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Faraday rotation by the undisturbed bulk and by photoinduced giant polarons in EuTe
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A quantum mechanical model is developed for the Faraday effect in europium telluride, for photons of energy
within the transparency gap. The model is based on the well known band edge electronic energy states in EuTe.
A concise expression for the Verdet constant is obtained, determined by few parameters already available in the
literature. The Verdet constant adopted here, defined by the ratio between the Faraday rotation angle and the
magnetization, is in effect temperature independent. Its dependence on the photon energy and applied magnetic
field is in excellent agreement with published results. Below 3 T the Verdet constant is also nearly independent
on field, but above 3 T at low temperatures it increases due to the band gap redshift. The model is used to
calculate the photoinduced Faraday rotation associated with photoinduced giant magnetic polarons in EuTe. The
theoretical photoinduced Faraday rotation excitation describes quite well the main features seen experimentally.
Due to the common band-edge electronic energy structure, the model reported here could be extended to all other
europium chalcogenides.
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I. INTRODUCTION

All-optical control of the magnetic state of matter is a topic
of much interest both from the fundamental point of view as
well as due to device applications [1]. Recently it has been
demonstrated that light can generate huge magnetic polarons
in EuTe. The photoinduction of magnetic polarons was first
deduced from a shift of the band-edge photoluminescence [2].
Photoluminescence is the experimental technique that has been
traditionally used to investigate magnetic polaron phenomena,
with the main focus on diluted magnetic semiconductors
(DMS) [3]. More recently, the muon spin rotation technique
has been used to investigate magnetic polarons in concentrated
magnetic semiconductors [4].

However, the magnetic moment of nearly 103 Bohr magne-
tons of a photoinduced polaron in EuTe is more than an order
of magnitude larger than polarons seen in DMS or detected by
muon investigations, which have been estimated at a few tens
of Bohr magnetons [4–6]. The giant photoinduced magnetic
polarons can be easily oriented by a small magnetic field to
produce a large photoinduced magnetization, which can be
detected by Faraday rotation, as reported in Ref. [7]. This
achievement opens up the prospect of all-optical control of
magnetism in europium chalcogenides. Moreover, because of
their intrinsic character, europium chalcogenides are free from
alloy-related inhomogeinities that plague diluted magnetic
semiconductors. It has been recently shown that EuO epitaxial
layers of very high purity and crystalline quality can be
grown on silicon substrates [8–10], which further increases the
prospect of device applications of europium chalcogenides.

In this paper we investigate theoretically the Faraday rota-
tion produced by an undisturbed EuTe sample, as illustrated
by Fig. 1(a), and by a sample illuminated with near band
gap photons—photoinduced Faraday rotation, as illustrated
in Fig. 1(b). Despite the large amount of experimental
investigations of the Faraday effect in the whole family of
europium chalcogenides EuX (X = O, S, Se, Te) [11], most
of the analysis has been done within a phenomenological
approach [12], and a quantum mechanical theoretical model

based on the known electronic energy structure specific
for EuX is still lacking. In this paper such a quantum
mechanical model is developed. The model is based on a
well known energy level scheme and electronic quantum states
that successfully described linear [13] and nonlinear [14–16]
band-edge magneto-optical properties in EuX. The model
describes quite well the observed Faraday rotations (for a
sample in the dark and under illumination) previously reported
by us and other authors, as a function of probe and pump
wavelength or applied magnetic field. Our model for Faraday
rotation could be applied not only to EuTe, but to the whole
family of europium chalcogenides, which are described by the
same band edge electronic structure. This study offers progress
toward a better understanding of the interaction between
polarized light and charge carriers in magnetic materials.

II. MODEL

A. Faraday rotation by the undisturbed bulk
of a semiconductor: General theory

We shall describe the calculation of the Faraday rotation
suffered by photons of energy in the transparency gap of an

FIG. 1. Faraday rotations considered theoretically in this work.
(a) Faraday rotation by the undisturbed bulk: The plane of polarization
of the linearly polarized probe undergoes a rotation by an angle θF .
(b) Photoinduced Faraday rotation: Illumination of the sample by a
pump light above the band gap causes an additional rotation of the
plane of polarization of the probe by �θF .
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undisturbed semiconductor. As deduced by Becquerel [17],
when linearly polarized monochromatic light of wavelength
λ crosses a magnetized medium of thickness d, the plane of
polarization undergoes a rotation by a Faraday angle given by

θF = π d

λ
(n+ − n−), (1)

where n+ (n−) is the index of refraction for right- (left-) hand
circularly polarized light.

