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In this paper we investigate the nature of quantum phase transitions between two-dimensional Dirac semimetals
and Z3-ordered phases (e.g., Kekule valence-bond solid), where cubic terms of the order parameter are allowed in
the quantum Landau-Ginzberg theory and the transitions are putatively first order. From large-N renormalization-
group (RG) analysis, we find that fermion-induced quantum critical points (FIQCPs) [Z.-X. Li et al., Nat.
Commun. 8, 314 (2017)] occur when N (the number of flavors of four-component Dirac fermions) is larger than
a critical value Nc. Remarkably, from the knowledge of space-time supersymmetry, we obtain an exact lower
bound for Nc, i.e., Nc > 1/2. (Here the “1/2” flavor of four-component Dirac fermions is equivalent to one flavor
of four-component Majorana fermions). Moreover, we show that the emergence of two length scales is a typical
phenomenon of FIQCPs and obtain two different critical exponents, i.e., ν �= ν ′, by large-N RG calculations. We
further give a brief discussion of possible experimental realizations of FIQCPs.
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I. INTRODUCTION

The Landau cubic-term criterion says that a phase tran-
sition must be first order if cubic terms are allowed in the
Landau-Ginzberg free energy [1–4]. Transitions that violate
the cubic-term criterion are rare; one classic example is the
exactly solvable three-state Potts model in 1+1 dimensions
(1+1D) [5,6]. No higher-dimensional example was identified
until fermion-induced quantum critical points (FIQCPs) were
introduced recently in Ref. [7], where a putative first-order
phase transition can be driven to be continuous by gapless
Dirac fermions in 2+1D. In Ref. [7], an SU(N ) fermionic
model featuring a Z3 transition from two-dimensional (2D)
Dirac semimetals to Kekule valence-bond solids (VBSs),
where cubic terms of the order parameters are allowed by
symmetry, was conceived and studied using a large-scale
sign-problem-free Majorana quantum Monte Carlo simulation
(QMC) [8,9] and large-N renormalization-group (RG) calcu-
lations [10–14]. Both QMC simulations and RG analysis show
the occurrence of a FIQCP when N , the number of flavors of
four-component Dirac fermions, is larger than a critical value
Nc. This FIQCP scenario was also confirmed later by 4−ε and
functional RG calculations [15,16].

It has been known that the number of flavors of Dirac
fermions is often of crucial importance in determining the na-
ture of low-energy physics and quantum phase transitions [17].
For example, the stability of algebraic spin liquids in 2+1D
[18–27] [equivalently, the stability of the deconfined phase
of the compact quantum electrodynamics (QED) in 2+1D]
depends essentially on the number of flavors of the emergent
Dirac spinons [28–33]; another related issue is the critical
number of flavors of Dirac fermions for chiral symmetry
breaking in noncompact QED [33–44]. For the quantum phase
transitions between the 2D Dirac semimetals and a broken Z3

symmetry phase with massive Dirac fermions, which are called
Z3 Gross-Neveu-Yukawa transitions, the large-N one-loop RG
calculations [7] give rise to Nc = 1

2 such that only when N >Nc
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can a FIQCP occur. A schematic quantum phase diagram
for the occurrence of such a FIQCP is shown in Fig. 1.
Large-N RG calculations show that FIQCP cannot occur at Z3

Gross-Neveu-Yukawa transitions in 3+1D for any finite N .
Nonetheless, obtaining nonperturbative and even exact

results about Nc, the critical number of flavors of Dirac
fermions for the occurrence of FIQCPs at Z3 Gross-Neveu-
Yukawa transitions in 2+1D, is desired. In this paper, with
the help of space-time supersymmetry (SUSY) [45–49], we
show exactly that for N = 1

2 such a Z3 Gross-Neveu-Yukawa
transition must be first order. Consequently, we obtain an exact
lower bound for Nc, namely, Nc > 1

2 .
Another interesting aspect of FIQCPs is the emergence of

two length scales [50–56] due to the presence of dangerously
irrelevant operators at the transition point, which is a typi-
cal phenomenon of Landau-forbidden phase transitions. For
instance, two length scales are found at deconfined quantum
critical points (DQCPs) [56–62]. FIQCPs, as a scenario of
Landau-forbidden transitions, also exhibit the emergence of
two length scales owing to the dangerously irrelevant cubic
terms at the critical points. A consequence of two emergent
length scales is that critical exponents can be different on the
two sides of the transition. We obtain these different critical
exponents with one-loop RG calculations.

