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Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular
quantum dots
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We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a
single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of
strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We
also compare our results, at weak to intermediate coupling, with those obtained by employing the functional
renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage
at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an
interesting interplay between electrical and thermal transport. We explore different parameter regimes and
identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly
enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon
coupling and in the antiadiabatic regime.
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I. INTRODUCTION

Molecular quantum dots can be considered as potential
candidates for the interconversion of heat and electrical energy,
with possible applications to cooling or energy harvesting
at the nanoscale [1]. From this perspective, studying the
thermoelectric transport through such nanostructures is of
crucial importance as it can help us to identify scenarios for
which the thermoelectric efficiency can be enhanced. However,
there are both experimental [2] and theoretical [3] challenges in
understanding the thermoelectric properties of such systems.
On the experimental side there is the technical challenge of
applying a small temperature gradient across a nanoscale
device and measuring the resulting thermovoltage [2], while
on the theoretical side a major challenge is the inclusion
of correlation effects in the calculation of thermoelectric
transport. Interactions such as the on-site Coulomb repulsion
or the local electron-phonon interaction are known to be
important for nanoscale systems. For example, the Kondo
effect [4] can lead to a drastic modification of the low-
temperature conductance of molecular junctions [5].

As correlation effects have prominent consequences on
the transport properties of molecular quantum dots, we need
sophisticated many-body methods in order to address them
in a satisfactory manner. The numerical renormalization
group (NRG) provides an accurate nonperturbative description
of these properties in all parameter regimes and over the
whole temperature range [6–9]. It can deal with arbitrarily
complicated local interactions, including local Coulomb and
electron-phonon interactions. Within the framework of the
single-impurity Anderson model, NRG has been applied
to study the thermoelectric transport properties of strongly
interacting quantum dots for both repulsive [10] as well as
attractive Coulomb interactions [11] on the dot. Attractive
interactions, in particular, were found to provide a mechanism
for enhanced thermoelectric power and efficiency in molecular
quantum dots [11]. The effect of a short-range Coulomb
interaction at the contact points between the dot and the leads

(interacting resonant level model) has also been studied within
the approximate functional renormalization group method
(FRG), both in and out of equilibrium (steady state) [12].

In the quest to find general criteria for the best ther-
moelectric material, Mahan and Sofo [13] realized that a
narrow distribution of the spectral weight of the quasiparticles
involved in the transport can result in a substantial thermo-
electric efficiency. At first glance, repulsive interactions on a
quantum dot, resulting in a sharp Kondo resonance, seem to
be a realization of such a situation. However, the spin Kondo
resonance is generally well pinned fairly close to the Fermi
level, and inducing some asymmetry in the spectral function
to enhance the low-temperature Kondo-induced thermopower
either by applying a gate voltage or an external magnetic
field turn out to have small effects [10,14], at least within
the simplest model, the spin degenerate Anderson impurity
model.1 The charge Kondo physics realized in quantum dots
with attractive interaction, on the other hand, can result in
significant enhancement of the Seebeck coefficient through a
large polarization of the spectral function caused by a small
charge splitting (gate voltage) [11].

In this paper, we explore a different route to enhanced
thermoelectric efficiency by considering the effects not of local
Coulomb correlations, but of local vibrational modes of the
molecular device. As vibrations are inevitable features of real
molecular quantum dots [5], we want to identify the signatures
of the vibrational modes on the linear transport properties
through such devices and also characterize the regime of
parameters for which vibrational effects lead to enhanced
thermoelectric efficiency. For this purpose we take the spinless

1Orbitally degenerate Anderson models, used to describe heavy
fermion materials, can result in a larger asymmetry of the Kondo
resonance about the Fermi level and consequently can have a larger
Kondo-induced thermopower at low temperatures, see Refs. [50] and
[51].

2469-9950/2017/96(19)/195156(12) 195156-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195156


A. KHEDRI, V. MEDEN, AND T. A. COSTI PHYSICAL REVIEW B 96, 195156 (2017)

Anderson-Holstein model as a simple model of a molecular
junction and investigate its linear thermoelectric properties at
finite temperatures within the NRG. Since the latter approach is
nonperturbative in all interactions [9], it includes all tunneling
processes between the dot and the leads and can therefore
be used to access both the low-temperature strong-coupling
regime at T � �eff and the high-temperature perturbative
regime T � � > �eff , where �eff < � is the renormalized tun-
neling rate between the molecular quantum dot and the leads
and � is the bare one (see Sec. II for the precise definitions).
In addition, at weak to intermediate electron-phonon coupling,
we compare the transport coefficients calculated within NRG
with those obtained from FRG.