Next we shall calculate the index of refraction for circularly
polarized light. We consider the incidence of a circularly po-
larized monochromatic electromagnetic wave traveling along
z and of wave vector kz, carrying an electric field

E(z,t) = x̂ ± iŷ

2
E0e

ikz−iωt + c.c., (2)

where the plus sign is associated with a right-hand circularly
polarized wave (RHC), and the minus sign with a left-hand
circularly polarized one (LHC) [18]. The circulating electric
field of the incident wave will induce a circulating polarization
vector in the material. The interaction between an electron and
the electromagnetic wave can be described by the Hamiltonian
[19,20]

H = −μ · E(z,t), (3)

where μ = −e
∑

i r i is the electric dipole momentum
operator for the electrons involved in the excitation and −e

is the charge of an electron. The induced circular polarization
in a medium, when electrons are in a state �, is given by the
expectation value

P = N 〈�| μ |�〉 , (4)

where N is the density of oscillators.
The effect of the time-dependent potential energy (3)

upon the electronic wave functions can be described by
standard time-dependent perturbation theory. In a typical
semiconductor the band gap is of the order of 1 eV, therefore
all electrons will be found in the ground state. Then in the
electric dipole approximation, the lowest-order contribution
to the photoinduced polarization, linear in the electric field
amplitude of the incident wave, is found to be [19]

P± = N
∑
m

μgm[μmg · E±]

Emg − h̄ω
e−iωt + c.c., (5)

where

E± = x̂ ± iŷ

2
E0, (6)

and μmg represents the electric dipole transition moment

μmg = 〈m| μ |g〉 (7)

between the ground state |g〉 and an excited state |m〉. In Eq. (5)
the plus sign gives the polarization induced by RHC, and the
minus for LHC. Emg = Em − Eg is the energy gap between
the ground state and the m state. In deducing P± given in
(5), antiresonant terms, associated with (Emg + h̄ω) in the
denominator, have been discarded, because all m states are of
energy approximating the band gap, and we are considering
Faraday rotation of photons below the gap, but in close
resonance to it.

For an isotropic medium symmetry considerations impose
that the induced polarization be parallel to the external electric
field [19]

P± = ε0χ± E±e−iωt + c.c. (8)

where ε0 = 8.85 × 10−12 C2/J m, and χ± is the linear electri-
cal susceptibility for RHC (plus sign) or LHC (minus sign).
To obtain the susceptibility in the isotropic approximation, we
project vector μgm onto the electric field vector of the circularly
polarized electromagnetic wave. This procedure leads to

χ± = N

2ε0

∑
m

|μ±
mg|2

Emg − h̄ω
, (9)

where μ±
mg represents the electric dipole transition moment for

circularly polarized light

μ±
mg = −e 〈m| xi ± iyi |g〉 , (10)

with xi,yi being the Cartesian coordinates of the electrons
involved.

The index of refraction for circularly polarized light can be
obtained from (9):

n± =
√

1 + χ±. (11)

Therefore

n+ − n− = n2
+ − n2

−
n+ + n−

= 1

2n
(χ+ − χ−), (12)

where n = n++n−
2 . Using (1) and (9) we finally get

θF = πd

λ

N

4ε0 n

∑
m

Dmg

Emg − h̄ω
, (13)

where

Dmg = |μ+
mg|2 − |μ−

mg|2. (14)

Formula (13) together with (14) is applicable to any
magnetic semiconductor with a gap between the ground state
and a set of excited states closely spaced in energy at the band
edge.