This paper is organized as follows. In Sec. II, the low-
energy effective theory describing the Z3 phase transitions
is constructed by symmetry and scaling considerations. In
Sec. III, a large-N RG analysis is carried out for the Z3

Gross-Neveu-Yukawa transitions in d+1 dimensions, where
N is the number of four-component Dirac fermions and
2 � d � 3. Critical spatial dimensions for the occurrence of
Z3 Gross-Neveu-Yukawa transitions are discussed. One-loop
RG analysis shows that FIQCPs can occur for N > 1/2 when
d = 2 but cannot occur for any N when d = 3. In Sec. IV, we
construct field theory with a single Dirac cone (two Majorana
cones), i.e., N = 1

2 , interacting with the U (1) order parameter
in 2+1D [63], where the FIQCP is assumed to occur by
first ignoring the cubic anisotropy. The fixed-point theory has
emergent SUSY in 2+1D [64–70], corresponding to the SUSY
Wess-Zumino model after a particle-hole transformation.
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FIG. 1. A schematic phase diagram for a phase transition from a
gapless Dirac semimetal to a Z3 ordered phase. A fermion-induced
quantum critical point (FIQCP) is presented at zero temperature.

However, cubic perturbations at such a SUSY fixed point turn
out to be relevant, rendering the phase transition discontinuous
and ruining the assumed FIQCP. Consequently, this provides
an exact lower bound, Nc > 1

2 , for the occurrence of FIQCP at
Z3 Gross-Neveu-Yukawa transitions in 2+1D. In Sec. V, we
investigate two emergent length scales at the FIQCP. We obtain
different critical exponents on the two sides of the transition.
In the end, we conclude these theoretical investigations and
give a brief discussion of possible experimental realizations of
FIQCPs in Sec. VI.

II. THE EFFECTIVE THEORY FOR Z3

GROSS-NEVEU-YUKAWA TRANSITIONS IN DIRAC
SEMIMETALS

The noninteracting Dirac fermion in d dimensions (d is the
spatial dimension) is well known and given by

Lψ = ψ†(∂τ − ivγ μ∂μ)ψ, (1)

where summation over μ = 1, . . . ,d is assumed implicitly and
the gamma matrices are 2[ d

2 +1]-dimensional, where [x] denotes
the integer part of x, and satisfy γ μ† = γ μ, {γ μ,γ ν} = 2δμν .
Here v is the Fermi velocity, and τ is imaginary time. The
Dirac fermions presented here have rotational symmetry, i.e.,
the Fermi velocity is assumed to be isotropic, which is an
emergent symmetry in the infrared [71–73]. A concrete 4 × 4
matrix representation of γ matrices in d =2 can be given by
γ 1 = σxτ z,γ 2 = σy , where σ and τ are Pauli matrices. For
spinless fermions in a 2D honeycomb lattice with nearest-
neighbor (NN) hopping, the Pauli matrices σ (τ ) represent
sublattice (valley) indices.

To gap out Dirac fermions by the Z3 order (two-dimensional
representation), d+2 anticommuting γ matrices are
necessary: d gamma matrices represent the relevant degrees
of freedom of the d-dimensional Dirac fermions shown above,
while the other two γ matrices, γ d+1 and γ d+2, fulfill two
mass terms related to the Z3 order parameters [60,74,75].
In this representation, the Z3 symmetry is generated by
T =exp[π

3 γ d+1γ d+2]. Thus, the lowest-order coupling term
between Dirac fermions and the order parameters is

Lψφ = g(φψ†γ +ψ + φ∗ψ†γ −ψ), (2)

where φ is a complex order parameter, γ ± = 1
2 (γd+1±iγ d+2),

and g is a real constant describing the strength of

fermion-boson coupling. The fermion-boson coupling
has O(2) symmetry larger than Z3. For the transition between
the Dirac semimetal and Kekule VBS on the honeycomb
lattice, two γ matrices are γ 3 =σxτ x,γ 4 =σxτ y . The order
parameter is given by the Kekule valence-bond density with
2 �K momentum, where �K is the valley momentum and the
Z3 symmetry corresponds to the translation symmetry in the
honeycomb lattice.

