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Calculating polaron mobility in halide perovskites
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Lead halide perovskite semiconductors are soft, polar materials. The strong driving force for polaron formation
(the dielectric electron-phonon coupling) is balanced by the light band effective masses, leading to a strongly-
interacting large polaron. A first-principles prediction of mobility would help understand the fundamental mobility
limits. Theories of mobility need to consider the polaron (rather than free-carrier) state due to the strong
interactions. In this material we expect that at room temperature polar-optical phonon mode scattering will
dominate and so limit mobility. We calculate the temperature-dependent polaron mobility of hybrid halide
perovskites by variationally solving the Feynman polaron model with the finite-temperature free energies of
Ōsaka. This model considers a simplified effective-mass band structure interacting with a continuum dielectric
of characteristic response frequency. We parametrize the model fully from electronic-structure calculations. In
methylammonium lead iodide at 300 K we predict electron and hole mobilities of 133 and 94 cm2 V−1 s−1,
respectively. These are in acceptable agreement with single-crystal measurements, suggesting that the intrinsic
limit of the polaron charge carrier state has been reached. Repercussions for hot-electron photoexcited states are
discussed. As well as mobility, the model also exposes the dynamic structure of the polaron. This can be used to
interpret impedance measurements of the charge-carrier state. We provide the phonon-drag mass renormalization
and scattering time constants. These could be used as parameters for larger-scale device models and band-structure
dependent mobility simulations.
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I. INTRODUCTION

Hybrid halide perovskites are a new class of solution
processed semiconductors [1]. They are of considerable
practical interest, mainly due to the high photovoltaic action
and potential low cost. One important figure of merit for a
semiconductor is the charge-carrier mobility.

The material is polar and soft. This leads to a large dielectric
electron-phonon coupling. Bare charge carriers are dressed in
phonon excitations, forming a polaron.

In this paper we calculate the temperature-dependent
polaron mobility. We write custom codes to variationally solve
the Feynman polaron model [2] for finite temperature [3]. The
inputs to this model are fully specified by electronic-structure
calculations, with no free or empirical parameters. We then
solve for low-field temperature-dependent mobility with the
FHIP [4], Kadanoff [5], and Hellwarth et al. [6] methods.

In a photovoltaic device architecture, the mobility limits
the thickness of the active layer. In a laser diode, carrier
mobility suggests whether population inversion (and thus las-
ing) is feasible. Different measures of mobility have different
systematic errors, probe different charge carrier densities, are
only sometimes selective to hole and electron mobilities, and
pose general experimental challenges that limit temperature-
dependent (cryostat) measurements. To measure intrinsic mo-
bilities, considerable technical effort must be made in sample
preparation, to create sufficient pure and crystalline materials.

Methylammonium lead iodide perovskite (MAPI) is the
most well studied of the halide perovskites. Time-resolved
microwave conductivity (TRMC) is a contactless method of
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measuring mobility, suitable for temperature dependent mea-
surements. Measures on polycrystalline MAPI give a room-
temperature mobility-yield product of 35 cm2 V−1 s−1 [7]. A
more recent measure of a single crystal gives 115 cm2 V−1 s−1

[8]. It is not known a priori whether these are the maximum
achievable or which scattering process limits the mobility. A
fully ab initio method to predict mobilities for infinite perfect
crystals would help understand the implicit limitations of a
new material.

From an electronic structure calculation, one can fit the
dispersion relation (energy vs crystal momentum) for the
band extrema to a quadratic function. The curvature of
this quadratic is the bare-electron band effective mass. This
describes a quasiparticle for a singly-charged excitation in
the interacting electron system, with a mass renormalized
relative to that of the free electron. In lead halide perovskites
proper inclusion of spin-orbit coupling leads to a complex and
nonquadratic dispersion relation [9]. Nevertheless effective
masses of 0.12me and 0.15me can be ascribed [9] to electrons
and holes, respectively (me is the bare-electron mass).

Continuous thermal disorder interacting with spin-orbit
coupling further complicates this picture. The band structure
is a dynamic and spin-dependent object, responding to local
fluctuations in electric field [10]. The lattice dynamically
responds to the presence of a charge carrier, perturbing the
electronic structure of the orbitals in which the charge carrier
sits. The full treatment of charge-carrier mobility in these
materials is clearly complex and well beyond what has been
attempted so far. Given the dynamic nature of the electronic
structure, it is not at all clear whether there is anything to be
gained by including the rigid-band structure of a particular
stochastic realization of a disordered material in a mobility
calculation.
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The bare-electron rigid-band effective mass is an inertia
term. Irrespective of the effective mass, in the absence of
scattering, mobilities are infinite. Yet a small effective mass
(highly disperse bands) is often used as a predictor of a
high mobility. This correlation assumes that the scattering
processes are independent of (or at least weakly correlated
with) the effective mass. This is the constant scattering time
approximation. Small effective masses therefore correlate with
the charge carrier accelerating to a higher velocity in the
time before relaxation events. This scattering time has to be
inserted into the theory and is often used as a free parameter.
For hybrid halide perovskites, in analogy with the similar
dispersion relation and effective mass present in CdTe, and
assuming typical covalent semiconductor scattering times, a
mobility as high as 1000 cm2 V−1 s−1 would be inferred. This
is a considerable overestimate compared to what has been
observed.

As the material is soft, the Debye temperature for low-
energy optical modes in this system is ≈110 K (2.25 THz [11]).
Charge carriers above this temperature can scatter inelastically
by emitting optical phonons [12], a highly dissipative process.
Impurity and acoustic-phonon scattering are elastic, so less
dissipative. They would be expected to dominate mobility
below this threshold temperature.

The same processes are at play in a standard covalent
semiconductor [12], but the relevant temperatures are shifted
in proportion to the stiffening of the phonon modes. For
example, in GaP the mobility above 400 K is limited by
optical-mode scattering [13]. The Debye temperature is 580 K
for the 12.06 THz LO mode of GaP [14]).

There is evidence that antibonding frontier orbitals (equiva-
lently, ‘inverted’ band structure) in the material class [15] leads
to a ‘defect tolerance,’ with defect states repelled away from
the gap [16]. With fewer electrically active impurities there
is less impurity scattering. The large static dielectric constant
also shields charged impurities, reducing the cross section for
scattering.

Though crystalline, halide perovskites are polar and soft.
This leads to a large zero-frequency (static) dielectric constant.
The lattice deforms around a charge carrier, localizing it. This
provides a large driving force for stabilizing the polaron.

