost exact representations of
the actual Coulomb ground states. The construction of these
wave functions is complicated by the fact that the standard
JK projection does not produce valid wave functions. The
principal achievement of our work is to come up with a
modified projection method that does. The resulting wave
functions allow calculations for a large number of composite
fermions on a torus.

Our modified LLL projection method identifies an operator
ĝ(∂/∂z,z) corresponding to each single-particle state f (z̄,z)
such that


 = e
∑

i

z2
i
−|zi |2
4l2 F

2p

1 (Z)χ
[
ĝi(∂/∂zj ,zj )Jp

j

]
satisfies the correct boundary conditions for all proper states
χ (fi(z̄j ,zj )). The rule for constructing ĝ(∂/∂z,z) is to bring
all z̄ to the left in f (z̄,z) and then make the replacement z̄ →
2l2D̂, where D̂ = 2∂/∂z when it acts on Jp and D̂ = ∂/∂z

otherwise.
It would be appropriate to mention certain shortcomings of

our construction. As noted earlier, the LLL projection of the
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Jain states at ν = n/(2n − 1) is difficult to evaluate. However,
we expect the LLL projections of these wave functions also
to be accurate, in view of the fact that the CF theory produces
very accurate wave functions for these states in the disk and
the spherical geometries [12,60–62]. As another point, we note
that the proper states do not span the full LLL Hilbert space,
as can be seen by simple counting for small systems. This
should be contrasted with the construction in the disk or the
spherical geometries where, by considering arbitrarily high
energy excitations, the wave functions for composite fermions
eventually span the entire LLL Hilbert space. This limitation is
not disastrous, however, because the proper states do capture
all low-energy states, including states of immediate interest,
such as the incompressible FQH states and their charged and
neutral excitations.

In addition to the topics mentioned in the introduction, our
approach suggests a number of possible directions. One of
the developments in the field of the FQHE has been to seek
a connection between the FQHE physics and CFT, and, in
particular, to express FQH wave functions as correlators of
CFTs, with particles represented as primary fields [51,52,63–
67]. As mentioned in the introduction, the CFT approach has
served as a guide for the construction of wave functions for
composite fermions on a torus. It would be interesting to ask
whether the wave functions constructed in the present work
have a natural CFT representation.

Our approach can also be generalized to construct, in the
torus geometry, the unprojected parton wave functions [68] and
also the wave functions for composite-fermionized bosons in
the lowest LL [69–76].

Finally, we note that even though our wave functions are
already very accurate, it should be possible to improve them
further by allowing �L mixing, following similar studies in
the disk and spherical geometries [4] that employ the method
of CF diagonalization [59]. It would also be interesting to
investigate, as in the spherical geometry, whether certain
excited states at the effective flux N∗

φ are annihilated by LLL
projection during the process of composite fermionization
[11,57,77], and perform a counting of the remaining excited
states [78].

In conclusion, we expect that the ability to construct explicit
wave functions for a large class of FQH states and their
excitations on a torus will provide important new insight into
several interesting questions for which the torus geometry is
well suited.
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APPENDIX A: CERTAIN PROPERTIES OF THE LOWEST
FILLED LANDAU LEVEL

It is clear that Laughlin’s Jastrow wave function for ν = 1
given in Eq. (36) is equal to the Slater determinant χ1[zi,z̄i] in
Eq. (35), modulo a normalization factor. This follows because
the Laughlin wave function is the unique wave function in the
LLL in which each electron sees a single zero at every other
particle. In this appendix we show that the two wave functions
have the same behavior under CM translation.

Let us first consider the Laughlin wave function at ν =
1/(2p + 1) in the torus geometry constructed previously by
Haldane and Rezayi [14,53,58]. It is given by


[zi] = e
∑N

i=1
z2
i
−|zi |2
4l2 χ [zi] (A1)

with

χ [zi] = F (Z)
N∏

i<j

[
θ

(
zi − zj

L1

∣∣∣∣τ
)]2p+1

. (A2)

With the periodic boundary conditions of Eq. (16), F (Z)
should satisfy

F (Z + L1)

F (Z)
= (−1)Nφ−(2p+1)eiφ1 ,

F (Z + L1τ )

F (Z)
= (−1)Nφ−(2p+1)e−iπ(2p+1)(2Z/L1+τ )eiφτ . (A3)