For the Landau-Ginzberg (LG) theory of the order param-
eter, the Lagrangian dictated by symmetries reads

Lφ = |∂τφ|2+c2|∇φ|2 + r|φ|2 + b(φ3+φ∗3) + u|φ|4, (3)

where r is the effective tuning parameter for phase transition, b
is a real constant representing the strength of cubic terms, and u

is assumed to be positive. Again, the isotropy of boson velocity
c is a low-energy emergent phenomenon. Note that the cubic
term is allowed by symmetries, lowers the O(2) symmetry
of LG theory to Z3, and putatively renders a first-order
phase transition according to the Landau cubic-term criterion.
An effective particle-hole symmetry (φ→φ∗, e.g., reflection
symmetry in the Kekule transition) is also assumed to exclude
the first-order time derivative of the order parameters.

III. LARGE-N RENORMALIZATION-GROUP ANALYSIS
FOR Z3 GROSS-NEVEU-YUKAWA TRANSITIONS

IN DIRAC SEMIMETALS

A. RG equations in d + 1 dimensions

The ultraviolet degrees of freedom (fast modes) constrained
in the momentum shell �e−l <p<�, where l >0 is a flow
parameter and � is a cutoff, are integrated out to generate
the RG equations. In the following calculations, we assume
the four-component Dirac fermions have N flavors and use
4 × 4 γ matrices for simplicity since we are interested in only
d = 2,3. Various trace properties for γ matrices are given in
Appendix A. Nonvanishing one-loop Feynman diagrams are
shown in Fig. 2. The critical rc is renormalized to be − 8

N
and

will not affect the fixed-point properties at the lowest level
(see Appendix B for details). So we set r =0 in the following
calculations for simplicity.

The renormalizations of boson and fermion self-energy
come from Figs. 2(a)–2(g). After evaluating the Feynman
diagrams in Figs. 2(a) and 2(b), the boson self-energy reads

(p) =g2 Nπ

2v3
Kd (ω2+v2p2)+b2 9π

4c5
Kd�

d−5l

(
ω2−1

3
c2p2

)
,

(4)

where Kd ≡ Ad

(2π)d+1 , Ad is the area of the unit d sphere, and

p2 ≡∑d
μ=1 p2

μ. The Feynman diagram in Fig. 2(c) gives rise
to fermion self-energy,

�(p) = g2πKd�
d−3l

c(c + v)2

(
−iω + 2c + v

3v
γ μpμ

)
. (5)

From the self-energy parts, the RG equations for boson and
fermion velocities are given by

dc

dl
= −g̃2 Nπ (c + v)

4cv3
(c − v) − b̃2 3π

2c4
, (6)

dv

dl
= −g̃2 2π (v − c)

3cv(c + v)2
, (7)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 2. One-loop Feynman diagrams. The arrowed solid line
indicates the fermion propagator, and the dashed line indicates the
boson propagator.

where dimensionless coupling constants are defined as g̃2 ≡
Kd�

d−3g2,b̃2 ≡Kd�
d−5b2,ũ≡Kd�

d−3u. The anomalous di-
mensions for both boson and fermion fields are ηφ = Nπg̃2

4v3 +
9πb̃2

8c5 ,ηψ = πg̃2

2c(c+v)2 . For a continuous phase transition, one

demands b̃2 =0 at the fixed point. In such a case, the velocities
of fermions and bosons will flow to the same value, as seen in
the following RG equations:

d(c − v)

dl
= −g̃2

[
Nπ (c + v)