The halide perovskites are unusual in that they are highly
polar yet possess light effective masses. There is a large dielec-
tric electron-phonon interaction, yet the kinetic energy of the
electron is sufficient to keep the polaron from collapsing into
a localized (small-polaron) state. A correct transport theory in
this material must incorporate the strongly interacting nature
of the polaronic charge carriers. Previous theoretical studies
of mobility in this material [17–19] have generally solved the
Boltzmann equation in the relaxation time approximation, with
no explicit treatment of the polaron state.

In this paper we return to direct theories of polaron
mobility. We develop general codes to apply these methods
to arbitrary polar systems and present results for halide
perovskite materials. We predict the temperature dependence
and absolute value of polaron mobility in halide perovskites,
without empirical parameters. The system we consider is
highly idealized. The electronic band structure is present
only as an effective mass. The physical response of the
lattice is parametrized by optical and static dielectric constants

and an effective dielectric-response phonon frequency. We
only consider the polaron state and its scattering with this
characteristic phonon. As such, the calculated mobilities are
an upper bound for a perfect single crystal.

We predict the same temperature dependence of mobility
as that shown by time-resolved microwave conductivity of
a polycrystalline sample [7]. Good absolute agreement is
found with (room-temperature only) single crystal terahertz
conductivity measurements [8,20].

In our model we ignore the perovskite phase transitions
present in the system, assuming a constant effective mass and
phonon response. We do not consider additional scattering
from dissipative rearrangement of the ions, which may be
particularly relevant for the (dynamic) cubic phase.

Our calculations explain the published data—the model has
predictive power. This suggests that the intrinsic performance
limits of the material have been realized and that polaron
optical-phonon scattering dominates room temperature
mobility.

As well as predicting the mobility (a phenomenological
quantity), we characterize the nature of the polaron state,
calculating phonon-drag mass renormalization and scattering
rates and a polaron size. These can complement experiments
to characterise the charge carrier state. In particular, Hendry
et al. [21] applied the same models we use here to polaron
mobility, effective mass, and scattering time in TiO2. Further
measurements of temperature-dependent mobility in the halide
perovskites will help understand the charge-carrier state and
scattering processes in these materials.

II. METHODS

A. Electron phonon coupling

The interaction between charge carriers and lattice vibra-
tions is mediated by the electron-phonon coupling. This is
challenging to calculate by first principle [22]. A common
method is to use density-functional perturbation theory. This
should continue the greater contribution for a hard (covalent)
system, where the atomic motion is small. For a soft system
such as hybrid perovskites, this lattice distortion contribution
is large. Nonperturbative methods may be necessary [23,24].
Within perturbation theory, there is uncertainty about which
diagrams (types and orders of perturbative interaction) to
include in the summation. The spiky nature of the numerical
integration across the double (phonon and electron) Brillouin
zones makes the calculations heavy and convergence difficult.

For polar systems, the major contribution to electron-
phonon coupling comes from the long-ranged electric fields
generated by the atomic displacements. This is specified by
the dielectric response of the material. This considerably
simplifies the problem.

Fröhlich [25] first constructed a Hamiltonian for a system
of independent (i.e., low density) electrons interacting with
harmonic (noninteracting) polar optical phonons. The dimen-
sionless Fröhlich parameter α of dielectric electron-phonon
coupling is

α = 1

4πε0

1

2

(
1

ε∞
− 1

εS

)
e2

h̄�

(
2mb�

h̄

)1/2

. (1)
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This is fully defined by the material specific properties of
the optical (ε∞) and static (εS) dielectric constants, the bare-
electron band effective mass (mb), and a characteristic phonon
angular frequency (�). As usual, 2πh̄ is Planck’s constant, ε0

the permittivity of free space, and e the electron charge.
The optical and static dielectric constants form a prefactor

for this electron-phonon interaction. This is the response
of the lattice, modeled as a continuum dielectric, beyond
the boundary of the polaron. Within the polaron, only the
electronic excitations (optical dielectric constant) can keep up
with the motion of the electron. Outside the boundary of the
polaron, the polar lattice excitations can also respond.

B. Multiple phonon branches

The static dielectric constant can be calculated by a
summation over the Brillouin zone center (gamma point)
harmonic phonon modes. Only these modes contribute, as
they have no phase factor which otherwise leads to a zero
contribution when integrating over real space. These phonon
mode eigenvectors are used to project the Born effective
charges to give an effective dipole. This is also the infrared
activity of the mode. Integrating through these individual
Lorentzian responses leads to the dielectric function [26],

εS = ε∞ + 4π

V

N∑
i=0

(Z∗U ∗
i )(Z∗Ui)

�2
i

. (2)

Here, the summation is over the N phonon modes, normalized
by V the unit-cell volume. Z∗ are the Born effective charges,
Ui a specific phonon eigenmode, �i the phonon frequency.

The factor of �−2
i means the summation is dominated by

the lowest energy (frequency) modes which are infrared active
(polar). In the case of a two-atom unit cell such as most
covalent semiconductors, there is one infrared-active mode,
the linear-optical (LO) mode. Most of the polaron literature
is constructed in this framework of a single polar response
frequency. Hellwarth et al. [6] provide a prescription to reduce
multiple infrared-active phonon branches to a single equivalent
dielectric-response phonon frequency.

C. Feynman polaron model

Feynman solved the Frölich Hamiltonian in an innovative
manner [2], where the electron interacting with a cloud of
independent (harmonic) phonon excitations is path integrated
over the (phonon) quantum field. The electron interacts with
the disturbance it has previously created in passing through the
lattice, which exponentially dies out in time. This Coulomb-
like interaction would be expected to depend on inverse
distance. Instead, a harmonic model is constructed. This can
be analytically path integrated. An exponential dampening
factor w adds a degree of freedom for anharmonicity, and
the interaction path integral is scaled by a coupling strength
C. These model parameters are then varied to minimize the
(athermal) ground state energy, for a given coupling strength
α and phonon response frequency �.

The resulting model is a single particle system where
the electron interacts with a time-retarded potential. The
Hamiltonian in the center-of-mass frame can be expressed
as an electron coupled to a finite mass (M , expressed in units

of the charge carrier effective mass) with a (harmonic) spring
constant (k). These give rise to an angular frequency for the
oscillation of the energy between the electron and phonons of

w =
√

k
M

.
It is convenient to work in this angular-frequency variable

and make a further substitution of v2 = w2 + 4C
w

. Here C is the
electron-phonon coupling coefficient of the model Lagrangian,
related back to the spring constant by k = 4C

w
[2].

