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Thermal conductivity changes across a structural phase transition: The case of high-pressure silica
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By means of first-principles calculations, we investigate the thermal properties of silica as it evolves,
under hydrostatic compression, from a stishovite phase into a CaCl2-type structure. We compute the thermal
conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature
range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from
first principles. Most remarkably, we find that, at low temperatures, SiO2 displays a large peak in the in-plane
thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the
origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications
of our results in the general context of continuous structural transformations in solids, as well as the potential
geological interest of our results for silica.
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I. INTRODUCTION

The thermal properties of solids and nanostructures are
attracting a growing interest, both from the fundamental
standpoint and for application-driven research. The quest for
low thermal conductivity materials, for instance, is one of the
main challenges in the development of efficient thermoelectric
devices [1], while materials with a large thermal conductivity
could help overcome the problem of heat dissipation at the
nanoscale, which has become one of the major hitches for
nanoscaling electronic devices [2,3]. The thermal properties of
an insulating solid are governed by its lattice thermal conduc-
tivity. This physical property is determined by the lattice vibra-
tional modes (phonons) and by the scattering processes they
encounter. At structural phase transitions, which are driven by
soft phonons, the lattice thermal conductivity is expected to
be strongly modified, since the soft mode will experience a
frequency and group velocity shift which will in turn modify
the allowed phonon scattering processes in the system.

In this article we investigate the thermal properties of SiO2

close to a structural phase transition. Some theoretical works
have already calculated the thermal properties from first prin-
ciples for a handful of oxides such as ferroelectric PbTiO3 [4],
MgO [5–7], and MgSiO3 [8,9], but none of them was studied
close to a structural phase transition. Transitional effects were
addressed in Refs. [10,11] for PbTe-based ferroelectrics.

Silicon dioxide, also known as silica, is not only the most
abundant compound on Earth [12], the Moon [13], and the
terrestrial planets [12,14], but is also at the heart of modern
day electronic devices and is widely used as a substrate in thin
film growth. The phase diagram of SiO2 is very rich, with a
wide variety of silica polymorphs such as α-quartz, β-quartz,
cristobalite, tridymite, or coesite. In these phases Si shows
a tetrahedral coordination with the surrounding O atoms. At
high pressures (of the order of gigapascals) the coordination of
silicon in SiO2 becomes octahedral, giving rise to the stishovite
phase, the CaCl2-type phase, or the α-PbO2-type phase at
even higher pressures (of the order of 100 GPa). In particular,
the pressure induced phase transition from the stishovite
to the CaCl2-type phase is considered as a paradigmatic

pseudoproper ferroelastic phase transition. While the atomic
structure [15,16], phonon band structure [17–21], electronic
structure [22–24], and thermodynamic potentials describing
the structural phase transition [17,25–27] have been widely
studied, both experimentally and theoretically, no previous
work has addressed the thermal properties of the stishovite or
the CaCl2-type phases. In this work we calculate the thermal
properties of the stishovite and CaCl2-type high pressure
phases of silica as a function of temperature and pressure
from first principles.

II. COMPUTATIONAL METHODS

A. Density functional calculations of the
interatomic force constants

We performed first-principles electronic structure calcu-
lations within density functional theory (DFT), using the
Vienna ab initio simulation package [28,29] (VASP) along
with the Perdew-Burke-Ernzerhof (PBE) [30] implementation
of the generalized gradient approximation (GGA) for the
exchange-correlation functional. We employed a plane wave
basis set with a 500 eV kinetic energy cutoff with the
projector augmented-wave method [31,32]. For the ground
state calculations we considered the primitive cells of the
stishovite and the CaCl2-type phases (see Fig. 1) and carefully
optimized the lattice vectors and the atomic position until the
residual stress and the forces were smaller than 10−2 kbar
and 10−6 eV/Å, respectively. The Brillouin zone (BZ) was
sampled with a converged 4 × 4 × 6 Monkhorst-Pack [33]
grid of k points. Hydrostatic pressure was applied by varying
the lattice vectors as described below, and allowing the atomic
coordinates to relax.