4cv3
+ 2π

3cv(c + v)2

]
(c − v). (8)

The rest of the Feynman diagrams generate the RG
equations for coupling constants. From the Feynman diagram
in Fig. 2(d), the renormalization for three-boson vertex is

�φ3 = �φ∗3 = −bu
3π

c3
Kd�

d−3l. (9)

By evaluating Figs. 2(e)–2(h), we get

�|φ|4 = −u2 5π

c3
Kd�

d−3l + ub2 54π

c5
Kd�

d−5l

+g4 Nπ

2v3
Kd�

d−3l − b4 405π

4c7
Kd�

d−7l. (10)

Combining the renormalization for all vertices, we arrive at a
set of RG equations for coupling constants,

dg̃2

dl
= (3−d)g̃2− 9π

4c5
b̃2g̃2 −

[
Nπ

2v3
+ 2π

c(c + v)2

]
g̃4, (11)

db̃2

dl
= (5 − d)b̃2 − 3Nπ

2v3
g̃2b̃2 − 6π

c3
b̃2ũ − 27π

4c5
b̃4, (12)

dũ

dl
= (3 − d)ũ − Nπ

v3
g̃2ũ + Nπ

2v3
g̃4

−5π

c3
ũ2 + 99π

2c5
ũb̃2 − 405π

4c7
b̃4. (13)

FIG. 3. The flow diagram in three dimensions generated by the
RG equations for N =3. The blue arrows indicate the flow of coupling
constants when energy is lowered. The red point located in the g̃2-ũ
plane is a stable fixed point corresponding to the FIQCP.

B. Prediction of FIQCP for N > 1/2 and d = 2

When d = 2 (two spatial dimensions), the RG flow
equations above have a nontrivial fixed point (g̃∗2,ũ∗,b̃∗2) =
( 2

(N+1)π ,
√

N2+38N+1−N+1
10(N+1)π ,0), where we have set v∗ =c∗ =1 for

simplicity since the boson velocity and the fermion velocity
flow to the same value at this fixed point, as discussed above. In
the large-N limit, the fixed point approaches ( 2

Nπ
, 2
Nπ

,0), well
controlled by 1

N
. A crucial feature is the emergent O(2) sym-

metry at this fixed point; in other words, the cubic terms of the
order parameter vanish, which is essential for the occurrence
of a continuous transition point. By linearizing RG equations
near this fixed point, we get the eigenvalues of the scaling

matrix, which are (−1, −
√

N2+38N+1
N+1 , 3(N+4−√

N2+38N+1)
5(N+1) ). The

first two are always negative, while the last eigenvalue is
positive for N < 1

2 and negative for N > 1
2 , indicating the

existence of a critical Nc such that if the number of Dirac
fermion flavors N is larger than Nc, the fixed point is stable.
The RG flow diagrams in the coupling-constant space spanned
by (g̃∗2,ũ∗,b̃∗2) as shown in Fig. 3 for N =3 indicate a stable
fixed point consistent with our analysis.

A stable fixed point at critical surface r =rc(g̃2,ũ,b̃2) cor-
responds to a genuine critical point. Since we have identified
a stable fixed point with zero b̃∗2, i.e., no cubic terms present
in this fixed point, it clearly corresponds to a FIQCP. The
presence of gapless Dirac fermions at the transition point
renders the cubic term irrelevant and results in a FIQCP
violating the Landau criterion. The critical exponent η at this
critical point is given by η≡2ηφ = N

N+1 . Due to the existence
of Dirac fermions at the transition, the dynamical exponent is
z=1. And the fermion anomalous dimension is ηψ = 1

4(N+1) .
The nonvanishing fermion anomalous dimension indicates a
breakdown of the quasiparticle picture, and the critical theory
is strongly interacting.