B. Band-edge energy level scheme for EuTe

The energy level scheme used in our model for the Faraday
effect in EuTe is shown in Fig. 2. The ground state of an Eu
atom is described by the term symbol 8S7/2, which is built
from seven electrons in a 4f orbital. The 8S7/2 electrons are
strongly localized around an Eu atom, they are shielded from
the environment by more extended 5p electrons, and therefore
can be described by the 4f wave functions of an isolated Eu
atom. We shall represent the ground state of the seven electrons
by the ket vector:

|8S7/2〉 . (15)

The lowest-energy excited electronic states of EuTe require
describing simultaneously seven electrons, as follows. One of
the seven electrons comprising the 8S7/2 term is transferred
to the conduction band built from Eu d orbitals. The six
remaining valence electrons generate a manifold of seven
energy levels due to the spin-orbit splitting, and are described
by the term symbol 7FJM (J = 0, . . . ,6 is the total angular
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FIG. 2. Ground state |8S7/2〉 and lowest-energy excited states
|7FJM ; X〉 in EuTe. Black horizontal lines indicate the positions of
the J = 0, . . . ,6 Landé ladder associated with the spin-orbit splitting
of the term 7FJM (with a spin-orbit constant of λ4f = 9.6 meV).
Each Landé level is broadened by the energy width of the 5d(t2g)
conduction band, taken to be 80 meV.

momentum quantum number, and M is the projection quantum
number for the total angular momentum). The energy of this
excitation depends on the exact state in which the six electrons
comprising the 7FJM term are left.

Thus, the lowest energy electronic excitations of an EuTe
crystal are associated with six electrons forming the term 7FJM

and an electron in a narrow d-conduction band. The wave
function of such an excited state is described by the quantum
numbers J and M , plus a set of quantum numbers X, associated
with the electron in the d-conduction band. Such an excited
state can be represented by the ket

|JMX〉 = |7FJM ; X〉 . (16)

In a calculation of the Faraday rotation for photons below the
bandgap, the small energy dispersion of the d-conduction band
may be ignored, hence the energy gap between the excited
states and the ground state will be independent of X and
determined solely by J :

EJ = EG + 1
2λ4f J (J + 1), (17)

where λ4f is the spin-orbit constant for the 7FJM term, and EG

is the EuTe band gap. The Zeeman energy has been disregarded
because of its small magnitude [14].

C. Choice of a Verdet constant for EuTe

The Verdet constant V of materials of zero spontaneous
magnetization is commonly defined by the relation [11,20–23]

θF = V B d, (18)

where d is the thickness of the magnetized region and B is
the magnetic field. However, the real source of the Faraday
rotation is the magnetization of the material and not the
magnetic field by itself, which causes the Verdet constant so
defined to be temperature dependent. For example, in EuTe,

the magnetization M at a given magnetic field varies hugely
with temperature, hence the Verdet constant defined by (18)
shows a dramatic temperature dependence of several orders of
magnitude in a ten degree interval, as shown in Ref. [23].

An alternative definition of the Verdet constant, sometimes
addressed as Kundt constant [22,24], and used to describe
Faraday rotation by ferromagnetic materials, is given by the
formula

θF = V M d. (19)

Although EuTe is an antiferromagnet, thus it has no spon-
taneous magnetization, its Faraday rotation can also be
described by (19), as shown in Ref. [25]. The definition
of the Verdet constant through (19) connects the Faraday
rotation directly to the magnetization, which corresponds to
a specific electronic state of the material. Therefore such a
Verdet constant measures the optical rotation power, or circular
susceptibility, associated with a specific electronic state of the
material under study. The rotation power will be temperature
independent as long as the material’s electronic band-edge
energy spectrum and its occupation remains unaffected by
temperature. The pure connection to the electronic structure
and its independence on temperature make the Verdet constant
defined by (19) very attractive. It is also very practical, for
instance, it can be used to determine the demagnetizating field
at any temperature and applied magnetic field [25]. Therefore
we shall henceforward adopt the Verdet constant defined
by (19).