Feynman’s model is nonperturbative and so correct to all
orders in the coupling constant α. Up until this point, theories
had either been based on an assumption of weak coupling
(α�1) and perturbative, or assumed, strong coupling (α>10).
Many systems of experimental interest have an intermediate
coupling. We will show later that inorganic halide perovskites
have a characteristic α coupling of 1 to 2, whereas the
additional dielectric response of the molecular cation gives
the hybrid halide perovskites an α of 2 to 3.

Ōsaka [3] extended Feynman’s athermal variational so-
lution by providing finite-temperature free energies of the
coupled electron-phonon system. The parameters can then be
varied to minimize the total polaron free energy (at specific
temperature). The model thus becomes explicitly temperature
dependent, rather than using the athermal variational solution
with a temperature-dependent mobility theory. Here we use
a more recent presentation of the Ōsaka free energies by
Hellwarth et al. [6], which have been made more amenable
to numeric computation.

D. Polaron mobility

By itself, the variational (finite-temperature extended)
Feynman model provides an effective mass of the polaron
quasiparticle representing the phonon-drag term and a spring
coupling constant for the exchange of energy between the
electron and its coupled phonon cloud. As with a bare-electron
band effective mass, there is no dissipative (frictional) term.
To calculate a polaron mobility, we must analyze the response
of this system to a perturbation. As our main concern is with
application to photovoltaic materials, we are interested in the
small-field (direct current, DC) limit. The models used herein
consider the electronic band structure only in an effective-mass
approximation.

The initial mobility work of FHIP [4] directly used the re-
sponse of the polaron center-of-mass coordinate to an applied
field, containing interactions with a dynamically maintained
steady state of thermally excited phonons. A general expres-
sion for the impedance is given therein [Eqs. (46) and (47)].
A low temperature approximation is made (a power-series ex-
pansion in the internal parameter b, small for low temperature),
leading to a mobility generally known as μFHIP,

μFHIP =
(

w

v

)3 3e

4mb

exp (β)

�αβ
exp

(
v2 − w2

w2v

)
. (3)

Here w and v are the (variational) parameters specifying the
polaron model, mb is the bare-electron band effective mass, �
the phonon angular frequency, and β = h̄�/kBT is a reduced
thermodynamic temperature in units of the phonon energy.

This formalism was quickly realized to be pathological
for high temperatures—at the thermal energy (kbT ) equaling
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the phonon energy (h̄�) there is a resonance minimizing the
mobility, but the mobility thereafter increases as a function of
temperature. Soon afterwards, Kadanoff [5] provided a similar
mobility identity based on a solution to the Boltzmann equa-
tion, applicable to all α. This Boltzmann solution implicitly
assumes independent scattering events, still formally limiting
the model to low temperature. We refer to this as μK ,

μK =
(

w

v

)3
e

2mb

exp (β)

�α
exp

(
v2 − w2

w2v

)
. (4)

Though derived from different assumptions, compared to
the FHIP there is an additional factor of 3/2β. This is now
understood [27] to formally arise from the order in which the
limits are taken in the asymptotic approximations. Physically,
the FHIP considers stimulated emission and absorption of
phonons, which saturates and balances, once there is a thermal
population (Bose-Einstein statistics). The Kadanoff identity
adds spontaneous emission of phonons. Empirically this cor-
rects the pathological behavior of FHIP for temperatures above
the Debye temperature, the Kadanoff mobility asymptotically
approaching a constant.

The relaxation-time approximation (independent scatter-
ing) used by Kadanoff allows a direct evaluation of a scattering
rate, based on the thermal population of phonons N̄ = exp(β).
The rate (�) is evaluated for small momentum exchanges (low
fields) as

�0 = 2αN̄
√

(M + 1) exp(−M/v). (5)

Here M is the phonon-drag effective mass (in units of the band
effective mass mb).

This rate �0 is expressed in reduced phonon units. Mul-
tiplying with the phonon frequency �

2π
�0 gives a real-time

rate. This scattering rate can be directly related to μK (as it is
assumed to follow a Boltzmann equation) by

μK = e

�mb(M + 1)�0
. (6)

More recently, Hellwarth et al. [6,28] returned to the general
response theory of FHIP (Eqs. (46) and (47) in Ref. [4]). Rather
than taking a low-temperature limit and performing a power
expansion, they contour integrate for the self energy of the
perturbed polaron.

a2 = (β/2)2 +
(

v2 − w2

w2v

)
β coth(βv/2), (7)

b =
(

v2 − w2

w2v

)
β

sinh(βv/2)
, (8)

K =
∫ ∞

0
du(u2 + a2 − b cos(vu))−

3
2 cos(u). (9)

This integral gives the polaron response to a first order change
in the driving force, providing an analogous role to the
scattering rate in Kadanoff’s Boltzmann construction, to give

μH =
(

w

v

)3 3e

mb

√
π sinh(β/2)

�αβ
5
2

K−1. (10)

This is as in Ref. [6], transformed into S.I. units and rearranged
for easier comparison with μFHIP and μK .

Both Biaggio et al. [28] and Hellwarth et al. [6], approx-
imate b = 0, allowing for an analytic solution of K with
modified Bessel functions. Here we do the full integration. We
note that both papers have a typographic error in the formula
for b, possessing a spurious term of b on the right hand side.
The form here is as given by FHIP [4].

In custom codes we reimplement the Hellwarth et al. [6]
posing of Ōsaka’s [3] finite-temperature variational solution
to Feynman’s [2] model. Integration is numeric using an
adaptive Gauss-Kronrod quadrature algorithm. The Ōsaka free
energies (which include numeric integrals) are automatically
differentiated in a forward mode to produce gradients. These
gradients are used by a BFGS algorithm to find the optimal
(temperature-dependent) v and w. These model parameters
directly give the FHIP [4] and Kadanoff [5] mobility. By
performing the contour integration for the polaron self-energy
numerically, we calculate a Hellwarth et al. [6] mobility (with
a slight refinement by considering b �= 0). Codes are provided
[29] to encourage the application of these methods to other
systems of interest.

III. RESULTS

A. Methylammonium lead iodide perovskite

Methlyammonium lead halide is the most well studied of
the hybrid halide perovskites. We use the previously mentioned
QSGW effective masses of 0.12 (electron) and 0.15 (hole) [9].
We take 4.5 and 24.1 [30] as the optical (QSGW) and static
(harmonic phonon, DFT) dielectric constants.