The factor F (n)(Z) is thus an eigenfunction of the CM trans-
lation operator. The solutions for a complete and orthogonal
basis for F (Z) are [53]

F (n)(Z) = eiK (n)Z

(2p+1)∏
ν=1

θ
(
Z/L1 − W (n)

ν

∣∣τ),
K (n) = (φ1 − πNφ + 2πn)/L1,

W (n)
ν = 1

2π (2p + 1)
[φτ − φ1τ + πNφτ − πNφ

− 2πnτ − 2pπ + (ν − 1)2π ]. (A4)

We now show that we can analyze the properties of ψ1[zi,z̄i]
under CM and relative translation without assuming the form
of the relative part given in Eq. (A2), but by directly using the
Slater determinant form in Eq. (35).

The CM translation operator, defined as TCM( L1
Nφ

) =∏N
i=1 T ( L1

Nφ
), translates every particle by L1/Nφ , which is the

smallest translation that preserves the boundary condition:

TCM

(
L1

Nφ

)
F (n)(Z) = (−1)N+1ei

φ1+2πn

m F (n)(Z). (A5)

First we can define the relative magnetic translation
operator [58]

t reli (a) = ti

(
N − 1

N
a
) ∏

j (j �=i)

tj

(
− a

N

)
. (A6)

The relative magnetic translation operators only translate the
relative part while keeping the CM part fixed. By considering
the translation operators acting on each individual matrix
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element in χ1[fi(zj )] expressed as the Slater determinant in
Eq. (35) and making use of Eq. (28), it is found that

t reli (L1)ψ1[zi,z̄i] = (−1)N−1ψ1[zi,z̄i],

t reli (L1τ )ψ1[zi,z̄i] = (−1)N−1ψ1[zi,z̄i], (A7)

which means that ψ1[zi,z̄i] is the eigenstate of t reli (L1) and
t reli (L1τ ), and the eigenvalue is independent of φ1 and φτ .

The CM magnetic translation operators are defined as

tCM(a) =
N∏

i=1

ti(a). (A8)

By applying tCM( L1
Nφ

) and tCM(L1τ/Nφ) on ψ1[zi,z̄i] and
making use of Eq. (28), we find

tCM

(
L1

Nφ

)
ψ1[zi,z̄i] = (−1)N−1eiφ1ψ1[zi,z̄i],

tCM

(
L1τ

Nφ

)
ψ1[zi,z̄i] = (−1)N−1eiφτ ψ1[zi,z̄i]. (A9)

Let us now assume that the CM part of χ1[fi(zj )] is F1(Z). Its
form can be derived from Eq. (A9):

F1(Z + L1)

F1(Z)
=

TCM
(

L1
Nφ

)
χ1

χ1
= (−1)N−1eiφ1 ,

F1(Z + L1τ )

F1(Z)
=

TCM
(

L1τ
Nφ

)
χ1

χ1
= (−1)N−1e

i(φτ −πτ− 2πZ
L1

)
.

(A10)

This is exactly the same as Eq. (A3) with p = 0. Hence the
CM component F1(Z) of the Slater determinant wave function
in Eq. (35) is the same as the CM component F (Z) in the
Laughlin wave function of Eq. (36).

APPENDIX B: WAVE FUNCTIONS FOR FILLING
FACTORS ν = n

2 pn−1

In the main body of this paper, we only discuss how to
construct wave functions for the filling factors ν = n

2pn+1 .
In this appendix, we show that we can construct the Jain
wave functions for the filling factors ν = n

2pn−1 . The explicit
evaluation of the LLL projection of these wave functions is
much more difficult, however.

For filling factors ν = n
2pn−1 , the effective magnetic field

for composite fermions is antiparallel to the physical magnetic
field. The relation Eq. (43) does not change, but N∗

φ is a
negative integer given by

N∗
φ = −L2

1Im(τ )|B∗|
φ0

. (B1)

The single-particle wave functions are obtained by complex
conjugation of the wave functions given in Eq. (23) and
Eq. (25). Below we show that by simply taking the complex
conjugate of ψ1(z) and plugging it into Eq. (42), we obtain a
valid wave function satisfying the correct periodic boundary
conditions.