We employed the direct supercell approach to obtain the
phonon band structures. In this approach the second-order
interatomic force constants (IFCs) are computed directly by
considering supercells of the corresponding primitive cell with
small enough (0.01 Å) atomic displacements. We employed
the PHONOPY software [34] to generate the minimal set of
supercells required to obtain the IFCs, while VASP was used
to compute the Hellmann-Feynman forces in these cells. The
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FIG. 1. Unit cell of SiO2 in the stishovite phase (a) and the
CaCl2-type phase (b). Si (O) atoms are shown in red (blue). The
stishovite phase is a tetragonal crystal while the CaCl2-type phase is
orthorhombic. Note that the oxygen octahedron (highlighted in blue)
is tilted about the c axis in the CaCl2-type phase.

long-range corrections to the potential were included to
correctly address for dipole-dipole interactions arising from
longitudinal optic (LO) vibrational modes of the crystal. The
supercells with atomic displacements employed to calculate
the third-order IFCs, which account for the three-phonon
scattering processes, were generated using THIRDORDER.PY

[35]. We employed 3 × 3 × 4 supercells for computing both
the second- and third-order IFCs at each pressure, since
we found that the subsequent lattice thermal conductivity is
well converged when compared to the results obtained for
2 × 2 × 3 supercells.

B. Solution of the Boltzmann transport equation

The second- and third-order IFCs obtained from the DFT
calculations were used to solve the linearized Boltzmann
transport equation (BTE):

vλ · ∇T
∂n0

λ

∂T
= dnλ

dt

∣∣∣∣
scatt.

, (1)

where n0
λ and nλ are the phonon distribution at and out

of equilibrium, respectively, vλ is the group velocity, and
dnλ/dt |scatt. is the rate of change in the phonon distribution
as a result of phonon-phonon scattering. We can assume the
difference between nλ and n0

λ to be of the form

nλ = n0
λ − Fλ · ∇T ∂n0

λ/∂T . (2)

Then, the linearized BTE can be rewritten in the following
way [35]:

Fλ = τ 0
λ (vλ + �λ), (3)

where Fλ is the generalized mean free path, τ 0
λ is the relaxation

time of mode λ in the relaxation time approximation (RTA),
and �λ gives the deviation of the solution from the RTA.
By taking into account only isotopic and anharmonic phonon
scattering processes, we can write τ 0

λ as

1

τ 0
λ

= �λ = �isot
λ + �anh

λ , (4)

where the total scattering rate of mode λ, �λ, is the sum of
the isotopic scattering rate �isot

λ and the anharmonic scattering
rate �anh

λ . Scattering caused by isotopic disorder depends
on the mass variance of the elements in the compound and
was included through the model due to Tamura [36], for
which we employed the natural abundances of Si and O

TABLE I. Stable isotopes of Si and O and their relative naturally
occurring abundances [37].

Isot. Abund. (%) Isot. Abund. (%)

28Si 92.23 16O 99.76
29Si 4.67 17O 0.038
30Si 3.10 18O 0.2

(see Table I) [37]. Three-phonon scattering processes were
included to account for the anharmonic scattering, which is
computed directly from the third-order IFCs obtained from
the DFT calculations. Higher order scattering processes were
neglected, since they are expected to be important only at
very high temperatures [38].

The BTE in the form given in Eq. (3) is solved iteratively
[39] in a parameter-free approach as implemented in the
SHENGBTE code [35] to obtain the lattice thermal conductivity
tensor

κ
αβ

	 = 1

kBT 2
N

∑

λ

n0(n0 + 1)(h̄ωλ)2vα,λFβ,λ, (5)

where α and β are the three coordinate directions x, y, and
z; and kB , T , 
, and N are the Boltzmann constant, the
temperature, the volume of the unit cell, and the number of
q points in the integral over the BZ, respectively. The sum
runs over all the phonon modes λ, h̄ is the reduced Planck
constant, and ωλ is the phonon frequency.