D. Faraday rotation by the undisturbed EuTe bulk

In order to apply the results of Sec. II A to EuTe, we make
the following substitutions in Eqs. (13) and (14):

(1) |g〉 = |8S7/2〉—see (15);
(2) |m〉 = |JMX〉—see (16);
(3) Emg = EJ —see (17);
(4) N = 4/a3 is the density of Eu atoms in the face

centered cubic lattice of parameter a = 6.6 Å [26];
(5) we also assume that the optical absorption in EuTe is

isotropic, based on direct experimental results (see Fig. 1 in
Ref. [13]).
These substitutions lead to

θF = πd

λ

N

4ε0 n

∑
JMX

DJMX

EJ − h̄ω
, (20)

where

DJMX = |μ+(JMX)|2 − |μ−(JMX)|2 (21)

and

μ±(JMX) = −e〈8S7/2|
7∑

i=1

(xi ± iyi)|7FJM ; X〉. (22)

In Eq. (22) xi,yi are electron Cartesian coordinates in the
reference frame in which z points along the photon wave
vector, whereas the wave function for |8S7/2〉 and |7FJM〉 states
have electron angular momenta defined in the reference frame
of the lattice spins. At T = 0 K and for an applied magnetic
field B smaller than the saturation field BSAT, the lattice spins
are divided into two sublattices, in which the Eu spins are
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FIG. 3. Monochromatic circularly polarized light with wave
vector k, described by a rotating electric field of modulus E0, and
carrying an angular momentum � is incident on a current loop i,
associated with spin S. The angle between � and S is θ . Because the
current loop is rigidly defined by strong atomic forces, only the �

component parallel to S can perturb the current.

oriented at an angle 2θ to each other and an angle θ to the
magnetic field, such that [27–30]

cos θ = B

BSAT
. (23)

In the Faraday geometry considered in this work θ is
precisely the angle between the light wave vector kz and
the sublattice spins. A calculation of the matrix element
μ±(JMX) using (22) requires formulating the wave functions
in the photon reference frame, which can be done by Euler
rotations, using Wigner matrices [31]. The calculation of
matrix elements involving |8S7/2〉 and |7FJM ; X〉 states, using
Wigner matrices, is described in detail in Refs. [13,14,32],
and the result is expressed in terms of a constant rdf , i.e., the
4f -5d radial integral.

However, for the purposes of this work, there is a simpler
alternative, which circumvents the complicated Wigner rota-
tions, and which is based on the following argument from
semiclassical mechanics, illustrated in Fig. 3. A semiclassical
spin vector S represents a circular current loop in a plane
perpendicular to S. Circularly polarized light traveling along
z carries a rotating electric field vector and an angular
momentum that can be transferred to the charges in the loop
and will increment the spin, and this increment corresponds
to a photoinduced circular polarization. However, because
the circulating charges are confined to a loop that is rigidly
determined by strong interatomic forces, the only effect light
may cause is a perturbative increase in the current, meaning
that only the light angular momentum component parallel to
S can photoinduce polarization. Therefore, when the angle
between S and the z axis is increased from zero to θ , the
photoinduced polarization will be reduced by a factor of cos θ .
Therefore, using (23), we can rewrite (20) as

θF = B

BSAT

πd

λ

N

4ε0n

∑
JMX

D
‖
JMX

EJ − h̄ω
, (24)

where

D
‖
JMX = |μ+

‖ (JMX)|2 − |μ−
‖ (JMX)|2 (25)

and

μ±
‖ (JMX) = −e〈8S7/2|

7∑
i=1

(xi ± iyi)|7FJM ; X〉‖. (26)

The index ‖ indicates that the matrix element is to be calculated
when all lattice spins point in the z direction (the direction of
the photon wave vector), which circumvents Wigner rotations
for the calculation of the electric dipole matrix elements.

It should be noticed that the semiclassical argument does
not involve any new approximations, it only requires that the
incident light is a small perturbation on the system producing
the Faraday rotation, but this assumption was already made
in the quantum mechanical calculation. In this case, the semi-
classical and quantum mechanical calculations are expected to
produce exactly the same result, as well as to have the same
validity range. The difference between the two calculations is
purely mathematical. One is a complex calculation involving
a very large number of matrix operations, the other substitutes
all those operations by a simple multiplication by a cosine. Of
course, it would be a huge task to demonstrate formally that
the enormous formula produced by the quantum mechanical
calculation can be simplified into a multiplication by a cosine.
In this work we limited ourselves to comparing the numerical
output of the quantum mechanical calculation given by (20), to
the numerical output of the semiclassical calculation, given by
(24), for a wide range of parameter. The numerical equivalence
of the two calculations was confirmed, which is sufficient for
the purposes of this work,