To explore other critical behavior, we also calculate the
renormalization of boson mass (the relevant direction). Rele-
vant Feynman diagrams are shown in Fig. 4. A straightforward
calculation gives the boson self-energy that renormalizes the
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(a) (b)

FIG. 4. One-loop Feynman diagrams that renormalize the boson
mass.

mass term, i.e.,

�|φ|2 =
(

− 9πb̃2

(1 + r̃)3/2
+ 4πũ√

1 + r̃

)
�2l, (14)

where r̃ ≡ �−2r is a dimensionless constant. The scaling
dimension for r at the critical point is yr =2 − 2ηφ + 27π

2 b̃∗2 −
2πũ∗ =2−

√
N2+38N+1+4N+1

5(N+1) , and the critical exponent is

given by ν−1 = yr . Other critical exponents can be determined
by hyperscaling relations.

C. No FIQCP for any N and d = 3

Having explored the properties of FIQCP in 2+1D, we
discuss the RG analysis in generic dimensions. Mean-field
theory indicates the upper critical dimension for the existence
of such a FIQCP is dMF ≡2 [7]. Our RG result is consistent
with the mean-field calculation since the mean-field result
corresponds to N →∞. Inclusion of quantum fluctuations for
finite N beyond mean-field theory will lead to a correction to
the upper critical dimension, as we discuss below.

The solution of the RG equations in d <3 dimensions with
both g̃∗2 >0 and ũ∗ >0 reads

g̃∗2 = 2(3−d)

(N+1)π
, (15)

b̃∗2 = 0, (16)

ũ∗ = (3−d)(
√

N2 + 38N + 1−N+1)

10(N + 1)π
. (17)

To determine whether the solution corresponds to a FIQCP, we
calculate the eigenvalues of the scaling matrix by linearizing
the RG equations near the fixed point. They are given by (d−
3, (d−3)

√
N2+38N+1
N+1 , 16−11N+d(7N−2)−3(d−3)

√
N2+38N+1

5(N+1) ). Although
the first two scaling fields are always negative when d <3, the
third scaling field could be positive depending on the number
of flavors N and the dimensionality d. We find a lower bound
of the number of Dirac fermions for the occurence of FIQCP
in d dimensions, i.e.,

Nl(d)= 37d2−232d+343−9
√

(d−3)(17d2−110d+161)

8d2 − 20d + 8
,

(18)

and also an upper bound when d > dMF,

Nu(d)= 37d2−232d+343+9
√

(d−3)(17d2−110d+161)

8d2 − 20d + 8
.

(19)

d

N

FIQCP

1 1.5 2 2.24
0

5

10

FIG. 5. Critical number of Dirac fermion flavors at d dimensions.
The curve corresponds to Nl(d) and Nu(d) and separates the region
where FIQCP occurs. Nl(2)= 1

2 and dc ≈ 2.24 are shown explicitly
on the curve.

The existence of an upper bound in d > dMF is expected
from the mean-field results since the RG calculation should
reproduce the mean-field result when N → ∞. These two
bounds merge at dc = 55−12

√
2

17 ≈2.24. The region for the FIQCP
to occur is shown in Fig. 5. Thus, for d = 3, Dirac fermions
cannot induce a FIQCP for any N . Nonetheless, it was shown
that a FIQCP can occur at Z3 nodal-nematic transitions in
3+1D double-Weyl systems [76].

IV. AN EXACT RESULT: NO FIQCP FOR N = 1/2 AND
d = 2

We now prove an exact result for the absence of FIQCP
for N = 1/2 and d = 2 by employing the results of space-
time supersymmetry. The low-energy physics of Majorana
fermions on a honeycomb lattice with next-neighbor hopping
is equivalent to a single two-component Dirac fermion or
half flavor of four-component Dirac fermions (N = 1

2 ). The
noninteracting Hamiltonian reads

H =
∑
〈xx ′〉

(itxx ′γxγx ′ + H.c.), (20)

where 〈xx ′〉 represents hopping between NN sites, the NN
hopping amplitude txx ′ = t , and γx is a Majorana operator at
site x satisfying γ †=γ , and {γx,γx ′ }=2δxx ′ . Using Fourier
transformation, γx = 1√