The complex conjugate of ψ1(z) is (note that l∗ is the
effective magnetic length defined in Eq. (52), which is a real
number)

ψ∗
1 (z) = e

z̄2−|z|2
4l∗2 f ∗

1 (z), (B2)

where f ∗
1 (z) satisfies

T (L1)f ∗
1 (z)

f ∗
1 (z)

= e−iφ∗
1 ,

T (L1τ )f ∗
1 (z)

f ∗
1 (z)

= e−i[φ∗
τ −π |Nφ |(2z̄/L1+τ̄ )]. (B3)

As before, we consider the product

ψ(z,z̄) = ψ∗
1 (z,z̄)

∏
i

ψ (i)(z,z̄)

= e
z2−|z|2

4l2

[
e

z̄2+z2−2|z|2
4l∗2 f ∗

1 (z,z̄)
∏

i

f
(i)
1 (z,z̄)

]
, (B4)

in which we have used

Nφ = −|N∗
φ | +

∑
i

N
(i)
φ . (B5)

By making use of Eq. (B3) and the translational properties of

e
z̄2+z2−2|z|2

4l∗2 , it can be shown that

h(z,z̄) ≡ e
z̄2+z2−2|z|2

4l∗2 f ∗
1 (z,z̄) (B6)

satisfies

T (L1)h(z,z̄)

h(z,z̄)
= e−iφ∗

1 , (B7)

T (L1τ )h(z,z̄)

h(z,z̄)
= e−i[φ∗

τ −π |Nφ |(2z/L1+τ )]. (B8)

Therefore, the product ψ(z,z̄) satisfies the correct periodic
boundary conditions provided we set

φ1 = −φ∗
1 +

∑
i

φ
(i)
1 , (B9)

φτ = −φ∗
τ +

∑
i

φ(i)
τ . (B10)

However, it is difficult to explicitly obtain the projected states
with negative flux attachment because z̄ appears in the Jacobi
theta functions.

APPENDIX C: CM DEGENERACY OF THE LAUGHLIN
STATE DERIVED FROM CF THEORY

It is known from general considerations that the ground state
at ν = n/(2pn + 1) has a (2pn + 1)-fold degeneracy arising
from the CM degree of freedom. The CF theory naturally
produces a single wave function at these filling factors, namely
the LLL projection of 
n


2p

1 . We show in the following
Appendix how we can derive the correct degeneracy within
the CF approach. In this appendix we consider the special case
of ν = 1

2p+1 , where it is possible to display the CM degeneracy
explicitly and to construct all 2p + 1 wave functions.

According to Eq. (42), the wave function for the ground
state at ν = 1

2p+1 is given by


1/(2p+1) = 

2p+1
1 . (C1)

In Appendix A, we have shown that, apart from the factor

e

∑
i (z2

i
−|zi |2)

4l2 , it is possible to write the wave function 
1 as a
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product of a CM term and a wave function that depends only
on relative coordinates:


1 = e

∑
i (z2

i
−|zi |2)

4l2 F1(Z)

(
χ1

F1(Z)

)
, (C2)

where χ1/F1(Z) depends only on the relative coordinates
zi − zj .

We therefore write


1/(2p+1)[zi] = e

∑
i (z2

i
−|zi |2)

4l2 F1/(2p+1)(Z)

(
χ1

F1(Z)

)2p+1

, (C3)

where we have allowed for a general CM part. Since χ1 only
contains single-particle wave functions in the LLL, there is
no need for LLL projection. To solve for the explicit form
of F1/(2p+1)(Z), we need to use periodic boundary conditions
(setting all phase factors to be zero for convenience):

ti(L1)
1/(2p+1)[zi,z̄i]


1/(2p+1)[zi,z̄i]
=

Ti(L1)
[F1/(2p+1)(Z)

F
2p+1
1 (Z)

χ
2p+1
1

]
F1/(2p+1)(Z)

F
2p+1
1 (Z)

χ
2p+1
1

= F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)

F
2p+1
1 (Z)

F
2p+1
1 (Z + L1)

= (−1)(2p+1)(N−1) F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)
.

(C4)

In the last line we have used the periodic property of F1(Z)
given in Eqs. (A9) and (A10).