Many studies have focused attention on the spinful version
of the Anderson-Holstein model [15,16], which includes a
local Coulomb repulsion on the dot and on the resulting com-
petition between Kondo physics and electron-phonon effects.
For this model, and variants thereof [1,17,18], a large number
of results have been obtained, including the linear [19] and
nonlinear [20–26] electrical conductance, the thermopower
in the perturbative high-temperature limit T � � [17], and
other thermoelectric properties [27–30]. In contrast, previous
studies of the spinless Anderson-Holstein model have mainly
focused on renormalization effects on the low-energy scale
[31–34] and on the electrical conductance [35–38]. To the best
of our knowledge, the effects of electron-phonon coupling
on the other transport coefficients (thermopower, thermal
conductance) and on the dimensionless figure of merit as well
as the Lorenz number have not been previously addressed.
The main aim of the present paper is to fill this gap and to
elucidate in detail the signatures of phonon-assisted tunneling
in thermoelectric properties, without the added complication
of Kondo physics in the spinful version of this model.

The outline of the paper is as follows: In Sec. II we introduce
the model, outline very briefly the NRG and FRG methods, and
describe how finite temperature transport is calculated within
these approaches. A more extensive description of the methods
themselves in the context of the present model is given in
Ref. [34]. While in the latter paper, following the pioneering
study of Ref. [33], we elucidated in detail the evolution of
the low-energy scale of the model from the adiabatic to the
antiadiabatic regime and from weak to intermediate electron-
phonon couplings, using NRG, FRG, and perturbation theory,
and compared also the T = 0 spectral functions within these
methods, in the present paper we focus our attention on finite-
temperature thermoelectric transport properties for molecular
quantum dots strongly coupled to leads. Our results for these,
at temperatures above and below the relevant low-energy
scale �eff , are presented in Sec. III, and we conclude with an
outlook in Sec. IV. In the Appendixes, we describe the details
of the FRG calculations for finite-temperature thermoelectric
transport (Appendix A), indicate the convergence tests used for
the NRG calculations (Appendix B), present some additional
results for the dependence of the dimensionless figure of merit
on the phonon frequency (Appendix C), and show results
for the coupling strength, temperature, phonon frequency,
and gate voltage dependence of the molecular dot spectral
function (Appendix D). For completeness, and to illustrate the
applicability of the NRG approach also in the high-temperature
perturbative limit at T � � > �eff , we discuss in Appendix E

the evolution of the thermopower (versus gate voltage) from
its high-temperature perturbative limit to its low-temperature
strong-coupling behavior at T � �eff .

II. MODEL, METHODS, AND TRANSPORT
CALCULATIONS

We focus on the simplest possible model to capture the
vibrational effects of a molecule in a tunnel junction, the so-
called spinless Anderson-Holstein model,

H =
2∑

α=1

∑
k

εkc
†
α,kcα,k + t√

Nsites

2∑
α=1

∑
k

(d†cα,k + H.c.)

+ ε0d
†d + ω0b

†b + λd†d(b† + b), (1)

where ε0 is the energy of the molecular level, ω0 is the local
phonon frequency, λ is the strength of the electron-phonon cou-
pling, and t is the tunneling amplitude to the two leads, each of
which is represented by a one-dimensional tight-binding chain
with Nsites lattice sites. Due to polarization effects induced by
the electron-phonon interaction, the particle-hole symmetric
point of the Hamiltonian is shifted from the Fermi level
ε0 = εF = 0 to ε0 = EP , where Ep = λ2/ω0 is the polaronic
shift.2Ep/ω0 may also be interpreted as the average number of
phonons involved in the formation of a local polaron [32,39].
The quantity ε̃0 = ε0 − Ep is a measure of the deviation of
the local level position from its particle-hole symmetric value
and can be regarded as a gate voltage −eVg = ε̃0. We shall
henceforth parametrize all results by ε̃0 rather than the bare
level position ε0. We shall consider the reservoirs (leads) to be
structureless with a constant density of states ρ0(ω) = 1/(2D)
with D = 1 the half bandwidth. The molecular level in (1)
couples to the left and right reservoirs with equal strength,
resulting in a bare total level width of � = 2πρ0t

2. We use
� = 10−4D in all calculations. The low-temperature behavior
of this model has been studied in depth in Refs. [32] and
[33], and also in our previous work where we used NRG and
FRG [34], and which we here extend to finite temperature
transport. Due to its simplicity, the spinless Anderson-Holstein
model is only expected to qualitatively capture some aspects
of a real molecular quantum dot at low temperatures. At
higher temperatures (e.g., at T � max{�,ω0}), additional
complexities, not contained in the above simple model, such
as additional molecular levels or anharmonic effects, may
become important and invalidate even a qualitative description
in terms of the spinless Anderson-Holstein model. Hence, we
will mainly focus on low temperatures, where also the most
interesting many-body effects manifest themselves.