2M

∑
�k γ�ke

i�k·�x , where M is the site
number, we obtain

H = t

2

∑
�k

[iγA,−�kγB,�k(1 + e−i�k·�e1 + e−i�k·�e2 ) + H.c.], (21)

where �e1 = ( 1
2 ,

√
3

2 ), �e2 = (− 1
2 ,

√
3

2 ) are lattice vectors (lattice
constant is set to be 1 for simplicity) and A,B are sublattice
indices. Diagonalizing the Hamiltonian, we get two Majorana
cones ψ± located at the ± �K = (± 4π

3 ,0) points. The low-energy
noninteracting Hamiltonian is given by

H = ψ†v(iσ x∂y − iσ yτ z∂x)ψ, (22)

where ψ ≡ (ψ+,ψ−)T , v≡
√

3t
4 is the Fermi velocity, and σ and

τ are Pauli matrices with sublattice indices A,B and valley
indices, respectively.
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Note that only half of the Majorana fermions in k space
are independent since γ

†
�k =γ−�k . In other words, two Majorana

cones are related through ψ− =ψ
†
+ such that the two Majorana

cones can be combined into a single Dirac cone. Then, we
consider the Kekule VBS order given by φ∝ψ

†
−σyψ+ ≡

ψT
+σyψ+, which is equivalent to intravalley “pairing” of a

single Dirac cone. Note that there is no U (1) symmetry
corresponding to particle number conservation in such a theory
because of the real nature of Majorana fermions. Instead
of being a pairing order parameter, φ actually breaks the
translational symmetry of the honeycomb lattice since it carries
a finite momentum 2 �K and it is Z3 symmetry breaking.

We first assume that the phase transition is continuous by
setting b=0 to get a fixed-point theory and then determine
the fate of cubic terms at this fixed point. Setting b=0, the
effective theory after a particle-hole transformation at the
assumed critical point is

L = ψ†[∂τ + v(iσ x∂y − iσ y∂x)]ψ + |∂τφ|2 + c2
∑

i

|∂iφ|2

+g

2
(φψT σyψ + H.c.) + u|φ|4, (23)

where ψ represents a single two-component Dirac fermion.
The factor 1

2 in the coupling constant g comes from the fact
that we rescale ψ to ψ√

2
when combining two Majorana cones

into one Dirac cone. Setting N = 1
2 in the RG flow equations,

we obtain the following fixed point: c∗ =v∗,( g∗
2 )2 =u∗. Such

a critical theory has emergent SUSY and corresponds to the
N =2 Wess-Zumino model [45,46,64,65].

We showed earlier that when N = 1
2 , the cubic terms

are marginal at the one-loop level and could be marginally
relevant or irrelevant if higher-order quantum fluctuations
are included. Interestingly, owing to the U (1)R symmetry
in the N = 2 Wess-Zumino model, the scaling dimension
of chiral multiplets is known exactly [47,48] and is equal
to the R charge. Thus, the scaling dimension of φ3 at the
assumed fixed point is known exactly: �φ3 =2, which is
much smaller than 3. As a result, the cubic term is strongly
relevant, and the assumed fixed point is unstable due to the
relevance of cubic perturbations. Namely, the N = 1

2 flavor
of four-component Dirac fermions cannot induce a FIQCP at
the Z3 Gross-Neveu-Yukawa transition. In other words, the
critical number of flavors of Dirac fermions satisfies Nc > 1

2 .
This inequality is exact!

V. TWO LENGTH SCALES AT THE FIQCP

The existence of dangerously irrelevant fields at a quantum
critical point can yield two divergent length scales [52–58] and
different critical exponents on the two sides of the transition
point. A schematic phase diagram is shown in Fig. 6, where
the x axis and y axis represent tuning parameter m and Z3

anisotropy b, respectively, and the arrows indicate RG flow
directions, i.e., flow to low energy and long wavelength.
There are two stable fixed points corresponding to the Dirac
semimetal phase and Z3 ordered phase, and the FIQCP is
the transition point between them. Moreover, there is another
unstable fixed point, the Nambu-Goldstone (NG) fixed point,
located on the b=0 axis. If the system is O(2) symmetric,

b

mNG DSMFIQCP

Z3 ordered

�iii�

�ii�

�i�

FIG. 6. A schematic global RG flow diagram. Here the x axis (y
axis) represents the tuning parameter m (Z3 anisotropy b). The arrows
indicate RG flow directions. DSM denotes the Dirac semimetal.
FIQCP is the transition point between the semimetal and Z3 ordered
phase. NG indicates the Nambu-Goldstone fixed point. Regions (i),
(ii), and (iii) denote those regions where scaling behavior is controlled
in perturbative RG calculations, e.g., b2 � 1.