We note that this static dielectric constant only includes
the harmonic response of the phonons; additional (slower)
terms may come from the (anharmonic) realignment of the
polar methylammonium. We can estimate this contribution
from a generalized form of Onsager theory for polar liquids
[31]. Ignoring the response of the local environment and
assuming the ions totally free to realign (i.e., most appli-
cable to the cubic phase), this is εp = 4

3πN
μ2

3kT
. With the

methlyammonium-dipole μ = 2.2D [30], and N the number
density (one methylammonium per 6.2 Å cubic unit cell), this
gives εp = +8.9.

It is well known that the increasing frustration of motion
of these dipoles as the material passes through the second-
order tetragonal phase transition towards the fully hindered
orthorhombic ground state gives rise to a divergent dielectric
response [32]. It is not clear how to integrate this (slow,
dissipative) response into a formal polaron transport theory.

One might assume that the additional response in the cubic
phase, and in the divergence approaching the orthorhombic
phase, would provide an additional dissipation of electron
energy and so lower mobility. We ignore these terms in the
present paper. Disorder in the hybrid material will generate
further localization pressure, perhaps even forming small
polarons [33,34].

Hellwarth et al. [6] provides two approximation schemes
for reducing multiple phonon branches in the polaron problem
to a single dielectric-response frequency. In this paper we
use the more simple athermal ‘B’ scheme. The temperature-
dependent ‘A’ scheme may offer more temperature-dependent
phonon structure in the polaron model and therefore the
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resulting temperature-dependent mobilities. This will be the
subject of future work.

We take our modes from ab initio phonon and infrared-
activity calculations [11]. Applying the ‘B’ scheme to all
modes (including the 18 high frequency molecular modes)
gives a seemingly unphysical characteristic response of
10.0 THz. It is not clear whether this is due to errors in our
estimates of the infrared activity of the molecular modes or
whether the Hellwarth et al. summation is only well defined
for long range consummate lattice distortions.

Applied to the first 15 (nonintramolecular) modes, the effec-
tive dielectric-response (‘LO’) phonon frequency is 2.25 THz.
We use this value in all work presented herein. Combined,
these data specify the Fröhlich electron-phonon parameter as
α = 2.40 (electron) and α = 2.68 (hole).

Bokdam et al. [35] provide a direct evaluation of the
total dielectric function. From a density functional pertur-
bation theory calculation (harmonic athermal response), the
imaginary dielectric function has a peak at 8 meV (1.9 THz).
This corresponds well with the estimate from the Hellwarth
et al. B scheme applied to the lattice modes. Including some
anharmonic contributions via ab initio molecular dynamics,
they find a softening of the modes to 4 meV at 300 K.
This implies that polaron effects are actively strengthened at
higher temperature, as the anharmonic softening of the lattice
increases the effective dielectric electron-phonon coupling.

At 300 K we predict a Kadanoff polaron mobility of μe =
197 cm2 V−1 s−1, μh = 136 cm2 V−1 s−1, and a Hellwarth mo-
bility of μe = 133 cm2 V−1 s−1, μh = 94 cm2 V−1 s−1 (Fig. 1).
The phonon mass renormalization is 0.37 for the electron
polaron and 0.43 for the hole polaron. This agrees well with
the athermal perturbative (small α) estimate m∗

p = α
6 + α2

40 [2]
which gives 0.54 and 0.63, respectively.

The variational parameters v and w specify the polaron
state. These come from minimizing the finite-temperature
Ōsaka [3] free energies (Fig. 2). These parameters can be
mapped to a phonon-drag mass term M , and spring constant
k, for the effective single-particle coupled harmonic system
(Fig. 3).

Following Schultz [36], our variational parameters at 300 K
give a polaron radius (for holes and electrons) of ≈26 Å.
(See Table II for further values.) This radius is defined as
the standard deviation of the Gaussian wave function which
would form in the harmonic confining potential of the polaron.
Though the definition is fairly arbitrary, it is of interest in
understanding how commensurate the polaron is to real-space
fluctuations in electrostatic potential.

As with Hellwarth et al. [6], we find that setting b = 0 in
our calculation of μH makes only <0.2% difference to the
mobility. This difference increases with temperature.

As a function of temperature (Fig. 1), the mobility decays
from an infinite quantity at zero temperature. The Kadanoff
mobility asymptotically approaches 190 cm2 V−1 s−1 at high
temperature. This is associated with the variational fit ap-
proaching a phonon effective mass of 0.37me, while the
spring constant k increases linearly with temperature (Fig. 3).
By comparison, the (low-temperature) FHIP mobility has a
minimum at h̄� = kBT and increases linearly with temper-
ature. The Hellwarth mobility has weak positive temperature
dependence at high temperatures.

FIG. 1. Predicted Hellwarth hole (cross, red) and electron
(circle, blue) polaron mobility versus temperature, coplotted against
temperature-dependent time-resolved-microwave-conductivity mea-
surements on polycrystalline films from Milot et al. [7]
(green, saltire), room temperature space-charge-limited-current hole-
mobility estimate on a single crystal from Saidaminov et al. [20]
(diamond, brown), and room temperature time-resolved-microwave
conductivity on a single crystal from Semonin et al. [8] (square,
purple). As the TRMC data is a mobility-yield product, the low 8 K
data point may be related to the stability of the exciton (none-unitary
free carrier yield) at those temperatures, rather than the mobility
actually reducing.

The high temperature behavior of polaron mobility is
important for photovoltaic device operation. Hybrid halide
perovskites are predicted to have extremely low thermal
conductivity [23], and cooling of photoexcited states is known
to be unusually slow [37,38]. As such, it is likely that the
initial electron temperature of a photoexcited state is extremely
high. Optical phonons emitted by electron thermalization and

FIG. 2. Finite-temperature free energies used in the variational
fitting of the v and w parameters for the coupled electron-phonon
system. The upper bound of the free energy (cross, red) is F =
−(A + B + C). Here A (circle, blue) is the total thermodynamic
energy of the system via the log of the partition function of the
density matrix. B (saltire, green) and C (squares, purple) are the
expectation values of the action for the electron-phonon system and
the trial action, respectively. See Ref. [3]. Data for the electron (0.12)
effective mass in MAPI.
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FIG. 3. (Top) Temperature-dependent phonon-drag effective
mass (cross, red) in units of the bare-electron band effective mass.
Polaron scattering-time (circle, blue) in units of ps. (Bottom)
Temperature-dependent variational parameters v (cross, red) and w

(circle, blue) for the coupled electron phonon system. Data for the
electron (0.12) effective mass in MAPI.

carrier scattering may remain in the region of the polaron,
reheating the electron state. It is therefore useful and interesting
to know that even with a high temperature ‘hot carrier,’ the
polaron mobility is finite and sufficient for photovoltaic device
operation.