We are generally interested in the flow of charge and heat
through a vibrating molecule coupled to reservoirs held at
different temperatures and chemical potentials. In the linear
response regime, all the transport coefficients of the model (1)
can be expressed in terms of the moments of the molecular dot

2Under the particle-hole transformation d → d†, b → −b − λ/ω0

with particle-hole symmetric leads we have that H (ε0) → H ′ =
H (2Ep − ε0) + (ε0 − Ep), so for ε0 = Ep, H = H ′.
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spectral function A(ν) [40],

In(T ) = −π�

∫ ∞

−∞
dννnA(ν)(∂νf )T , (2)

where n = 0,1,2 and f (ν) is the Fermi function at tem-
perature T . In particular, the electrical conductance G(T ),
thermoelectric power (Seebeck coefficient) S(T ), and the
electronic contribution to the thermal conductance κe(T ) can
be calculated via

G(T ) = e2

h
I0(T ), (3)

S(T ) = −1

e

I1(T )

T I0(T )
, (4)

κe(T ) = 1

hT

[
I2(T ) − I 2

1 (T )

I0(T )

]
, (5)

with e and h denoting the electric charge and Planck’s constant,
respectively.

Within the NRG approach to Eq. (1), described in more
detail in Ref. [34], one obtains the eigenstates and eigenvalues
of H on all energy scales by an iterative diagonalization proce-
dure involving a set of finite-size (or truncated) Hamiltonians
HM , M = 0,1, . . . . From these, one can then construct all
equilibrium thermodynamic, dynamic, and linear transport
quantities [6–9]. Specifically, we calculate the nth moment
of the spectral function (2) at finite temperatures following the
best shell approach described in Refs. [41] and [42], namely,
at temperature T , we find the corresponding best shell M and
use the information from this shell to evaluate

In(T ) = π�

ZM (T )

Ns∑
l,l′=1

| 〈l′| d† |l〉 |2
e−βEM

l + e−βEM
l′

(
EM

l − EM
l′

)n
. (6)

In the above, ZM is the partition function associated with the
truncated Hamiltonian HM for a Wilson chain of length M at
an inverse temperature β = 1/T with {EM

l } the set of the Ns

lowest-lying eigenvalues ofHM and {|l〉} the corresponding set
of eigenvectors. In practice, we use a logarithmic discretization
parameter of � = 4 and average the results over Nz = 4
realizations of the bath [41,43].

The Matsubara FRG formalism discussed in our previous
work can be extended to finite temperatures following the
procedure presented in Ref. [44]. Within first-order truncated
FRG, we calculate the self-energy �(iνn) at fermionic Mat-
subara frequency νn up to linear order in the effective-phonon-
mediated electron-electron interaction (∝ λ2). However, due
to the RG resummation, the results go well beyond the lowest
order perturbation theory and also they preserve the particle-
hole symmetric properties, in contrast to plain perturbation
theory. The technical details of the method are discussed in
Appendix A. Knowing the molecular dot propagator

Gmol(iνn) = [iνn − ε0 + i� sgn(νn) − �(iνn)]−1, (7)

we use the continued fraction representation of the Fermi
function to calculate the nth moment of the spectral function

without the analytic continuation to the real axis,

In = (i)n−1 π�

β

Mp∑
p=1

∑
s=±

Rp∂ν[νnG(iν)]
∣∣
ν=s

zp

β

+ �δn,2

⎡
⎣� − 2π

β

Mp∑
p=1

Rp

⎤
⎦, (8)

with Mp poles at positions ±izp/β and residues Rp calculated
as proposed in Refs. [45] and [46]. At low temperatures, we
can also calculate the moments of the spectral function using
the Sommerfeld expansion (see Appendix A) [47].

III. RESULTS

In Sec. III A we present results for the temperature
dependence of the various transport coefficients Eqs. (3)–(5) of
the spinless Anderson-Holstein model for different parameters
(λ/ω0, ε̃0/�, and ω0/�), while in Sec. III B we likewise
present results for the temperature and parameter dependence
of the power factor, the Lorenz number, and the figure of merit.
As all the mentioned thermoelectric quantities are related to
the spectral function [see Eqs. (3)–(5)], we trace back some of
the trends to the behavior of the molecular spectral function
presented in Appendix D.

Throughout this section, we show the aforementioned quan-
tities as a function of the reduced temperature T/�eff , where
�eff < � is the renormalized low-energy scale describing the
rate at which tunneling processes occur between the dot and
the leads at zero gate voltage and zero temperature [34].
As in Ref. [34], we define �eff in terms of the local T = 0
charge susceptibility at zero gate voltage via �eff = 1/πχc,
where χc = − dnd (ε̃0)

dε̃0
|ε̃0=0, and nd (ε̃0) is the occupancy of

the molecular level. This emergent low-energy scale �eff ,
the phonon frequency ω0, and the gate voltage ε̃0 are the
competing scales and they play a crucial role to understand
the thermoelectric transport.