the NG fixed point describes the gapless phase with NG
modes resulting from spontaneous breaking of continuous
O(2) symmetry in the ordered phase. An effective Lagrangian
for the NG phase reads

L = 1

2

∑
μ=τ,x,y

(∂μθ )2, (24)

where θ is defined through φ ≡ |φ|eiθ . However, since the
cubic term b explicitly breaks the O(2) symmetry, b is then
relevant at the NG fixed point and drives the system into the
Z3 ordered phase where the NG modes are gapped.

When the system moves into the ordered phase and locates
slightly away from the critical point with m � mc, along
the RG flow the system enters region (i), where the scaling
behavior in the crossover from region (i) to region (ii) is
controlled by the fixed-point FIQCP. Here the characteristic
length scale is given by the correlation length of the Z3 order
ξ , with ξ ∼ (mc−m)−ν . As the Z3 anisotropy is dangerously
irrelevant at the FIQCP, it is expected that b2 � 1 and the sys-
tem is dominated by the pseudo-NG modes with small masses
in region (ii). Flowing to lower energy and longer distance,
the system enters region (iii), where the scaling behavior in
the crossover from region (ii) to region (iii) is controlled by the
NG fixed point instead. Now that the Z3 anisotropy is relevant
at the NG fixed point, the pseudo-NG modes are damped,
and different domains of Z3 ordering become apparent. Then,
another characteristic length scale of the Z3 domain emerges
and is given by the diameter of the domains ξ ′, with ξ ′ ∼ (mc−
m)−ν ′

. These two length scales obey different scaling laws [54],

ν ′

ν
= 1 − yb2

2
(25)

= 1+ 3(
√

N2 + 38N + 1−N−4)

10(N + 1)
, (26)

where ν (ν ′) is a critical exponent capturing the divergence of
characteristic length scales ξ (ξ ′) approaching criticality from
the ordered side and yb2 is the scaling dimension of b2 at the
FIQCP. When the FIQCP occurs (namely, N >Nc >1/2), one
can see that ν ′ >ν. The domain length scale is larger than the

195162-5



SHAO-KAI JIAN AND HONG YAO PHYSICAL REVIEW B 96, 195162 (2017)

correlation length, consistent with our analysis of RG flows
above. Note that ν ′ exists only in the ordered phase, while the
same ν can be measured on both sides of the transition.

We would like to mention that the emergence of two
divergent length scales around the FIQCP differs from the one
occurring in the usual bosonic Zn theory due to the existence
of gapless electrons at the FIQCP. In conventional bosonic Zn

theory, the Zn anisotropy is irrelevant only for n�4 from 4−ε

RG calculations [52,54,77]. Here, owing to the presence of
gapless Dirac fermions at the transition, the Z3 anisotropy is
rendered dangerously irrelevant at FIQCP. Moreover, the ratio
of ν ′

ν
for the FIQCP depends on the number of flavors of Dirac

fermions, as expected.