The Kadanoff and FHIP mobilities possess at their core a
calculation of the rate of emission and absorption of optical
phonons �, taken to the low-momentum limit �0. Kadanoff
[5] directly relates this rate to a relaxation-time approximation
of the Boltzmann equation, τ = 1/�. We thereby access the
scattering time for the polaron as a function of temperature,
finding for the electron-polaron τ = 0.12 ps at a temperature
of 300 K. Combined with the polaron mass renormalization
(the phonon drag), these values parametrize a temperature-
dependent relaxation-time approximation Boltzmann equation
for the polarons in this material and may be of use in
larger-scale device models. Further, these parameters can be
probed experimentally. Previous work [21] used terahertz
spectroscopy to probe the scattering in TiO2, observing
a counterintuitive relationship between scattering rate and
mobility, due to the complementary relationship between
effective mass and scattering rate μ = e/(mp�).

FIG. 4. Hellwarth electron mobility for MAPI (down-triangles,
blue) coplotted on a log-log axis with TRMC temperature dependent
data of (hexagons, green) of Milot et al. [7]. Fit lines are by a least-
squares fit to a power law (μ = aT k), in a linear space. Fitting to above
100 K, the predicted Hellwarth mobility (this paper) has an exponent
(orange trend line) of −0.46 ≈ − 1

2 . Fitting all but the spurious first
point of the Milot et al. data produces an exponent (purple trend
line) of k = −1.33, whereas fitting just above 100 K finds a lower
exponent (brown trend line) of k = −0.95.

B. Power-law temperature dependence of mobility

Inference of the dominant electron scattering mechanism
in a material often comes from the circumstantial behavior of
the mobility as a function of temperature. This temperature-
dependent mobility (a phenomenological quantity) often
shows a power-law scaling. For the halide perovskites, early
data suggests a T − 3

2 exponent, consistent with textbook
descriptions of acoustic-mode scattering dominated mobilities
[12]. We previously suggested that activation of multiple soft
optical phonon modes could mimic such (large exponent)
behavior [39].

Do polaron mobility theories follow a power-law scaling,
and if so, what is the critical exponent? Displaying the
Hellwarth mobility on a log-log scale (Fig. 4) reveals straight-
line (power-law) behavior, for temperatures above the critical
phonon emission energy. Fitting these data to a power law
(μ = aT k) by least-squares minimization of data above 100 K
finds an exponent of k = −0.46. This is close to − 1

2 , which
we propose as our best estimate of the power-law behavior of
polaron optical-phonon scattering dominated mobility, once
above the phonon emission threshold. (This will hold even
in the case where there are multiple distinct optical phonon
thresholds, as all modes will produce a k = − 1

2 scaling once
above their emission threshold.)

This exponent is considerably less than the k = −1.33
extracted from a full fit to the TRMC data of Milot et al. [7].
However, if we similarly constrain the experimental fit to
above 100 K (motivated by the uncertainty of measures in
the low temperature phase, and to avoid complications due to
multiple phonon scattering routes), we find an exponent of
k = −0.95. Further temperature-dependent measures of
mobility will provide stronger statistical evidence from which
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TABLE I. Parameters of the Feynman polaron model as used in
this paper. Relative high frequency (ε∞) and static (εS) dielectric
constants are given in units of the permittivity of free space (ε0).
Frequency (f) is in THz. Effective mass (m∗) is in units of the bare
electron mass.

Material ε∞ εS f m∗

MAPbI3-e 4.5 24.1 2.25 0.12
MAPbI3-h 0.15
CsPbI3 6.1 18.1 2.57 0.12

MAPbI3a 5.0 33.5 3.38 0.104
MAPbBr3 4.7 32.3 4.47 0.117
MAPbCl3 4.0 29.8 6.42 0.2

CsSnI3b 6.05 48.2 4.56 0.069
CsSnBr3 5.35 32.4 5.48 0.082
CsSnCl3 4.80 29.4 7.28 0.140

aThese parameters specify the model as in Sendner et al. [40].
Effective mode frequency, reduced by a Hellwarth et al. scheme,
is from private communication.
bParameters for holes in cesium tin halides are taken from Huang
et al. [15]. Dielectric constants are from Table VII therein, effective
masses from Table VI, phonon frequency from Table VII.

to infer the nature of mobility-limit scattering in these
materials.

C. Comparison to Sendner et al.

Recently, Sendner et al. [40] approached the polaron
mobility from an experimental point of view. They fitted
four critical points to infrared transmissivity measures of thin
films. These provide a simplified phonon spectrum. This is
then used with a generalization of the Lyddane-Sachs-Teller
relation to derive dielectric constants. This assumes that
there are well defined linear and transverse optical modes as
would be found in a crystal of cubic symmetry. These data
were then reduced with a Hellwarth scheme to an effective
dielectric-response phonon frequency (for MAPI) of 3.38 THz
(prviate communication). Combined with a DFT effective
mass (0.104), this was then used with a Hellwarth model to
derive a room-temperature mobility of (200 ± 30) cm/V/s for
MAPI. See Table I for a statement of their model and Table II
for a cross validation with the codes developed in this paper.
With their parameters and our custom codes, we can predict
the temperature-dependent mobility (Fig. 5).

By comparison to the present paper, they extrapolate a
greater dielectric response than we calculate from harmonic
phonons. This is to be expected as their measurements will in-
clude all anharmonicity (including the molecular rotation con-
tribution), whereas we consider only the harmonic response.
However it is not immediately clear that the contribution from
this dissipative molecular response should be integrated into
polaron theories built on the perfectly elastic (nondissipative)
response of harmonic phonons.

Though the mobility results of Sendner et al. and this
paper are in broad agreement, the underlying parameters of the
polaron system disagree. Here we suggest a more polaronic
state, with a larger dielectric coupling resulting in a greater
electron-mass renormalization. Sendner et al. suggest a less

TABLE II. Dielectric electron-phonon coupling (α, athermal).
Predicted (300 K) mobilities (Kadanoff, μK ; Hellwarth, μH ), polaron
effective mass renormalization (m∗

h), Feynman-model variational
parameters (v and w), Kadanoff polaron relaxation time (τ , ps), and
Schultz polaron radius (rf , Å).