In the following, we shall also mainly be interested in the
antiadiabatic regime ω0 � � where renormalization effects
are most pronounced. In this case we have �eff � � � ω0

and we expect interesting temperature dependences in several
temperature ranges defined by the disparate energy scales
�eff,ω0 and the gate voltage ε̃0. In the adiabatic regime
ω0 � �, the physics is that of the noninteracting model and
the only relevant temperature scale is �. In the antiadiabatic
limit, we discuss the comparison of NRG results with the
corresponding FRG ones for a given intermediate coupling
strength in Sec. III A 4. The values of �eff/� for the couplings
used below are listed in Table I for the antiadiabatic case of
ω0 = 5�.

TABLE I. Dependence of �eff/� on λ/ω0 for ω0 = 5�.

λ/ω0 0.2 0.5 1.0 2.0 3.0
�eff/� 0.975 0.851 0.503 0.039 0.00025
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FIG. 1. (Solid lines) NRG results for the temperature dependence of the normalized electric conductance G/G0 (G0 = e2/h), the
thermopower S (in units of kB/e), and the normalized electronic contribution to the thermal conductance κe/� (in units of kB/h). (a)–(c)
Evolution with increasing electron-phonon coupling at a given phonon frequency ω0/� = 5 and level position ε̃0 = −�. Selected FRG results
(stars) [using Eq. (8)] at weak to intermediate couplings serve as checks on the NRG results. (d)–(f) Dependence on level position (gate voltage)
for a given coupling λ/ω0 = 2.0 and a fixed frequency ω0/� = 5. (g)–(i) Evolution from the adiabatic to the antiadiabatic limit for λ/ω0 = 2.0
and ε̃0 = −�.

A. Electrical conductance, thermopower,
and thermal conductance

In this section, we discuss the temperature dependence of
the transport coefficients as a function of the electron-phonon
coupling λ (at fixed gate voltage ε̃0 and phonon frequency
ω0), of the gate voltage ε̃0 (at fixed coupling λ and frequency
ω0), and of the phonon frequency ω0 (at fixed coupling
λ and gate voltage ε̃0). Results for these three cases are
shown in Figs. 1(a)–1(c), Figs. 1(d)–1(f), and Figs. 1(g)–1(i),
respectively, and will be discussed in Secs. III A 1–III A 3.

1. Varying the electron-phonon coupling

In Figs. 1(a)–1(c), we show the temperature dependence
of the transport coefficients for different electron-phonon
couplings at a fixed gate voltage, ε̃0 = −�, and a fixed phonon
frequency in the antiadiabatic regime, ω0 = 5�. 3

3The choice of these parameters is motivated by the desire, on the
one hand, to be away from the particle-hole symmetric point ε̃0 = 0,
since the thermopower vanishes exactly there, and, on the other hand,
to be in the antiadiabatic regime where, as explained above, the most
interesting temperature dependences are expected.

(a) Electrical conductance. While the electrical conduc-
tance G at T = 0 and particle-hole symmetry (ε̃0 = 0) is
pinned to its unitary value G0 = e2/h for all coupling strengths
[33], at finite gate voltage, as shown in Fig. 1(a), it is strongly
suppressed with increasing electron-phonon coupling. This
results from the suppression of the spectral weight at the
Fermi level with increasing coupling for finite gate voltages
[see Fig. 7(a) in Appendix D]. At finite temperatures, the
electrical conductance shows the typical behavior for resonant
tunneling at finite gate voltages, an activated behavior at low
temperatures with a maximum at a temperature related to
the gate voltage and a decrease beyond this temperature. At
still higher temperatures, as we approach the strong-coupling
regime (λ/ω0 > 1), the electrical conductance develops an-
other (small) maximum at a temperature related to ω0, showing
that electrons can also tunnel by creating phonon excitations.
The same observation holds for the thermal conductance, to
be discussed below, which also shows a peak at a temperature
T related to ω0 [Fig. 1(c)]. This feature arises from the
multiphonon satellite peaks at ν ≈ ε̃0 ± nω0,n = 1,2, . . . in
the spectral function at strong coupling (see Figs. 7(a) and 7(b)
in Appendix D and Ref. [38]).