Making use of the periodic boundary conditions
ti(L1)
1/(2p+1)[zi] = 
1/(2p+1)[zi] and ti(L1τ )

1/(2p+1)[zi] = 
1/(2p+1)[zi], we have

F1/(2p+1)(Z + L1)

F1/(2p+1)(Z)
= (−1)(2p+1)(N−1),

F1/(2p+1)(Z + L1τ )

F1/(2p+1)(Z)
= (−1)(2p+1)(N−1)e−i(2p+1)π(τ+2Z/L1).

(C5)

As shown by Haldane and Rezayi [14] [also see Eq. (A4)],
there are 2p + 1 solutions to Eq. (C5), which demonstrates a
CM degeneracy of 2p + 1.

Furthermore, using the equation

χ1[fi(zj )]

F1(Z)
=

N∏
i<j

θ

(
zi − zj

L1

∣∣∣∣τ
)

(C6)

it follows that


 1
2p+1

= e

∑
i (z2

i
−|zi |2)

4l2 F 1
2p+1

(Z)

⎡
⎣ N∏

i<j

θ

(
zi − zj

L1

∣∣∣∣τ
)⎤⎦

2p+1

,

(C7)
which is precisely the form for the Laughlin wave function
derived previously [14,53,58]. The “natural” wave function
from the CF theory is that given in Eq. (C1), which is a specific
linear combination of the 2p + 1 degenerate ground state wave
functions.

APPENDIX D: CM DEGENERACY AND CM MOMENTUM
FOR GENERAL FQH STATES

It is well known [14,30,58] that the ground state of ν = p

q

has a CM degeneracy of q (p and q are relatively prime). The
degenerate states can be distinguished by their CM momenta,
i.e., the eigenvalues of tCM( L1

Nφ
). On the other hand, as noted in

the main text, the wave functions of Eq. (42) are, in general, not
eigenstates of tCM( L1

Nφ
). In this section we construct degenerate

ground states that have well-defined CM momenta, i.e., are
eigenstates of tCM( L1

Nφ
), by projecting the composite fermion

wave functions to corresponding momentum sectors. For
simplicity, we take φ1 = 0,φτ = 0; generalization to arbitrary
boundary conditions is straightforward.

For ν = p

q
, assume that 
g is a ground state wave function

but does not have a well-defined CM momentum. A ground
state with a well-defined CM momentum k (k is an integer
between 0 and Nφ − 1, but it cannot be any integer in
this range, as will be explained soon) can be obtained by
projecting the wave function into this momentum sector. This
is accomplished most elegantly by application of the projection
operator Pk (due to Fremling [79]):

Pk = 1√
q

q−1∑
j=0

[
e
−i2π k

Nφ tCM

(
L1

Nφ

)]j

. (D1)

Consider the application of the CM translation operator on
Pk
g:

tCM

(
L1

Nφ

)
Pk
g = e

i2π k
Nφ

1√
q

{
e
−i2π

kq

Nφ

[
tCM

(
L1

Nφ

)]q

+
q−1∑
j=1

[
e
−i2π k

Nφ tCM

(
L1

Nφ

)]j

⎫⎬
⎭
g. (D2)

Provided we have

e
−i2π

kq

Nφ

[
tCM

(
L1

Nφ

)]q


g = 
g, (D3)

Pk
g will have a well-defined CM momentum:

tCM

(
L1

Nφ

)
Pk
g = e

i2π k
Nφ Pk
g. (D4)

Let us now obtain the values of k for which Eq. (D3) is satisfied.
For this purpose, we need to use the fact that the

eigenvalue for the operator [tCM( L1
Nφ

)]q is fixed to be

(−1)pq(N−1)eiqkr ·L1/Nφ [30,58]. Here kr is the relative mo-
mentum [30,58]:

t reli (pLmn)
 = (−1)pq(N−1)e−i
p

N
kr ·Lmn
, (D5)

Lmn = mL1 + nL2 (D6)

(Lmn = mL1 + nL2 m and n are integers while L1 and L2 are
the two edges of parallelogram) which satisfies

kr · L1 = 2πr, (D7)

where r is an integer. [By directly applying the relative
translation operator on Eq. (42) it can be shown that r = 0 for
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ground states of ν = n
2pn+1 .] These equations fix the acceptable

values of k to be

k = r + jH ; j = 0,1, . . . ,q − 1, (D8)

if (−1)pq(N−1) = 1, and

k = r + Nφ/2 + jH ; j = −q − 1

2
,

− q − 1

2
+ 1, . . . ,

q − 1

2
, (D9)

if (−1)pq(N−1) = −1. Here H = gcd(N,Nφ) and r is the
number defined in Eq. (D7). Since this produces q distinct
values of k, we have exhausted all degenerate wave functions.