A further advantage of the semiclassical result is that
formula (24) allows us to express the Faraday rotation angle as
directly proportional to the magnetization, and hence allowing
us to extract an explicit expression for the Verdet constant in
the quantum mechanical picture. Indeed, (23) implies that at
low temperatures, the magnetization is linearly dependent on
the applied magnetic field

M = B

BSAT
MSAT, (27)

where MSAT = NμEu, μEu = gμBS is the magnetic moment
of an Eu atom, g = 2 is the gyromagnetic factor for an Eu atom
in the 8S7/2, μB is the Bohr magneton, S = 7/2 is the spin of
an Eu atom, and BSAT = 8.3 T is the magnetic field required to
saturate the magnetization in the Faraday geometry [28]. This
result is confirmed by direct magnetization measurements [29].
Substituting (27) in (24) and using (19) we get

V = π

λ

N

4ε0nMSAT

∑
JMX

D
‖
JMX

EJ − h̄ω
. (28)

In contrast to (24), which is valid only for T = 0 K, for EuTe
(19) will be also valid for T > 0 K if (28) is used, because
the temperature dependence is coded in the magnetization M .
The temperature validity range of (19) and (28) is discussed
further in the next section.

III. RESULT OF THE CALCULATIONS

A. Faraday rotation by the undisturbed EuTe bulk

The Verdet constant for EuTe was calculated as a function
of photon energy using (28). The parameters used in the
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TABLE I. EuTe parameters, used in the Verdet constant
calculation.

Parameter EG (eV) a (Å) rdf (Å) λ4f (meV)

Value 2.3 6.6 0.2 9.6
References [28,33] [11] [34] [34]

calculations are shown in Table I. Figure 4 represents the
theoretical result by the full line. The dots shown in Fig. 4
depict experimental results from the literature. There is very
good agreement between theory and experiment, in a wide
range of photon energies, demonstrating the reliability of
the model. The fast growth of the Verdet constant when the
photon energy approaches the EuTe band gap is well described
by theory. The reason behind this increase is the increasing
photoinduced polarization when the incident photons approach
resonance with the band gap. This is reflected by Eq. (28), in
which the difference between the band gap and photon energies
appears in the denominator.

As an additional test of the theory we next consider the
magnetic field dependence of the Verdet constant. It is well
known that in EuTe the Faraday rotation at a given photon
energy increases superlinearly when the applied magnetic field
exceeds 2–3 T [34–36]. The reason behind the fast increase
of the Verdet constant is the redshift of the EuTe band gap,
which below the Néel temperature varies quadratically with
the magnetic field until saturation [2]

EG(B) = EG(0) − Jdf S

{(
B

BSAT

)2
if B � BSAT,

1 if B > BSAT.
(29)

This formula reflects the fact that the Zeeman interaction favors
alignment of lattice spins with the applied magnetic field,
which in turn reduces the exchange energy of a band-edge
electron. For fields greater than BSAT the lattice spins attain
ferromagnetic alignment, and the gap becomes constant. The
faster than linear growth of the Verdet constant when a
magnetic field is applied is perfectly described by (28), if

FIG. 4. Calculated Verdet constant as a function of photon
energy for low magnetic fields. The circle and the full triangle are
experimental results for 1.865 and 1.934 eV, from Refs. [25,34],
respectively. The inverted empty triangles were taken from Ref. [35].