VI. CONCLUSIONS AND DISCUSSION

In conclusion, we have presented a RG study of the
Z3 Gross-Neveu-Yukawa quantum phase transitions in Dirac
systems whose low-energy effective field theory contains cubic
terms of order parameters. Our RG results show that for
d = 2 there exists a finite range of N , namely, N >Nc, such
that the putative first-order phase transitions can be driven
to a continuous phase transition due to the fluctuations of
gapless Dirac fermions at the transition point. Furthermore,
with the help of space-time SUSY in 2+1D, we obtain an
exact lower bound for the critical number of flavors of Dirac
fermions to realize a FIQCP, namely, Nc > 1

2 . Moreover,
the large-scale sign-problem-free QMC simulations [7,78]
indicate that Nc < 2. We conclude that 1

2 <Nc <2.
We observe that there is a common feature shared by

Landau-forbidden phase transitions (e.g., FIQCPs and
DQCPs): the existence of dangerously irrelevant operators. In
the language of RGs, the Landau criteria can be interpreted by
the existence of more than one relevant parameters rendering a
first-order phase transition or a multicritical point, rather than a
generic quantum critical point. For instance, the φ3 terms in the
case of FIQCPs and the quartic monopole creation operator in
the case of DQCPs are seemingly relevant operators (besides
the usual relevant mass term of the order parameter). However,
these seemingly relevant operators are rendered irrelevant at
the critical points by either gapless fermions in the case of
FIQCPs or gapless deconfined spinons in the case of DQCPs;
as a result, the critical theory exhibits an emergent O(2)
symmetry. The presence of dangerously irrelevant operators
at the transition point can reduce the emergent symmetry in
the symmetry-breaking phases, leading to the emergence of
two length scales. We also explored the values of different
critical exponents by one-loop RG calculations.

Possible experiments realizing a FIQCP include the quan-
tum phase transitions between semimetallic graphene [79,80]
and the Kekule VBS phase [81] by growing the graphene on
a certain subtract or by tuning the strain. There are also exper-
iments on adsorbed monolayer quantum gases, including he-
lium, on the top of graphenelike substrates [82,83], where the
quantum gas films can undergo a phase transition to the famous√

3×√
3 order, which is a Z3 Gross-Neveu-Yukawa transition.
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APPENDIX A: TRACE PROPERTIES FOR THE γ

MATRICES

As defined in the main text, γ μ, μ = 1, . . . ,d + 2, are
the gamma matrices satisfying {γ μ,γ ν} = 2δμν and γ ± =
1
2 (γ d+1 ± iγ d+2). In the following, we use Greek letters to
denote 1, . . . ,d and English letters to denote ±. The γ matrices
defined in the main text have the properties {γ μ,γ ν} = 2δμν ,
{γ i,γ j } = 2gij , {γ i,γ μ} = 0, where gij = 1

2 (1 − δij ). The
traces of the γ matrices are given by

Tr[γ iγ μγ jγ ν] = −4Ngij δμν,

Tr[γ μγ νγ ργ σ ] = 4N [δμνδρσ − δμρδνσ + δμσ δνρ],

Tr[γ iγ μγ jγ νγ kγ ρ] = 0,

Tr[γ iγ μγ jγ νγ kγ ργ lγ σ ] = 4N [δμνδρσ − δμρδνσ + δμσ δνρ]

×[gijgkl − gikgjl + gilgjk],

where we consider only 4 × 4 γ matrices since we are
interested in d = 2,3 and assume the flavor of Dirac fermion
to be N .

APPENDIX B: RENORMALIZATION OF THE BOSON
MASS TERM IN DIRAC SEMIMETALS

The Feynman diagrams contributing to boson mass renor-
malization are shown in Fig. 4 in the main text. A straightfor-
ward evaluation leads to

�|φ|2 = −18b2
∫

ddk

(2π )d
1

(k2 + r)2
+ 4u

∫
ddk

(2π )d
1

k2 + r

=
(

− 9πb̃2

(1 + r̃)3/2
+ 4πũ√

1 + r̃

)
�2l, (B1)

where the various dimensionless coupling constants are
defined in the main text. Then, the renormalization-group
(RG) equation for boson mass is given by

dr̃

dl
= 2r̃ − Nπg̃2r̃

2
− 9πb̃2r̃

4(1 + r̃)5/2

− 9πb̃2

(1 + r̃)3/2
+ 4πũ√

1 + r̃
. (B2)

As a first approximation, the solution at the fermion-induced
quantum critical point is obtained by substituting the fixed
point coupling constants in the above RG equation, and the
result yields r ≈ − 8

N
.
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