If by coincidence the amplitude of 
g in a certain
momentum sector is zero, we can still construct the ground
state in that momentum sector. We first project 
g to some
momentum sector in which its amplitude is nonzero. Then we
can boost that state to another momentum sector by application
of tCM(L1τ

Nφ
), because

tCM

(
L1

Nφ

)
tCM

(
L1τ

Nφ

)
= e

i
p

q tCM

(
L1τ

Nφ

)
tCM

(
L1

Nφ

)
. (D10)

Repeated applications of tCM(L1τ
Nφ

) will produce states at all
possible k’s given in Eq. (D8) and Eq. (D9).

The same projection operator Pk can also be applied to CF
quasiparticles and CF quasiholes to obtain wave functions
with well-defined CM momenta. Since the eigenvalue for
[tCM( L1

Nφ
)]q is simply 1 when N and Nφ are relatively prime

(which means that p = N and q = Nφ), the possible momenta
for these ground states are

k = 0,1, . . . ,Nφ − 1. (D11)

APPENDIX E: PROOF THAT χ [ f̂i (∂/∂ z j ,z j )] COMMUTES
WITH THE CENTER-OF-MASS WAVE FUNCTION F2 p

1 (Z)

In this Appendix, we show that F
2p

1 (Z) commutes with
χ [f̂i(∂/∂zj ,zj )] so long as the latter is a “proper state” defined
in the introduction. This is crucial, as it serves as the starting
point for the implementation of the JK projection.

First, we transform the coordinates from {z1,z2, . . . ,zN } to
{Z,w1,w2, . . . ,wN−1}, where Z is defined in Eq. (5) and

wi ≡ zi − Z

N
, i = 1,2, . . . ,N − 1. (E1)

What is the rule for LLL projection in the new coordinates?
Let us recall that to accomplish LLL projection in the old
coordinates {z1,z2, . . . ,zN }, we keep the Gaussian factor
exp(−∑N

i=1
|zi |2
4l2 ) at the far left, and perform the replacement

z̄i → 2l2 ∂
∂zi

. With the factor exp(
∑N

i=1
z2
i −|zi |2

4l2 ) at the far left,
the replacement is

z̄i → 2l2 ∂

∂zi

+ zi . (E2)

In addition, we need the chain rule for the derivatives:

∂

∂zi

= ∂

∂Z
+ ∂

∂wi

− 1

N

N−1∑
j=1

∂

∂wj

, i = 1,2, . . . ,N − 1,

(E3)

∂

∂zN

= ∂

∂Z
− 1

N

N−1∑
j=1

∂

∂wj

. (E4)

With Eqs. (E2), (E3), and (E4) we can now derive the rule
for projecting χ [f̂i(∂/∂zj ,zj )]F 2p

1

∏
j J

p

j in the new coordi-
nates {Z,w1,w2, . . . ,wN−1}. The LLL projection corresponds
to the following replacements:

Z̄ =
N∑

i=1

z̄i → 2l2
N∑

i=1

∂

∂zi

+
N∑

i=1

zi

= 2Nl2 ∂

∂Z
+ Z, (E5)

w̄i = z̄i − Z̄

N
→ 2l2 ∂

∂zi

+ zi − 1

N

(
2l2

N∑
i=1

∂

∂zi

+
N∑

i=1

zi

)

= 2l2 ∂

∂wi

+ wi. (E6)

Equations (E5) and (E6) imply that if the unprojected χ [fi (zj )]
does not depend on Z̄, then the projected χ [f̂i(∂/∂zj ,zj )] will
be independent of ∂/∂Z, and hence commute with F

2p

1 (Z).
Below we show that χ [fi(zj )] is indeed independent of Z̄ for
proper states.