FIG. 5. Calculated Verdet constant as a function of magnetic
field for a photon energy of h̄ω = 1.934 eV (full line). The circles
represent experimental results for T = 5 K (taken from Ref. [34]).
The parameters used in the calculation where taken from Table I,
and additionally the band gap redshift was calculated as described in
Ref. [13] using an exchange constant Jdf S = 190 meV. The ban gap
dependence, given by (29), is shown by the dashed curve.

the shrinking band gap given by (29) is substituted into (17),
which defines EJ . Notice that EJ − h̄ω enters the denominator
appearing in (28), hence when the band gap shrinks, the
photon energy becomes more resonant with the band gap, the
denominator in (28) decreases. Therefore in a magnetic field
the Verdet constant increases faster and faster until saturation
at B = BSAT, and then becomes constant when the band gap
stops shrinking. The result of the calculation is presented in
Fig. 5, showing excellent agreement with the experiment. Also
shown in Fig. 5 is the band gap dependence on B as given by
Eq. (29), to demonstrate that a change in the Verdet constant
correlates with a band gap shift. It is to be observed that the
Verdet constant is almost independent on field in the 0–3 T
interval, because in this range of fields a redshift of the optical
absorption band gap is almost absent [2,34].

Formula (28) shows that the Verdet constant is determined
solely by the band-edge electronic structure: the width of the
band gap, the energy position of the conduction band energy
levels and their respective wave functions. In intrinsic EuTe,
whose band gap is over 2 eV, these levels will not be populated
up to well above room temperature. The only way temperature
may affect the Verdet constant is through a shift of the energy
levels, as for example detected by Wachter in EuSe in the
temperature range 2–30 K [27]. Thus, a temperature depen-
dence of the Verdet constant is associated with the temperature
dependence of the band gap. Analogously, the magnetic field
dependence of the Verdet constant is also associated with
changes in the band gap (caused by the magnetic field in this
case), as demonstrated above (see Fig. 5). Because the band gap
shows little temperature dependence in low magnetic fields,
the assumption of a temperature-independent Verdet constant
made in Ref. [25] is solidly justified.

It should be stressed that the effectively temperature inde-
pendent Verdet constant obtained in this work, and given by
(28), is defined by the ratio of the Faraday rotation angle to the
magnetization. Notice that the Faraday rotation angle is hugely
dependent on temperature, however, the use of our Verdet
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constant definition transfers all this huge temperature depen-
dence to the magnetization, and not to the Verdet constant. This
is in sharp contrast to the commonly used Verdet constant for
antiferromagnets and paramagnets, defined by the ratio of the
Faraday rotation angle to the magnetic field, in which case the
Verdet constant becomes hugely dependent on temperature.
For instance, the usual Verdet constant for EuTe was measured
in Ref. [23], and it changes by several orders of magnitude in
a narrow temperature range around the critical temperature
of about 10 K. The enormous temperature dependence of
the Verdet constant seen in Ref. [23] simply reflects the
temperature dependence of the magnetization. From this point
of view, the definition of a Verdet constant used in this work
is highly advantageous, because it is essentially temperature
independent. Its temperature dependence is tied to the variation
of the band gap and of the band-edge energy levels, therefore
we expect only a very small variation in the 0–300 K tempera-
ture range. The temperature dependence of our Verdet constant
is analogous to that of the refraction index, which is also tied
to variations of the band gap [37], and shows variations by at
most a few percent in the 0–300 K temperature range [38].

B. Photoinduced Faraday rotation in EuTe

In the previous section we discussed the Faraday rotation
of photons with energy less than the band gap when the EuTe
sample is undisturbed (in the dark). However, if the sample
is illuminated with light of energy larger than the band gap,
electrons are photoexcited into the conduction band, which can
cause an additional Faraday rotation, as illustrated in Fig. 1(b),
which is the subject of the present subsection. In a magnetic
semiconductor such as EuTe, electrons in the conduction
band interact strongly with the lattice spins through the d-f
exchange interaction. The d-f exchange interaction favors the
alignment of the lattice spins, forming a spherical magnetic
polaron [3,39], sometimes also named spin polaron [40]. The
size of the magnetic polaron in EuTe at low temperatures is
μPol = 610 μB [41]. Because of the large magnetic moment of
an individual polaron, an ensemble of photoexcited polarons
displays superparamagnetic behavior [7,42], and the applica-
tion of only a small magnetic field is sufficient to align all
polarons into a common direction, producing a photoinduced
polaron magnetization equal to nPolμPol, where nPol is the
steady-state density of photoinduced polarons. Due to their
large radius [41], photoinduced polarons have a large effective
mass, which makes them immobile [25,40]. Moreover, the 4f

hole that stabilizes the polaron [41] is very heavy, and anchors
the polaron. Therefore, photoinduced polarons do not drift
away from the position where they were generated, meaning
that photoexcited polarons are confined in a layer of thickness
equal to the penetration depth of the excitation light. The
penetration depth of the pump light, of energy h̄ω, is of the
order of 1/α(h̄ω), where α is the absorption coefficient. We
can therefore estimate the maximum photoinduced Faraday
rotation angle from (19), if we substitute M by nPolμPol and d

by 1/α(h̄ω):