Material α μK μH m∗
h v w τ rf

MAPbI3-e 2.39 197 136 +0.37 19.9 17.0 0.12 26.8
MAPbI3-h 2.68 133 94 +0.43 20.1 16.8 0.10 25.3
CsPbI3 1.35 389 258 +0.21 16.5 15.1 0.20 39.6

MAPbI3 1.71 272 195 +0.31 13.2 11.5 0.13 43.1
MAPbBr3 1.69 212 157 +0.36 10.1 8.7 0.12 53.6
MAPbCl3 2.19 73 57 +0.62 7.6 6.0 0.08 61.4

CsSnI3 1.02 703 487 +0.20 9.64 8.81 0.21 70.0
CsSnBr3 1.09 511 356 +0.24 8.14 7.32 0.19 77.7
CsSnCl3 1.39 212 147 +0.36 6.51 5.59 0.14 85.4

polaronic charge-carrier state but with a greater scattering
strength due to the larger dielectric constant. Overall this leads
to a very similar Kadanoff relaxation time (see Table II).

D. Inorganic lead halide perovskite

To understand the role of the organic cation in polaron
formation and mobility limits of halide perovskites, we make
a comparison with the fully inorganic analogue, cesium lead
iodide. We calculate the dielectric constants for cubic cesium
lead iodide (r = 6.78 Å) by density functional perturbation
theory. We use the generalized gradient approximation, in
the plane-wave VASP code with a 9×9×9 Monkhorst-pack
k-space integration, 700 eV plane wave cutoff, and the PBESol
functional. We find optical and static dielectric constants of
6.1 and 18.1. The Hellwarth (B scheme) dielectric effective
phonon frequency is slightly stiffened to 2.57 THz. Assuming
the same electron effective mass as electrons in MAPI (0.12),
this gives a Kadanoff mobility of 389 cm2 V−1 s−1 and a

FIG. 5. Calculation of temperature-dependent solutions to the
Sendner et al. [40] (data therein and by private communication)
parameters, compared to this work. Sendner’s parameters for iodine
(satire, green), bromine (square, purple), and chlorine (cross, orange).
Data from this work are iodide electrons (cross, red), and holes (circle,
blue). Approximate agreement is found in mobility trends but due to
quite different underlying parameters for the polaron state.
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FIG. 6. Predicted mobility for CsPbI3, assuming an effective
mass for the carriers of 0.12. The theories used are Hellwarth (cross,
red), Kadanoff (circle, blue), and FHIP (saltire, green).

Hellwarth mobility of 258 cm2 V−1 s−1 at 300 K (see Fig. 6
for temperature dependence). This suggests that the additional
(harmonic) dielectric response of the organic ion in MAPI re-
duces the mobility by a factor of two, as a result of doubling the
dielectric electron-phonon coupling, leading to a doubling in
the polaron effective mass and a halving of the scattering time.

E. Inorganic tin halide perovskite

The cesium tin halide perovskites have been well char-
acterized [15] with the QSGW method for effective masses
and lattice dynamics with the LDA density functional.
Taking values from this publication, we can solve for the
polaron model and mobilities. The calculated hole mobilities
for CsSnI3 at 300 K are 703 cm2 V−1 s−1 (Kadanoff) and
487 cm2 V−1 s−1 (Hellwarth). This compares well to measure-
ments of 585 cm2 V−1 s−1 (Hall effect) and 400 cm2 V−1 s−1

(by ‘transport property’) [41]. Temperature dependence is
presented in Fig. 7.

In comparison to the lead halide perovskites, the material
is less polaronic. The driving force for polaron stabilization is

FIG. 7. Predicted Hellwarth mobility for cesium tin halide per-
ovskites (iodine: cross, red; bromine: circle, blue; chlorine: saltire,
green). Calculated for hole charge carriers. All input parameters from
Ref. [15], Tables VI and VII.

greater with the larger dielectric constants, but the effective
masses are smaller; the phonon spectrum is stiffer. As
with MAPI, the agreement between predicted and measured
mobility suggests that polaron mobility describes the charge
carrier state and scattering processes well.

IV. DISCUSSION

A. Prior theoretical studies

Most prior theoretical studies on mobility in hybrid halide
perovskites [17–19] have solved the Boltzmann equation in
the relaxation time approximation using the BOLTZTRAP codes
[42]. An effective relaxation-time (scattering-constant) τ is
inserted into a theory otherwise parametrized from electronic
structure calculations. These works include the band-structure
explicitly, whereas we use an effective mass approximation
throughout. In hybrid halide perovskites, the materials are
new and unusual, so there is no equivalent well characterized
system (such as in covalent semiconductors) on which to base
this relaxation time.

The first work by Motta et al. [17] used an empirically
motivated scattering time constant of 1 ps. An analogy is made
by relating this to the time constant of motion of the methy-
lammonium ion. However there is no direct correspondence
between the timescale of motion of the ion and the timescale
of charge carrier scattering. This led to a predicted mobility of
5 cm2 V−1 s−1 to 12 cm2 V−1 s−1 for holes and 2.5 cm2 V−1 s−1

to 10 cm2 V−1 s−1 for electrons. At the time these values were
comparable to the highest measured mobilities.

Later, Zhao et al. [18] found a relaxation time of 0.1 ps
from acoustic-phonon scattering in a golden-rule formalism
with deformation-potential matrix elements. The mobility
predicted from this is 1000 cm2 V−1 s−1. Considering charged-
impurity scattering with a static dielectric constant of 6.5,
and assuming large noncompensated charge defect densities
of 1×1018 cm−3, these mobilities reduce to 100 cm2 V−1 s−1.
The density of charged impurities and static dielectric constant
used in this paper seems unphysical.

Filippetti et al. [19] combined contributions from impurity
scattering, acoustic-phonon scattering (approximated by the
deformation potential), and a relaxation time approximation
recasting of the Fröhlich optical electron-phonon scattering
element. They use a static dielectric constant of 60. Overall
they predict a bare-charge electron scattering time to 9.2 fs.
They find a low charge-density mobility of 57 cm2 V−1 s−1

(electron) and 40 cm2 V−1 s−1 (hole).
Very recently Zhang et al. [43] have provided a semiclassi-

cal model of charge transport in hybrid halide perovskites,
based on polarons scattering from acoustic modes. They
point out that, by definition, acoustic scattering produces the
experimentally observed T − 3

2 dependence. However they do
not consider inelastic scattering processes, such as emission
of optical phonons.

B. This paper

This work provides the prediction of (temperature-
dependent) polaron mobility in hybrid halide perovskites.
There are no free parameters.
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The bare-electron band effective masses are taken from
QSGW electronic structure calculations [9]. The parameters
used in the calculation are the optical and static dielectric
constants and an effective phonon frequency. These values we
take from prior density-functional-theory calculations on the
harmonic (phonon) response of the material [11].