Let us consider, for simplicity, a proper state involving the
lowest two LLs for illustration; the generalization to higher
LLs follows along the same lines. With the new coordinates,
the matrix elements in χ [f (m)

n ] are [l∗ is the effective magnetic
length defined in Eq. (52)]

f
(m)
1 (zi) = f

(m)
1 (Z/N + wi), i = 1,2, . . . ,N − 1, (E7)

f
(m)
1 (zN ) = f

(m)
1

(
Z/N −

N−1∑
i=1

wi

)
, (E8)

f
(m)
2 (zi) = Z̄ − Z√

2Nl∗
f

(m)
1 (Z/N + wi) + w̄i − wi√

2l∗
f

(m)
1 (Z/N + wi) −

√
2l∗

⎛
⎝ ∂

∂Z
+ ∂

∂wi

− 1

N

N−1∑
j=1

∂

∂wj

⎞
⎠f

(m)
1 (Z/N + wi),

i = 1,2, . . . ,N − 1, (E9)
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f
(m)
2 (zN ) = Z̄ − Z√

2Nl∗
f

(m)
1

(
Z/N −

N−1∑
i=1

wi

)
−
∑N−1

i=1 (w̄i − wi)√
2l∗

f
(m)
1

(
Z/N −

N−1∑
i=1

wi

)

−
√

2l∗

⎛
⎝ ∂

∂Z
− 1

N

N−1∑
j=1

∂

∂wj

⎞
⎠f

(m)
1

(
Z/N −

N−1∑
i=1

wi

)
. (E10)

The first terms on the right-hand side of Eqs. (E9) and (E10), which are the only terms containing Z̄, are eliminated from the
Slater determinant because they are proportional to the corresponding rows in the LLL. For the same reason, there is no Z̄

dependence in χ [f (m)
n ] describing proper states.

APPENDIX F: GENERAL DERIVATION FOR ĝ(m)
n (z j )

In this Appendix we show that ĝ(m)
n (zj ) exists for arbitrary LL n, and derive its explicit form. We show that, in general, ĝ(m)

n (zj )
can be obtained from f̂ (m)

n (zj ) by making the replacement ∂z → 2∂z for the derivatives acting on the Jastrow factor Jj , where
∂z = ∂

∂z
.

The unprojected wave function f (m)
n (z) is

f (m)
n (z) = (a†

f )n−1f
(m)
1 (z) =

n−1∑
k1=0

(
n − 1

k1

)(
z̄

2l∗2

)k1
[(

− z

2l∗2
− ∂z

)n−1−k1

f
(m)
1 (z)

]
.

The standard replacement z̄ → 2l2∂z + z for projection produces for f̂ (m)
n (z) the expression

f̂ (m)
n (z) =

n−1∑
k1=0

(
n − 1

k1

)(
2l2∂z + z

2l∗2

)k1[(
− z

2l∗2
− ∂z

)n−1−k1

f
(m)
1 (z)

]
. (F1)

We should bear in mind that ( 2l2∂z+z

2l∗2 )k1 acts on everything on its right while (− z
2l∗2 − ∂z)n−1−k1 only acts on f

(m)
1 (z).

We know χ [f̂i(zj )Jp

j ] does not satisfy the periodic boundary conditions. We seek a modified wave function χ [ĝi(zj )Jp

j ] in

which ĝ(m)
n (z) is obtained from f̂ (m)

n (z) by replacing all ∂z’s acting on Jastrow factors by α∂z’s, as shown in Eq. (74) for n = 2.
Let us define a new operator D̂i :

D̂i ≡ α∂zi
(F2)

if D̂i acts on J
p

i , and

D̂i ≡ ∂zi
(F3)

if it acts on anything else. Therefore, ĝ(m)
n (zi) is

ĝ(m)
n (zi) ≡

n−1∑
k1=0

(
n − 1

k1

)(
2l2D̂i + zi

2l∗2

)k1[(
− zi

2l∗2
− ∂zi

)n−1−k1

f
(m)
1 (zi)

]
. (F4)

Below we show that χ [ĝi(zj )Jp

j ] satisfies the periodic boundary condition with α = 2 for arbitrary �L. For convenience we take
the phases φ1 = 0 and φτ = 0.