For the first iteration step �λ is set to zero, which is
tantamount to starting the iterative procedure from the RTA
solution. The solution is considered to be converged when
the relative change in all the components of the thermal
conductivity tensor becomes smaller than 10−5.

C. Convergence issues

The convergence tests of the relevant parameters of the
electronic structure calculations—plane-wave energy cutoff,
k-point mesh—were carried out as usual. In the same way, we
carefully checked the dependence of the IFCs on the supercell
size, finding that a 3 × 3 × 4 supercell yielded converged
values.

Some convergence issues related to the numerical solution
of the BTE must be addressed as well. The first one concerns
the δ functions appearing in the energy conservation terms
in the scattering rates, which are approximated by Gaussian
functions for which the standard deviation is computed in
a self-adaptive manner as implemented in the SHENGBTE

code [35]. The locally adapted Gaussian standard deviation
appearing in the computation of the scattering rates (both
anharmonic and isotopic) was scaled by 0.1. This scaling was
necessary because unscaled standard deviations prevented us
from converging the solution of the BTE in a non-negligible
subset of the targeted pressure-temperature values. However,
we verified in a few cases where the unscaled calculation
converged that the employed 0.1 scaling yielded minor
quantitative differences in the thermal conductivity.

We also observed that solving the BTE in a too dense q-
point mesh could lead to an imaginary acoustic mode close
to the critical pressure, because of inaccuracy of the Fourier
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FIG. 2. (a) Lattice parameters a and b for SiO2 as a function
of pressure as obtained with DFT. Results for the stishovite phase
are shown in orange (circles) while those for the CaCl2-type phase
are shown in purple (triangles). The rotation angle of the oxygen
octahedron is shown with unconnected blue points. (b) Dressed shear
modulus (c11−c12)

2 as a function of pressure for the stishovite (orange)
and CaCl2-type (purple) phases. The shear modulus vanishes close to
the phase transition.

interpolation in the calculation of the phonon bands. In order to
avoid spurious effects due to such contributions we employed
a slightly sparse q-point mesh (6 × 6 × 6) so that no imaginary
frequencies are sampled close to the critical pressure around
the � point in the BZ integrations. Although the exact values of
the conductivity are slightly underconverged with the q-point
grid and hence not quantitatively accurate, particularly close
to the lattice thermal conductivity peak at each temperature,
we have checked that our main qualitative results remain valid
with denser grids.

Finally, we stress that all the results discussed in this
work have been obtained by solving the BTE iteratively.
Nevertheless, we have found that the RTA results for the lattice
thermal conductivity differ at most by 10% in the whole (T ,P )
region we explored.

III. RESULTS

A. Phase transition under pressure

The crystal structure of the two silica polymorphs studied is
shown in Fig. 1. The stishovite phase belongs to the tetragonal
crystal family with space group P 42/mnm, while the CaCl2-
type phase belongs to the orthorhombic crystal family with
space group Pnnm. The latter differs from the former in a
tilt of the oxygen octahedra surrounding the Si atoms and
has lattice parameter b �= a. We computed the relaxed lattice
parameters and atomic positions of silica for pressures ranging
from 0 to 100 GPa in both phases. In the stishovite phase
we imposed b = a, while this restriction was lifted for the
CaCl2-type phase. The calculated a and b lattice parameters
are shown in Fig. 2, along with the oxygen octahedra rotation
angle. At the critical pressure, a starts to differ from b, and the
oxygen octahedra become tilted in the CaCl2-type phase.