This fully specifies a model Hamiltonian, for which
the finite-temperature Feynman variational solution for the
polaron is made. Numerical solution of the full DC-mobility
theory (without making a Boltzmann transport equation
approximation) provides a temperature-dependent mobility.

These mobilities are an upper bound, as they consider
only one scattering contribution (that of the polaron scattering
with optical phonons) in an otherwise perfect effective-mass
system.

Both the Kadanoff and Hellwarth polaron mobility as a
function of temperature show a trend that agrees well with
available data. As the Kadanoff mobility is based on assuming
a Boltzmann equation, this suggests that the underlying
assumption of independent scattering events is approximately
correct. The Hellwarth mobility is constructed by an explicit
contour integration for the self energy of the perturbed polaron.
We expect it to be more generally applicable and more
accurate for high temperatures. The agreement with measured
mobilities suggests that we have captured the essential physics
of the system.

This suggests that impurity scattering is a relatively minor
process. This adds circumstantial evidence that these semi-
conductors are ‘defect tolerant,’ at least as far as mobility is
concerned. Scattering by acoustic phonon modes is neglected,
as it is low energy and elastic (due to the thermal population
of these low-energy modes). Where we predict a divergence
to infinite mobility at zero temperature, acoustic phonon and
impurity scattering will come to dominate.

In these theories we have assumed a single characteristic
dielectric phonon frequency. Though Hellwarth et al. [6] show
that there are good physical reasons for the approximation of
the action of multiple phonon modes with a single effective
mode, this still loses structure in the temperature-dependent
response. In the case of lead-halide perovskites, there are
infrared active phonon branches on 1 THz to 1.5 THz and
2 THz to 2.5 THz. Phonon perturbation theory calculations
show that phonons in this system are highly anharmonic
[23], with a broad range of energy and small lifetime.
This may invalidate the noninteracting (independent) phonon
approximation.

We have shown that the Hellwarth mobility follows an
approximately T −0.5 power-law dependence, when above
the phonon emission threshold. More temperature-dependent
mobility data will help understand the microscopic processes
responsible for charge carrier scattering in these materials.

With the robust codes developed for this paper, temperature-
dependent large-polaron mobility calculations are made sim-
ple. The material-specific parameters required from electronic
structure calculations are well defined. Modest computational
resources are then required to solve the polaron and mobility
theories. Unlike other models of halide perovskite mobility
presented in the literature, there is no relaxation time or
other empirical parameter, inferred by analogy to other
systems.

We have shown that models predict the experimentally
observed temperature-dependent trend in hybrid halide per-
ovskites and that the quantitative agreement suggests that po-
laron optical-phonon scattering dominates room-temperature
mobility.

C. Future work

Several classes of novel electronic materials (transparent
conducting oxides, oxide-based thermoelectrics, and organic
semiconductors) are expected to be dominated by polaronic
transport. The calculation of temperature-dependent mobility
described in this paper is useful for both design of new materi-
als and the interpretation of measurements and characterization
of existing materials.

Considering the evident utility, it is therefore perhaps
surprising that there has not been more application of these
methods. Certainly some of this is due to the underlying
theoretical work being couched in the rather esoteric language
of path integrals. A more practical issue is the lack of an
available computational implementation. Here we developed
custom codes in the Julia high level mathematical language
[44]. This offered automatic differentiation (to calculate the
gradients of the objective function of the Ōsaka free energies,
stabilizing the optimization procedure) and strong control of
numeric errors. The resulting codes appear numerically stable
and general purpose. We provide our codes [29] to encourage
community reuse of these methods.

With a validated set of codes, we can now easily apply
these polaron mobility theories to polar materials as a natural
component of materials design. Though many idealizations
are made in the polaron mobility theories, they offer a
first-principles method to arrive at a phenomenological value
of extreme technical interest. The electronic structure calcula-
tions necessary for inputs to the model are now a standard part
of computational materials discovery and characterization.
The methods and codes are well matched to high-throughput
calculation of mobilities.

Within hybrid perovskites, we plan to combine these
models with experimental measures to characterize the internal
structure of the polaron state. As well as the zero-frequency
susceptibility (and mobility), the frequency-dependent mobil-
ity can be evaluated by an additional (numeric) integration [4],
and the optical response of the polaron calculated [45].

It will be interesting to see whether a more sophisticated
method of calculating electron-phonon matrix elements from
a band structure [22] can complement the use of the simple
Fröhlich dielectric α parameter.

The Hellwarth et al. [6] method of deriving a single effective
polar mode could be supplemented by an explicit calculation
of contributions per mode. This would allow for some of the
structure in the low-temperature mobility (smoothed out by
the choice of a single effective mode) to return.
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Lovrinčić, Mater. Horiz. 3, 613 (2016).

[41] I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H.
Li, A. J. Freeman, J. T. Kenney, and M. G. Kanatzidis, J. Am.
Chem. Soc. 134, 8579 (2012).

[42] G. K. Madsen and D. J. Singh, Comput. Phys. Commun. 175,
67 (2006).

[43] M. Zhang, X. Zhang, L.-Y. Huang, H.-Q. Lin, and G. Lu, Phys.
Rev. B 96, 195203 (2017).

[44] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
SIAM Rev. 59, 65 (2017).

[45] J. Devreese, J. D. Sitter, and M. Goovaerts, Phys. Rev. B 5, 2367
(1972).