(b) Seebeck coefficient. The Seebeck coefficient S, which
probes the asymmetry of the spectral function about the Fermi
level within the Fermi window |ω| � T , first increases with the
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strength of the electron-phonon coupling and then decreases
[see Fig. 1(b)], achieving a maximum at λ/ω0 ≈ 2 for the cho-
sen ω0/� = 5. We may qualitatively understand these trends
from the dependence of the spectral function on the coupling
strength in Fig. 7(a) of Appendix D as follows: at small values
of the coupling, most weight in the spectral function is carried
by the central peak (located at ν ≈ ε̃0) close to the Fermi level,
resulting in a small asymmetry in the spectral function and a
correspondingly small thermopower. Increasing the coupling
to values of order λ/ω0 ≈ 1 results in a gradual transfer of
spectral weight from the central peak to the phonon satellite
peaks at finite frequency. This initially results in an increased
asymmetry of the spectral function, since only the lowest
phonon satellite peaks are populated, resulting in the observed
increase in the thermopower with increasing electron-phonon
coupling. Eventually, however, for λ/ω0 � 3, the higher-lying
multiphonon peaks become populated, resulting in a broad
distribution of the spectral function centered outside the Fermi
window and the thermopower decreases again. We see that
at some intermediate coupling (λ/ω0 ≈ 2.0) the two trends
in the spectral function described above compensate each
other and we achieve the maximum Seebeck coefficient at this
strength of the electron-phonon coupling. For the parameters
used in Fig. 1(b), we estimate a maximum Seebeck coefficient
of Smax = S(T ≈ 7�eff) ≈ 2kB/e = 172μV/K , close to the
optimal value of 207μV/K found by Sofo and Mahan for a
bulk thermoelectric with a δ function quasiparticle density of
states [13].4

(c) Thermal conductance. The electronic contribution to
the thermal conductance exhibits two peaks, as shown in
Fig. 1(c). The first peak occurs at temperatures comparable to
the renormalized tunneling rate �eff and reflects the possibility
of heat transport via resonant tunneling. For sufficiently
strong couplings (λ/ω0 > 2), this low-energy peak becomes
irrelevant, a consequence of the decrease in the height and
width of the low-energy quasiparticle peak upon increasing
the coupling strength [see inset to Fig. 7(a) in Appendix
D]. The second peak occurs at a temperature related to
the phonon frequency ω0: it reflects the onset of inelastic
scattering processes, which become relevant when the energy
of the electrons is sufficient to create or annihilate one or
several phonons. The temperature of this peak position for
coupling strengths λ/ω0 = 3,2,1, and 0.5 is estimated roughly
to be 4.8ω0, 2.2ω0, 0.75ω0, and 0.45ω0, respectively. For
the smallest coupling shown (λ/ω0 = 0.2), it merges with
the lowest peak at T ≈ 0.12ω0 ≈ 0.6�eff . Note also that the
position of the second peak in κe(T ) correlates with but is not
identical to that in G(T ).

2. Varying the gate voltage

Having seen that in the antiadiabatic regime (ω0 = 5�), and
for ε̃0 = −�, the thermopower achieves its maximum value at

4Note, however, that in Ref. [13], the value S = 207μV/K was
obtained by optimizing the dimensionless figure of merit, including
also the lattice contribution to the thermal conductance. They
show that the corresponding optimal value for the position of the
quasiparticle peak (gate voltage) is ±2.4kBT , close to what we found,
ε̃0/Tmax = −25�eff/(10�eff ) = −2.5.

a rather strong electron-phonon coupling λ/ω0 = 2, we want
to now keep this optimal coupling strength (and ω0 = 5�)
fixed and investigate further the effect of the gate voltage on
the temperature dependence of the various transport properties
[Figs. 1(d)–1(f)].

(a) Electrical conductance. As we increase the gate
voltage, starting from |ε̃0/�| � 1, with |ε̃0| < �eff , the
low-temperature electrical conductance is only moderately
suppressed while the high-temperature conductance remains
largely unaffected [see Fig. 1(d)]. Further increasing the gate
voltage such that |ε̃0| > �eff leads to an activated behavior
of the conductance, with a maximum at a low temperature
which approximately scales with the gate voltage. Further
increase of the gate voltage suppresses the low-temperature
conductance and the maximum further. The second peak
in G(T ) at higher temperatures, which results from phonon
excitations, is independent of the gate voltage.

(b) Seebeck coefficient. For the Seebeck coefficient, the ef-
fect of increasing the gate voltage away from the particle-hole
symmetric point is to first enhance S(T ), but for sufficiently
large gate voltages |ε̃0| � �eff there is a decrease in S(T )
[see Fig. 1(e)]. The position of the maximum approximately
correlates with ε̃0 [compare with the position of the lowest
peak in G(T ) in Fig. 1(d)]. These trends in S(T ) for varying
gate voltage can be qualitatively understood as resulting from
a compromise between an increase in the asymmetry of the
spectral function and a decrease in the magnitude of the
spectral function as we move ε̃0 further away from the Fermi
level, resulting in a maximum thermopower for the value
ε̃0 = −� [see Fig. 1(e) and the spectral function in Fig. 7(d)
of Appendix D].