This phase transition is known to be driven by the softening
of the optical B1g phonon mode in the BZ center, which
corresponds precisely to a pure rotation of the oxygen
octahedra. The critical pressure Pc is taken as that for which
the dressed shear modulus (c11 − c12)/2 (where the cij is
the ij component of the stiffness tensor in Voigt notation)
vanishes in the stishovite phase, i.e., the pressure at which
the system shows no resistance to the shearing of the cell and
the oxygen octahedra rotation. The computed shear modulus
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FIG. 3. (a)–(c) Phonon band structure for three representative
pressures of the stishovite phase and (d)–(f) the CaCl2-type phase.
The modes have been computed for P = 0, 26.3, 52.3, 53.9, 76.6,
and 99.1 GPa. Red circles correspond to experimental values for
Raman-active modes (only available for pressures up to 60 GPa)
taken from Ref. [43].

as a function of pressure is shown in Fig. 2(b). We obtain
Pc = 53.4 GPa, in good agreement with previous calculations
[17] and experiments [40]. This second-order phase transition
is of the pseudoproper ferroelastic type, since the driving order
parameter is not strain itself, but the strain emerging at the
phase transition has the same symmetry as that order parameter
[17,25,41].

Next, we compute the phonon band structure of silica in
the stishovite and CaCl2-type phases at different pressures.
Some representative cases of both phases are shown in Fig. 3.
We first note that some nondegenerate modes (such as the
third and fourth optical modes) of the CaCl2-type phase
become degenerate in the stishovite phase due to the higher
symmetry of silica in the tetragonal phase. Moreover, the
phonon bands generally gain energy with increasing pressure,
the only two exceptions being the lowest optical band around
� (associated with the B1g mode responsible for the structural
phase transition), which softens close to P = Pc and then gains
energy together with the rest of the modes, and the lowest
energy band in the high symmetry point A (S) in the stishovite
(CaCl2-type) phase (see the video in the Supplemental Material
[42]). For pressures between 25 and 70 GPa, one of the acoustic
bands becomes imaginary in a small region of the BZ along
the �-M direction for the stishovite phase [17,21], and along
the �-S direction for the CaCl2-type phase. This artifact is
sometimes attributed in the literature to the finite supercell
size employed in the calculations (see for instance Ref. [17]),
but our tests for SiO2 and other materials (e.g., BaTiO3) seem
to suggest that the problems persist even if considerably larger
supercells are used. Instead, the appearance of imaginary
acoustic modes close to the Brillouin zone center seems to
be related to a systematic error due to the so-called Fourier
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FIG. 4. Lattice thermal conductivity of SiO2 for different pres-
sures and temperatures (see color code on the right). The zz

component of the lattice thermal conductivity is shown in (a), and the
xx component in (b). The results for the stishovite phase are shown
only for pressures below Pc, while the results for the CaCl2-type
phase are displayed above Pc. The zz component shows a slight
increase as pressure increases, but no special feature is seen at
P = Pc. The xx component is larger than the zz one for T < 200
K, showing a huge enhancement around the critical pressure for
temperatures below 40 K. Black squares show the average geotherm
according to Dziewonski and Anderson’s Earth model [44]. (c) Lattice
thermal conductivity along the P = 76.6 GPa isobar. Purple circles,
black squares, and green triangles correspond to the xx, yy, and zz

components, respectively.

interpolation of the dynamical matrix for noncommensurate
q points. Naturally this issue becomes more obvious (even
pathological) in regions where we have phonons with near-zero
frequencies (as, e.g., in the center of the Brillouin zone),
since in such cases a problem in the interpolation scheme
will typically result in some frequencies becoming imaginary.
Thus, the calculation of the integrals in reciprocal space
appearing in the BTE must be done with care, avoiding the
small region where this acoustic band becomes imaginary so
that no unphysical results are obtained.