195202-10

https://doi.org/10.1021/acs.chemrev.6b00136
https://doi.org/10.1021/acs.chemrev.6b00136
https://doi.org/10.1021/acs.chemrev.6b00136
https://doi.org/10.1021/acs.chemrev.6b00136
https://doi.org/10.1103/PhysRev.97.660
https://doi.org/10.1103/PhysRev.97.660
https://doi.org/10.1103/PhysRev.97.660
https://doi.org/10.1103/PhysRev.97.660
https://doi.org/10.1143/PTP.22.437
https://doi.org/10.1143/PTP.22.437
https://doi.org/10.1143/PTP.22.437
https://doi.org/10.1143/PTP.22.437
https://doi.org/10.1103/PhysRev.127.1004
https://doi.org/10.1103/PhysRev.127.1004
https://doi.org/10.1103/PhysRev.127.1004
https://doi.org/10.1103/PhysRev.127.1004
https://doi.org/10.1103/PhysRev.130.1364
https://doi.org/10.1103/PhysRev.130.1364
https://doi.org/10.1103/PhysRev.130.1364
https://doi.org/10.1103/PhysRev.130.1364
https://doi.org/10.1103/PhysRevB.60.299
https://doi.org/10.1103/PhysRevB.60.299
https://doi.org/10.1103/PhysRevB.60.299
https://doi.org/10.1103/PhysRevB.60.299
https://doi.org/10.1002/adfm.201502340
https://doi.org/10.1002/adfm.201502340
https://doi.org/10.1002/adfm.201502340
https://doi.org/10.1002/adfm.201502340
https://doi.org/10.1021/acs.jpclett.6b01308
https://doi.org/10.1021/acs.jpclett.6b01308
https://doi.org/10.1021/acs.jpclett.6b01308
https://doi.org/10.1021/acs.jpclett.6b01308
https://doi.org/10.1103/PhysRevB.89.155204
https://doi.org/10.1103/PhysRevB.89.155204
https://doi.org/10.1103/PhysRevB.89.155204
https://doi.org/10.1103/PhysRevB.89.155204
https://doi.org/10.1063/1.4955028
https://doi.org/10.1063/1.4955028
https://doi.org/10.1063/1.4955028
https://doi.org/10.1063/1.4955028
https://doi.org/10.1103/PhysRevB.92.144308
https://doi.org/10.1103/PhysRevB.92.144308
https://doi.org/10.1103/PhysRevB.92.144308
https://doi.org/10.1103/PhysRevB.92.144308
https://doi.org/10.1002/pssb.2220530126
https://doi.org/10.1002/pssb.2220530126
https://doi.org/10.1002/pssb.2220530126
https://doi.org/10.1002/pssb.2220530126
https://doi.org/10.1002/pssb.2221200123
https://doi.org/10.1002/pssb.2221200123
https://doi.org/10.1002/pssb.2221200123
https://doi.org/10.1002/pssb.2221200123
https://doi.org/10.1103/PhysRevB.88.165203
https://doi.org/10.1103/PhysRevB.88.165203
https://doi.org/10.1103/PhysRevB.88.165203
https://doi.org/10.1103/PhysRevB.88.165203
https://doi.org/10.1557/mrc.2015.26
https://doi.org/10.1557/mrc.2015.26
https://doi.org/10.1557/mrc.2015.26
https://doi.org/10.1557/mrc.2015.26
https://doi.org/10.1038/srep12746
https://doi.org/10.1038/srep12746
https://doi.org/10.1038/srep12746
https://doi.org/10.1038/srep12746
https://doi.org/10.1038/srep19968
https://doi.org/10.1038/srep19968
https://doi.org/10.1038/srep19968
https://doi.org/10.1038/srep19968
https://doi.org/10.1039/C6CP01402J
https://doi.org/10.1039/C6CP01402J
https://doi.org/10.1039/C6CP01402J
https://doi.org/10.1039/C6CP01402J
https://doi.org/10.1038/ncomms8586
https://doi.org/10.1038/ncomms8586
https://doi.org/10.1038/ncomms8586
https://doi.org/10.1038/ncomms8586
https://doi.org/10.1103/PhysRevB.69.081101
https://doi.org/10.1103/PhysRevB.69.081101
https://doi.org/10.1103/PhysRevB.69.081101
https://doi.org/10.1103/PhysRevB.69.081101
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRevB.94.220301
https://doi.org/10.1103/PhysRevB.94.220301
https://doi.org/10.1103/PhysRevB.94.220301
https://doi.org/10.1103/PhysRevB.94.220301
https://doi.org/10.1021/acs.jpclett.6b02560
https://doi.org/10.1021/acs.jpclett.6b02560
https://doi.org/10.1021/acs.jpclett.6b02560
https://doi.org/10.1021/acs.jpclett.6b02560
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1103/PhysRevLett.78.891
https://doi.org/10.1103/PhysRevLett.78.891
https://doi.org/10.1103/PhysRevLett.78.891
https://doi.org/10.1103/PhysRevLett.78.891
https://github.com/jarvist/PolaronMobility.jl
https://doi.org/10.1021/nl500390f
https://doi.org/10.1021/nl500390f
https://doi.org/10.1021/nl500390f
https://doi.org/10.1021/nl500390f
https://doi.org/10.1063/1.1750343
https://doi.org/10.1063/1.1750343
https://doi.org/10.1063/1.1750343
https://doi.org/10.1063/1.1750343
https://doi.org/10.1016/0022-3697(92)90121-S
https://doi.org/10.1016/0022-3697(92)90121-S
https://doi.org/10.1016/0022-3697(92)90121-S
https://doi.org/10.1016/0022-3697(92)90121-S
https://doi.org/10.1021/nl503494y
https://doi.org/10.1021/nl503494y
https://doi.org/10.1021/nl503494y
https://doi.org/10.1021/nl503494y
https://doi.org/10.1021/acs.nanolett.6b01218
https://doi.org/10.1021/acs.nanolett.6b01218
https://doi.org/10.1021/acs.nanolett.6b01218
https://doi.org/10.1021/acs.nanolett.6b01218
https://doi.org/10.1038/srep28618
https://doi.org/10.1038/srep28618
https://doi.org/10.1038/srep28618
https://doi.org/10.1038/srep28618
https://doi.org/10.1103/PhysRev.116.526
https://doi.org/10.1103/PhysRev.116.526
https://doi.org/10.1103/PhysRev.116.526
https://doi.org/10.1103/PhysRev.116.526
https://doi.org/10.1038/ncomms9420
https://doi.org/10.1038/ncomms9420
https://doi.org/10.1038/ncomms9420
https://doi.org/10.1038/ncomms9420
https://doi.org/10.1038/nphoton.2015.213
https://doi.org/10.1038/nphoton.2015.213
https://doi.org/10.1038/nphoton.2015.213
https://doi.org/10.1038/nphoton.2015.213
https://doi.org/10.1039/C6CP03474H
https://doi.org/10.1039/C6CP03474H
https://doi.org/10.1039/C6CP03474H
https://doi.org/10.1039/C6CP03474H
https://doi.org/10.1039/C6MH00275G
https://doi.org/10.1039/C6MH00275G
https://doi.org/10.1039/C6MH00275G
https://doi.org/10.1039/C6MH00275G
https://doi.org/10.1021/ja301539s
https://doi.org/10.1021/ja301539s
https://doi.org/10.1021/ja301539s
https://doi.org/10.1021/ja301539s
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.1103/PhysRevB.96.195203
https://doi.org/10.1103/PhysRevB.96.195203
https://doi.org/10.1103/PhysRevB.96.195203
https://doi.org/10.1103/PhysRevB.96.195203
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1103/PhysRevB.5.2367
https://doi.org/10.1103/PhysRevB.5.2367
https://doi.org/10.1103/PhysRevB.5.2367
https://doi.org/10.1103/PhysRevB.5.2367