�θF = V nPolμPol
1

α(h̄ω)
. (30)

FIG. 6. Photoinduced Faraday rotation. The full line shows the
experimental result, taken from Ref. [7]. The pump intensity was
p = 20 mW/cm2 and the probe photons had energy 1.86 eV.

The steady-state population of polarons is approximately
given by [25]

nPol = χ (h̄ω)
pα(h̄ω)τ0

h̄ω
, (31)

where χ (h̄ω) is the quantum efficiency (the number of
photogenerated polarons per incident pump photon), p is the
intensity of the pump light, and τ0 is the magnetic polaron
lifetime. Substitution of (31) in (30) gives

�θF = V χ (h̄ω)
pμPolτ0

h̄ω
. (32)

The quantum efficiency depends on the pump energy through
the absorption coefficient, so we can write

χ (h̄ω) = α(h̄ω)

α(h̄ω0)
χ (h̄ω0), (33)

where h̄ω0 is a certain pump energy for which the quantum
efficiency is known. Thus we arrive at the final expression for
the photoinduced Faraday rotation angle

�θF = V
α(h̄ω)

α(h̄ω0)
χ (h̄ω0)

pμPolτ0

h̄ω
. (34)

Figure 6 shows by the full line the experimental photoin-
duced Faraday rotation excitation spectrum (from Ref. [7]),
taken at T = 5 K and a magnetic field of 200 mT, which
is sufficient to align all polarons. The dashed line shows the
theoretical result, produced by (34). The absorption coefficient
α(h̄ω) entering (34) was calculated as described in Ref. [13].
The parameters used in the calculation were taken from
Tables I and II. The theory gives an approximate description

TABLE II. EuTe parameters used in the photoinduced Faraday
rotation calculation. �d is the full width at half maximum of the
d-conduction band.

Parameter �d (meV) μPol (μB ) τ0 (μs) χ (h̄ω0 = 2.33 eV)

Value 80 610 15 0.1
References [13,14] [2,7,41] [7] [25]
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of the experimental observations: (1) a sharp rise of the
photoinduced Faraday rotation when the excitation photons
reach resonance with the band gap. (2) The size of the step of
the calculated photoinduced Faraday angle at the resonance
(0.32 μrad) agrees with the measured value (0.27 μrad)
within the experimental error, estimated around 10%–15%.
The theory also predicts a reduction of the photoinduced effect
above the resonance, seen in the experiment. On the other hand,
our theory can only account for the photoinduced Faraday
rotation at most about ∼200 meV above the band gap, which
is the width of the conduction band associated with |7FJM ; X〉
states (see Fig. 2). Therefore for larger excitation energies the
theory produces zero photoinduced Faraday rotation, whereas
experimentally the photoinduced Faraday rotation persists,
due to electronic excitations into the background states not
included in our model.

IV. CONCLUSIONS

In conclusion, we have developed a quantum mechanical
model for below-the-gap Faraday rotation in EuTe, on the

basis of a band edge electronic energy structure that is well
established. The model is dependent on very few parameters,
which are well known from the literature. The validity of the
model is demonstrated by its comparison to a wide range
of experimental data. An important result of the model is
the obtention of a nearly temperature independent Verdet
constant. To the best of our knowledge, this is the first report
of a quantum mechanical calculation of the Verdet constant
defined by the ratio between the Faraday rotation and the
magnetization in an antiferromagnetic material. Although the
validity of the model was demonstrated for EuTe, it should
remain valid for all the family of europium chalcogenides,
which share the same band-edge electronic structure, and
should be easily adapted to any other magnetic semiconductor.
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