B. Thermal conductivity

1. Solution of the BTE in the (T,P) space

We next solve the BTE for both silica phases for several
values of temperature T and pressure P . Figures 4(a) and 4(b)
show the lattice thermal conductivity components κzz and κxx ,
respectively. We find that the off-diagonal components are
negligible in the whole (T ,P ) space explored and that the κyy

component (not shown) is equal to the κxx component in the
stishovite phase due to symmetry. In the CaCl2-type phase κyy

1
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FIG. 5. Constant temperature profiles of κxx as a function of
pressure, for T = 10 K (filled circles), T = 40 K (empty circles),
T = 100 K (filled triangles), and T = 300 K (empty triangles).

shows a similar behavior to κxx . For pressures below (above)
the critical pressure we only show the results for the stishovite
(CaCl2-type phase), i.e., only the results for the stable phase at
each pressure are shown. We first note that both components
are substantially different in most of the (T ,P ) space. More
importantly, we find an astonishingly large peak in κxx close
to the critical pressure at both sides of the critical line for
temperatures between 8 and 70 K.

In Fig. 4(c) we show the lattice thermal conductivity for the
P = 76.6 GPa isobar. We find the characteristic trend of the
lattice thermal conductivity curves for bulk systems. At low
temperatures κ increases with T until it reaches a maximum,
after which the conductivity decreases more slowly. We also
note that κxx is almost equal to κyy in the whole temperature
range, while κzz is smaller below T = 200 K. Thus, the thermal
response of silica is clearly anisotropic in general.

In Fig. 5 we show κxx profiles for different isotherms.
The lattice thermal conductivity close to P = Pc increases
up to 2 orders of magnitude for low temperatures (see the
T = 10 K line in Fig. 5), and about 1 order of magnitude for
medium temperatures (see the 40 K isotherm in the same
figure). At higher temperatures, at which the scattering is
dominated by anharmonic processes, the peak is smoothed
out until it disappears (see the 100 and 300 K isotherms).
This suggests that the peak stems from a shift in the dominant
scattering processes, from isotopic to anharmonic phonon-
phonon, as temperature increases (recall that we are calculating
the bulk lattice thermal conductivity, thus ignoring boundary
scattering processes). This can be confirmed, for example, by
recomputing the thermal conductivity maps κ(T ,P ) with no
anharmonic scattering. Since isotopic scattering is dominant
at low temperatures, we obtained almost identical results for
T < 100 K, while at each pressure κ(T ) saturates to a constant
value for T � 150 K.

2. Origin of the peak around the critical pressure

In order to trace the origin of the notorious peak in the
in-plane thermal conductivity, we analyze the contribution
to κxx of each mode in each of the sampled points in the
BZ. The individual contributions of all the modes included
in our BZ integrations at different representative temperatures
and pressures are depicted in Fig. 6. For each q point in the
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irreducible BZ the contribution of the 18 modes is shown.
At T = 40 K (upper row in the figure), we see that κxx is
strongly dominated by the contribution of a few low energy
modes. Also, one (degenerate) mode contributes with up to
2.7 × 103 W m−1 K−1 for P ≈ Pc but is not so active at high
or low pressures. For higher temperatures (T = 100 K and
T = 300 K, second and third rows in Fig. 6, respectively),
although the dominant contributions still correspond to low
energy modes, optical phonons start to play an increasingly
important role in the total thermal conductivity. Furthermore,
the general trend is a monotonic increase of the individual
contributions with increasing pressure. In this way we can
attribute the peak in the in-plane lattice thermal conductivity
at low temperatures to the enhancement of the contribution of
particular low energy acoustic modes.