We first note how J
p

j and f
(m)
1 (zi) change when zi is translated by L1τ :

Ti(L1τ )Jp

j = e
ipπ

(
2(zj −zi )

L1
−τ+1

)
J

p

j , j �= i, (F5)

Ti(L1τ )Jp

i =
∏

j (j �=i)

e
−ipπ

(
2(zi−zj )

L1
+τ+1

)
J

p

i , (F6)

Ti(L1τ )f (m)
1 (zi) = e

−iπN∗
φ

(
2zi
L1

+τ
)
f

(m)
1 (zi). (F7)
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With Eq. (F1), Eqs. (F5)–(F7), and our replacement rule, we have

Ti(L1τ )ĝ(m)
n (zj )Jp

j = e
ipπ

(
2(zj −zi )

L1
−τ+1

) n−1∑
k′

1=0

k′
1∑

k′
2=0

(
n − 1

k′
1

)(
k′

1

k′
2

)

×
⎧⎨
⎩
(

2l2D̂j + zj

2l∗2

)k′
1−k′

2(
i2pπαN∗

φ

L1Nφ

)k′
2
[(

− zj

2l∗2
− ∂zj

)n−1−k′
1
f

(m)
1 (zj )

]
J

p

j

⎫⎬
⎭, j �= i. (F8)

Here we have used (
2l2D̂j + zj

2l∗2

)k1

e
ipπ

(
2(zj −zi )

L1
−τ+1

)
= e

ipπ
(

2(zj −zi )

L1
−τ+1

)[(
2l2D̂j + zj

2l∗2

)
+ i2pπαN∗

φ

L1Nφ

]k1

, (F9)

where the exponential factor is a part of Ti(L1τ )Jp

j . Similarly proceeding, we get

Ti(L1τ )ĝ(m)
n (zi)J

p

i = e
−iπN∗

φ

(
2zi
L1

+τ
) ∏

j (j �=i)

e
−ipπ

(
2(zi−zj )

L1
+τ+1

) n−1∑
k1=0

k1∑
k2=0

(
n − 1

k1

)(
k1

k2

)

×
⎧⎨
⎩
(

2l2D̂i + zi

2l∗2

)k1−k2[
i2πN∗

φ

L1Nφ

(
Nφ

2
− N∗

φ − αp(N − 1) − iNφRe(τ )

2Im(τ )

)]k2

×
⎡
⎣n−1−k1∑

k3=0

(
n − 1 − k1

k3

)(
− zi

2l∗2
− ∂zi

)n−1−k1−k3
[
i2πN∗

φ

L1Nφ

(
Nφ

2
+ iNφRe(τ )

2Im(τ )

)]k3

f
(m)
1 (zi)

⎤
⎦J

p

i

⎫⎬
⎭.

(F10)

In general, the Slater determinant wave function does not satisfy the correct periodic boundary conditions. We show below that
for the proper states, and with the choice α = 2, most of the terms in the above sum are eliminated inside the Slater determinant
in precisely the same manner as shown for n = 2 in Sec. III G. The only terms that survive are the k′

2 = 0 term in Eq. (F8) and
the k2 = 0,k3 = 0 term in Eq. (F10). With these terms the full wave function satisfies the correct periodic boundary conditions.

To prove this, let us consider the terms containing the factors(
2l2D̂j + zj

2l∗2

)k′
1−k′

2[(
− zj

2l∗2
− ∂zj

)n−1−k′
1
f

(m)
1 (zj )

]
J

p

j

in Eq. (F8) and (
2l2D̂i + zi

2l∗2

)k1−k2[(
− zi

2l∗2
− ∂zi

)n−1−k1−k3

f
(m)
1 (zi)

]
J

p

i

in Eq. (F10). If for k′
1 − k′

2 = k1 − k2 and n − 1 − k′
1 = n − 1 − k1 − k3 their coefficients are identical, then these terms are

eliminated from the Slater determinant, because they are proportional to the corresponding rows in lower �Ls. Equality of their
coefficients requires

(
n − 1

k′
1

)(
k′

1

k′
2

)
(pα)k

′
2 =

k′
2∑

k3=0

(
n − 1

k1

)(
k1

k2

)(
n − 1 − k1

k3

)(
Nφ

2
− N∗

φ − αp(N − 1) − iNφRe(τ )

2Im(τ )

)k′
2−k3
(

Nφ

2
+ iNφRe(τ )

2Im(τ )

)k3

.