(c) Thermal conductance. For the thermal conductance,
shown in Fig. 1(f), we find similar trends in the gate voltage de-
pendence as in the electrical conductance: a high-temperature
peak at a temperature related to ω0, which is independent of
the gate voltage, and a much smaller low-temperature peak.
This low-temperature peak lies at T ≈ �eff for |ε̃0/�eff| � 1.
With increasing gate voltage |ε̃0/�eff| � 1 it shifts to higher
temperatures (correlating with the gate voltage), becomes
suppressed, and eventually merges with the high-temperature
peak [see inset to Fig. 1(f)].

3. Varying the phonon frequency

Finally, in Figs. 1(g)–1(i), we investigate the effect of the
phonon frequency ω0/� on the transport properties, keeping
now the optimal coupling strength (λ/ω0 = 2) and the optimal
gate voltage (ε̃0/� = −1) found above. A largely monotonic
trend in the transport properties is seen at essentially all
temperatures as we go from the adiabatic (ω0 � �) to
the antiadiabatic limit (ω0 � �). We note here that while
ω0 = � is usually taken as the crossover scale from the
adiabatic to antiadiabatic behavior, recent studies [33,38] show
that ω0 = �eff is a more appropriate definition. For strong
coupling λ/ω0 � 1, this extends the antiadiabatic regime
to significantly lower phonon frequencies. For the results
presented below, and those in Sec. III B 3, this means that
the actual crossover scale between the adiabatic and the
(extended) antiadiabatic regime corresponds to ω0 = 0.4�

[when �eff(λ/ω0 = 2) = 0.4� = ω0] and not ω0 = �.
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(a) Electrical conductance. As we increase the phonon
frequency, the low-temperature enhancement of the electrical
conductance through the resonant level is suppressed since the
resonant tunneling amplitude �eff is reduced with increasing
ω0 [see Fig. 1(g)]. At higher temperatures, a phonon-assisted
peak develops in the conductance for large ω0/�.

(b) Seebeck coefficient. Figure 1(h) shows the monotonic
enhancement of the Seebeck coefficient on increasing ω0/�

in the (extended) antiadiabatic regime ω0 � 0.4� and a small
monotonic suppression in the adiabatic regime. The mono-
tonically increasing Seebeck coefficient can be qualitatively
understood from the behavior of the spectral function with
increasing phonon frequency, see Fig. 7(c) of Appendix D.
With increasing ω0/�, the lowest energy quasiparticle peak in
the spectral function sharpens, becoming more delta-function-
like, while remaining asymmetric and located at ν ≈ ε̃0 [see
Fig. 7(c) in Appendix D]. This sharp resonance leads to
the monotonic enhancement of the Seebeck coefficient with
increasing ω0 � �. Since the quasiparticle peak in the spectral
function occurs at the gate voltage, the temperature of the
maximum in the thermopower also correlates with gate voltage
and is almost independent of ω0 [see inset to Fig. 1(h)].

(c) Thermal conductance. From Fig. 1(i), we confirm once
more that the high-temperature maximum in the heat transport
at a temperature related to ω0 is due to the inelastic phonon-
assisted tunneling. On the other hand, the low-temperature heat
transport for T ≈ �eff is strongly suppressed with increasing
phonon frequency [see inset to Fig. 1(i)]. This very small
low-temperature thermal conductance will play a role later
when we discuss the figure of merit.

4. Comparison with FRG

We briefly return to Figs. 1(a)–1(c) and comment on the
comparisons between the NRG (lines) and FRG (stars) results
shown there. The approach used for calculating these FRG
results is based on Eq. (8), which uses a continued fraction
expansion for the Fermi function appearing in the transport in-
tegrals. While this approach works well at all temperatures for
the lowest moment, and thus for the electrical conductance, and
for couplings up to order λ/ω0 ≈ 1 [see Fig. 1(a)], calculating
the higher moments within this approach is more problematic.
The reason is that the first and second moments involve the
derivative of the Green’s function [see Eq. (7)]. This means
that the interpolation scheme used to calculate the transport
properties within the FRG becomes increasingly sensitive with
increasing temperature when the spacing between Matsubara
frequencies becomes larger. We have tried the Páde approxima-
tion for the interpolation which turns out to be rather unstable.
Hence, for the thermopower and thermal conductance, a better
approach for the low-temperature regime, T � �eff , is to
calculate the transport integrals via a Sommerfeld expansion
to order T 2 (see Appendix A). Within this approach, the results
for the gate voltage dependence of the transport properties at
several low temperatures, shown in Fig. 2, agree very well
with those calculated from the NRG. These low-temperature
comparisons also provide an independent check on the NRG
calculations. Note that the deviations at higher temperatures,
e.g., for T/� = 0.2, which with �eff = 0.81� corresponds to
T/�eff ≈ 0.25, are expected since at such temperatures the

FIG. 2. (a) The normalized electrical conductance G/G0, (b) the
Seebeck coefficient S (in units of kB/e), and (c) the normalized
electronic contribution to the thermal conductance κe/� (in units
of kB/h) vs the dimensionless gate voltage ε̃0/� for various
temperatures in the antiadiabatic limit (ω0/� = 20) for λ/ω0 = 0.5.
The solid lines represent the NRG data and the stars are calculated
with FRG (using the Sommerfeld expansion).

neglected higher-order terms in the Sommerfeld expansion
will start contributing significantly.