We now analyze the evolution of the individual contribu-
tions κxx

λ with pressure. The results for two representative
temperatures (10 and 300 K) are shown in Fig. 7. The total κxx

is also presented with black filled circles for comparison. On
the one hand, at T = 10 K thermal transport is dominated
by essentially one mode—purple squares in Fig. 7, mode
(I)—for pressures between 30 and 60 GPa (see that the
total κxx is almost equal to the contribution of this mode
in this pressure range). The aforementioned mode is a low
energy acoustic phonon with wave vector q = (1/6,1/6,0) in
reciprocal vector units, which is representative of an entire
region of low energy modes close to the BZ center. Away from
this pressure window, the contribution of another acoustic
mode—mode (II)—with q = (1/3,0,0) in reciprocal vector

units (green squares) becomes larger than that of mode (I),
hence dominating the thermal conductivity at low and high
pressures. The contribution of the next highest contributing

FIG. 7. Contribution to κxx as a function of pressure of different
modes for (a) T = 10 K and (b) T = 300 K. The total thermal
conductivity at each temperature is shown in black circles.
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mode is about one order of magnitude smaller, thus thermal
transport in silica close to the phase transition is strongly
governed by the behavior of the acoustic phonons represented
by mode (I). On the other hand, at T = 300 K many modes
give contributions in the range of 1 to 10 W m−1 K−1. The
total κxx is thus the addition of many contributions of similar
magnitude, and no particular mode dominates the thermal
transport properties of SiO2 in the studied pressure range.
Moreover, there is only a minor dip in the total thermal
conductivity close to the critical pressure, and this feature
cannot be attributed to an individual mode. Although the
overall thermal conductivity increases almost monotonically
with pressure, not all of the highly contributing modes follow
this behavior.

With the aim of acquiring some deeper insight of the
origin of the peak, we now analyze the different factors that
determine the contribution of mode (I) and its evolution with
pressure. Figure 8 shows the evolution with pressure of the
main different factors involved in κxx

(I) , namely the isotopic
scattering rate, the square of the frequency, the product of
populations n0

(I)(n
0
(I) + 1), and the group velocity [see Eq. (5)].

While the term ω2
(I) decreases by a factor of 1.67 at the critical

pressure (with respect to P = 0), the remaining pressure
dependent factors increase as the pressure approaches Pc. In
fact, a decreasing ω2

λ is always overcompensated by the growth
of n0

λ(n0
λ + 1), i.e., the softening of a phonon band results in

a larger contribution to the thermal conductivity (not taking
into account the possible changes in the relaxation times).
The largest ratio for mode (I) is precisely that of the phonon
population product n0

λ(n0
λ + 1), which accounts for a factor

of 33.5 in the enhancement close to the critical pressure.
The isotopic scattering rate (which at low temperatures is
much larger than the anharmonic scattering rate) decreases
by a factor of 6, increasing the contribution of mode (I) to
the thermal conductivity by the same factor and being the
second largest ratio. The decrease in the unit cell volume and
the increase in group velocity close to Pc contribute to the
total ratio with factors of 1.1 and 2.6, respectively. The total
enhancement factor is of 338.4.
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the stishovite (CaCl2-type) phase are shown for P < (>)Pc, and the
phase transition is marked by a discontinuity in the lattice thermal
conductivity lines. Filled squares, empty circles, and empty squares
correspond to the diagonal components κxx , κyy , and κzz, respectively,
and the average lattice thermal conductivity κaver = 1

3 (κxx + κyy +
κzz) is shown with filled circles (see legend). The average estimated
temperature (pressure) at each depth from the Earth’s crust is shown
with a long-(short-)dashed red (blue) line. There is a marked decrease
in the three diagonal components of κ close to P = Pc.

3. Thermal conductivity of SiO2 along the geotherm

The thermal conductivity of the Earth’s mantle determines
its convection mechanism and the heat budget of our planet [6].
Owing to the great interest of SiO2 in the field of geophysics,
we additionally computed the thermal conductivity tensor of
silica along an average geotherm [44] from the Earth’s crust
up to depths of 2400 km, deep inside the lower mantle.
The results are displayed in Fig. 9. We first note that for
high temperatures the anisotropy is reversed, being κzz larger
than κxx and κyy , as opposed to the results analyzed above
for lower temperatures. In the stishovite phase, the three
diagonal components increase approximately linearly with
depth up to the critical pressure, while for the CaCl2-type
phase the thermal conductivity is roughly constant with depth.
Nevertheless, a decrease in all the components is seen close
to the phase transition, which is marked by a discontinuity
in the lines in the figure. Interestingly, we note that in works
by Murphy et al. on PbTe-based materials [10,11] a dip in
the thermal conductivity of ferroelectric compounds was also
predicted close to a structural phase transition.