(F11)

By making use of the identity (
n − 1

k1

)(
k1

k2

)(
n − 1 − k1

k3

)
=
(

k′
2

k3

)(
n − 1

k′
1

)(
k′

1

k′
2

)
(F12)

Eq. (F11) becomes

Nφ − N∗
φ − αp(N − 1) = αp, (F13)

which is exactly Eq. (83), giving α = 2.
This completes the proof for the statement that by making the replacement ∂zj

→ 2∂zj
for operators acting on Jj in f̂ (m)

n (zj ),
we generate a new projection operator ĝ(m)

n (zj ) such that χ [ĝi(zj )Jp

j ] satisfies the correct periodic boundary conditions.
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FIG. 7. The ground state energy for N = 10,Nφ = 25 as a
function of cutoff. The cutoff is the largest value of |m| and |n|,
where m and n are defined through q = ( 2πm

L1
, 2πn

L2
).

APPENDIX G: INTERACTION ENERGY

We consider a rectangle for our numerical calculation, i.e.,
Re(τ ) = 0. The interaction energy must be periodic, which
amounts to considering an infinite periodic expansion of the
rectangle. The problem can be addressed in the following way.
The usual Coulomb potential in 2D is given by

V (r) = 1

r
=
∫

dq
(2π )2

2π

q
eiq·r . (G1)

Not being periodic, this form is not appropriate for the torus
geometry. Here we use the periodic interaction [13]

V (r) =
∑
m,n

1

|r + mL1 + nL2| (G2)

= 2π

L1L2

∑
q

1

q
eiq·r , (G3)

with

q =
(

2πm

L1
,
2πn

L2

)
, (G4)

where L1 and L2 are the edges of the rectangle, and m and
n are integers. V (r) satisfies the correct periodic boundary
condition

V (r + mL1 + nL2) = V (r). (G5)

Besides the pairwise interaction, we also need to include
the self-interaction energy W , which represents the interaction
between a particle at r and its own images at r + mL1 + nL2.

TABLE XI. The ground state energies for several systems with
two different values of the cutoff.

N Nφ cutoff = 20 cutoff = 40

10 25 −0.43376 ± 0.00007 −0.43376 ± 0.00007
20 50 −0.43306 ± 0.00008 −0.43304 ± 0.00008
20 60 −0.41005 ± 0.00005 −0.41007 ± 0.00006
40 120 −0.40983 ± 0.00006 −0.4098 ± 0.0001

The explicit expression for the self-interaction energy is
[13,80]

W = − e2

ε
√

L1L2

{
2 −

′∑
mn

ϕ− 1
2
[π (τm2 + τ−1n2)]

}
,

ϕn(z) ≡
∫ ∞

1
dte−zt tn, (G6)

where the prime on the summation excludes m = n = 0. The
interaction energy per particle for a system of N particles is
then given by

E = W + 1

N

2π

L1L2

∑
i<j

∑
q �=0

1

q
eiq·(r i−rj ). (G7)

The q = 0 term is omitted as it is exactly canceled by
the background-background and electron-background
interactions.

The infinite sum
∑

q �=0 is convergent, as can be proven
by writing out the second quantization form of Eq. (G2), and
finding that each term in the sum over q is proportional to
e−q2l2

. In our Monte Carlo programs, we truncate the sum
in Eq. (G4), keeping only the terms with |m| � cutoff, |n| �
cutoff. In Fig. 7 and Table XI we show the cutoff dependence
of the energy for various systems. We find that the energies
have converged, within our Monte Carlo uncertainty, so long
as the cutoff is greater than 10. In practice, we take the value
of the cutoff to be 20.

We mention certain technical details that may be useful
for someone who wishes to implement our method. For
the evaluation of θ (z|τ ), we use the code from MYMATHLIB

modified to expand the range of z to the entire complex plane.
There are certain analytical formulas for the derivatives of
the theta functions, but we have found it more efficient to
evaluate them numerically, using f ′(x) = f (x+dx)−f (x−dx)

2dx
and

f ′′(x) = f (x+dx)+f (x−dx)−2f (x)
dx2 , and determining the optimal

value of dx by checking that Eq. (75) satisfies the periodic
boundary conditions as accurately as possible. We have found
that the optimal value is dx ∼ 10−6l to 10−7l when only the
first derivatives are involved, and dx ∼ 10−4l when second
derivatives are also involved. (Here l is the physical magnetic
length.) We have run ∼ 5 × 106 Monte Carlo iterations for
most of our results.
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