B. Power factor, figure of merit, and Lorenz number

To study the interplay between heat and charge transport in
more detail, we discuss the temperature dependence of some of
the derived thermoelectric quantities such as the power factor
PF0, the dimensionless figure of merit ZT0, and the Lorenz
number L, defined as

PF0(T ) = S2(T )G(T ), (9)

ZT0(T ) = G(T )S2(T )T

κe(T )
, (10)

L(T ) = κe(T )

T G(T )
. (11)

As in Sec. III A, we shall discuss the temperature depen-
dence of these quantities for varying electron-phonon coupling
λ (at fixed gate voltage ε̃0 and phonon frequency ω0), gate
voltage ε̃0 (at fixed coupling λ and frequency ω0), and phonon
frequency ω0 (at fixed coupling λ and gate voltage ε̃0).
Results for these three cases are shown in Figs. 3(a)–3(c),
Figs. 3(d)–3(f), and Figs. 3(g)–3(i) and are discussed in
Secs. III B 1–III B 3.
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FIG. 3. The power factor PF0 (in units of k2
B/h), the Lorenz number L (in units of k2

B/e2), and the dimensionless figure of merit ZT0

vs the reduced temperature T/�eff : (a)–(c) for different electron-phonon coupling for a given phonon frequency ω0/� = 5 and gate voltage
ε̃0 = −�, (d)–(f) at different gate voltages for a given coupling λ/ω0 = 2.0 and a fixed frequency ω0/� = 5, and (g)–(i) from the adiabatic to
the antiadiabatic limit for a λ/ω0 = 2.0 and ε̃0 = −�.

1. Varying the electron-phonon coupling

Figures 3(a)–3(c) show the temperature dependence of
PF0, ZT0, and L for different electron-phonon couplings.
The power factor as well as the figure of merit exhibit a
maximum at a temperature that correlates with max{�eff,|ε̃0|},
and this maximum is more significant for some rather strong
electron-phonon coupling λ/ω0 = 2 [see Figs. 3(a)–3(b)].5

This maximum is a manifestation of the resonant tunneling
and is suppressed as we approach the strong-coupling regime,
since the gate voltage becomes larger than the effective
tunneling rate. The Lorenz number at low temperatures (T �
max{�eff,|ε̃0|}) takes the universal value L0 = π2k2

B/3e2,
reflecting the Wiedemann-Franz law. The latter states that the
ratio of the thermal conductance to the electrical conductance
is linear in temperature with proportionality constant L0.
In the noninteracting case (λ/ω0 = 0), as we increase the
temperature, the Lorenz number decreases monotonically.
However, in the presence of the phonon-assisted tunneling,
the Lorenz number exhibits one low-temperature and one
high-temperature maximum. The latter occurs at a temperature

5Note that we used reduced (and not absolute) temperature T/�eff

in Figs. 3(a) and 3(b), so the position of the gate-voltage-related peak
shifts to higher T/�eff with increasing λ due to the decrease of �eff

with increasing λ.

related, but not equal, to the phonon frequency ω0. The position
of the maximum in the figure of merit coincides with the
minima in the Lorenz number, indicating temperatures for
which the charge transport dominates over heat transport
and thus causing enhanced thermoelectric efficiency. This
follows from ZT0 = S2/L, i.e., a strong violation of the
Wiedemann-Franz law indicated by L(T ) � L0, together
with an enhanced thermopower S, favoring an enhanced
thermoelectric efficiency.

2. Varying the gate voltage

In Figs. 3(d)–3(f), we characterize the effect of the gate
voltage on the above quantities. If we apply gate voltages
well below or well above �eff , the enhancement of the figure
of merit (and the power factor) becomes less substantial [see
Figs. 3(d)–3(e)]. It is interesting to note that for gate voltages
comparable to the effective tunneling rate, see Table I, the
temperatures at which the minimum Lorenz number is realized
extend to a rather broad region, as is shown in Fig. 3(f) for the
case ε̃0 = −0.01�.