C. Discussion

The present work was partly motivated by our conjecture
that SiO2 should be a suitable model compound to investigate
changes in thermal conductivity across a soft-mode-driven
structural phase transition. Indeed, it seemed to us that
SiO2’s transformation between the stishovite and CaCl2-type
structures might be representative of other soft-mode ferroe-
lastic (and ferroelectric) transitions, with the advantage that
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the transition-controlling parameter (pressure, as opposed to
temperature) is trivial to handle in a first-principles simulation.
Hence, let us briefly discuss the generality of our findings for
SiO2, and whether our initial conjecture was correct.

Most importantly, our simulations predict that SiO2 will
display some strong changes in its low-temperature thermal
conductivity around the transition pressure. Interestingly, such
features are not directly related with the optical soft mode
itself, which is the primary order parameter for the transfor-
mation but has a negligible impact in κ . Instead, they can
be traced back to the accompanying softening of an acoustic
band, an effect that is specific to the peculiar pseudoproper
ferroelastic character of the investigated transition in SiO2.
Hence, this suggests that enhancements of the low-temperature
conductivity, as those we observed in SiO2, can be expected
to occur at ferroelastic transitions involving a significant
softening of the acoustic bands. Our results also suggest that, in
contrast, other soft mode transformations as, e.g., ferroelectric
or antiferrodistortive transitions in which only optical bands
soften, will in general not present such marked effects in the
thermal conductivity.

Additionally, our results show that, in SiO2, significant
changes in the lattice thermal conductivity are restricted to
relatively low temperatures. More precisely, we find that, while
the softening of the key acoustic band causes a large increase
in its population at low temperatures [Fig. 8(c)], the relative
population change is small at higher values of T ; as a result,
the effect in the conductivity at higher temperatures is modest
as well. Naturally we do not know whether, in other materials,
phonon frequencies and populations will control the variations
of κ to the same extent that we find they do in SiO2. Yet, it is
clear that, unlike the material-specific scattering rates or group
velocities in Eq. (5), temperature-dependent populations are
governed by universal laws. Therefore, the softening of a low
frequency mode (either optical or acoustic) will in general
enhance the low temperature thermal conductivity.

Nevertheless, let us note that, at higher temperatures,
other factors can play a more dominant role. For example,
as shown in Refs. [10,11], when three-phonon scattering
becomes dominant, a mode softening can open (close)

phonon-phonon scattering channels, leading to significant
reductions (enhancements) of the thermal conductivity.

IV. CONCLUSIONS

By means of state-of-the-art calculations, we have char-
acterized the stishovite and CaCl2-type high pressure phases
of silica and computed a thermal conductivity map κ(T ,P )
for a large number of points in the (T ,P ) space. We found
that, for pressures close to the phase transition, a large peak
in the in-plane conductivity appears at both sides of the phase
transition and at T below 70 K. Moreover, this peak is not
present in the out-of-plane conductivity, thus leading to a
highly anisotropic thermal material. We have tracked down
the origin of this unexpected peak, and found that it originates
in the softening of an acoustic band that becomes highly
populated close to the phase transition. We have discussed
the general implications of our results, which suggest that
lattice thermal conductivity effects associated to soft-mode
transitions will be restricted to low temperatures and, thus,
may not be promising for applications at ambient conditions.
Finally, we have computed the thermal conductivity along an
average geotherm for its possible applications in the field of
geophysics, since SiO2 is the most abundant compound in the
Earth’s mantle.
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