3. Varying the phonon frequency

Finally, Figs. 3(g)–3(i) show the dependence of PF0, ZT0,
and L on ω0/�. As we approach the antiadiabatic limit,
the effective tunneling rate decreases and hence at a finite
gate voltage, the resonant tunneling is suppressed, resulting
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in a decrease of the electrical conductance. The monotonic
enhancement of the Seebeck coefficient [cf. Fig. 1(h)] is not
sufficient to compensate for the suppression of the electrical
conductance [Fig. 1(g)], and hence the power factor decreases
as we increase the phonon frequency [Fig. 3(g)]. The figure
of merit, on the other hand, increases monotonically with
the vibrational frequency once ω0 exceeds �eff , i.e., in the
extended antiadiabatic limit [see Fig. 3(h) and the inset, and,
for more details, Fig. 6 of Appendix C]. The temperature
interval for which the enhancement of the figure of merit
is realized (and/or the plateaulike region for the minimum
Lorenz number) extends as we go to the antiadiabatic limit
[Figs. 3(h)–3(i)]. In short, in the antiadiabatic limit, when the
vibrations are much faster than the tunneling processes, for
temperatures �eff < T < ω0, the figure of merit is significantly
enhanced and the Lorenz number is substantially suppressed
[Fig. 3(i)]. For ω0 = 5�, the maximum value of ZT0 is of
order 1 at T ≈ 0.6�eff . The figure of merit continues to grow to
even higher values in the extreme antiadiabatic limit ω0 � �,
eventually saturating in the limit ω0/� → ∞ [see Fig. 6 of
Appendix C]. However, at such high phonon frequencies,
additional vibrational modes or anharmonic effects, neglected
in our model, would play a role and invalidate the present
description. In addition, it should be noted that we have
neglected lattice phonons of the electronic leads in the
spinless Anderson-Holstein model and hence the computed
dimensionless figure of merit ZT0 is just an upper bound to
the true figure of merit ZT = S2GT/(κe + κl), where κl is
the contribution to the thermal conductance from phonons
in the leads and has been neglected here [11]. Therefore,
in comparing with actual experimental data, the trends that
we find may be relevant but not the exact values for the
dimensionless figure of merit.

Finally, we note also that while the power factor, useful in
cooling a hot source [48], is large at weak couplings [Fig. 3(a)],
low finite gate voltages [Fig. 3(d)], and in the adiabatic regime
[Fig. 3(g)], the figure of merit, useful in harvesting waste heat,
is largest at moderately strong couplings (λ/ω0 = 2), finite

gate voltages (ε̃0 = −�), and in the strongly antiadiabatic
regime (ω0 � �).

IV. SUMMARY AND OUTLOOK

We studied the effect of the vibrational degrees of freedom
on the linear thermoelectric transport through a molecular
quantum dot described by the spinless Anderson-Holstein
model by using the NRG method. As an independent check, we
compared them to corresponding finite-temperature transport
calculations within the FRG approach for weak to intermediate
couplings at different gate voltages and in the antiadiabatic
regime. We found that the emergent low-energy scale �eff and
the phonon-assisted tunneling play important roles in under-
standing the thermoelectric transport at finite temperatures. We
quantified the trends in the transport properties in the adiabatic
and antiadiabatic regimes. In the antiadiabatic regime, we
showed that strong electron-phonon coupling induces, at
finite gate voltages, an asymmetry in the spectral function.
This results in an enhancement of the Seebeck coefficient,

and thereby yields another route to enhanced thermoelectric
efficiency in molecular quantum dots with vibrational degrees
of freedom, which is akin to the Mahan-Sofo mechanism for
bulk thermoelectric materials.

Figures 4(a) and 4(b) summarize the parameter regimes for
which an enhanced dimensionless figure of merit is realized.
In Fig. 4(a), for a fixed gate voltage ε̃0/� = −1.0 and in
the antiadiabatic regime (ω0/� = 5.0), we see an enhanced
ZT0 � 1 for temperatures 0.3� � T � 0.7� and couplings
1.25 � λ/ω0 � 2.25. Using typical values for � = 10 meV
and ω0 = 5� = 50 meV [1], we find a temperature range of
30K � T � 70 K for enhanced thermoelectric efficiency. In
Fig. 4(b), we keep the coupling strength fixed to λ/ω0 = 2.0 (in
the optimal range) and look at the variation of ZT0 as a function
of the gate voltage and temperature. We see an enhanced figure
of merit ZT0 � 1 for temperatures 0.04� � T � 0.6� and
for gate voltages 0.08� � |ε̃0| � 1.6�, or upon using �eff ≈
0.04� from Table I, for temperatures �eff � T � 15�eff , and

FIG. 4. (a) ZT0 vs the coupling strength and temperature for a fixed gate voltage ε̃0 = −� and phonon frequency ω0/� = 5.0. (b) ZT0 vs
the gate voltage and temperature for a fixed coupling strength λ/ω0 = 2.0 and phonon frequency ω0/� = 5.0. Vertical and horizontal dashed
lines in (b) indicate T = �eff and |ε̃0| = �eff , respectively.
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for gate voltages 2�eff � ε̃0 � 40�eff . These correspond to
temperatures and gate voltages in the ranges 4 K < T <

60 K and 0.8 meV < |ε̃0| < 16 meV, respectively, upon
using � = 10 meV and ω0 = 5� = 50 meV. We expect that
similar enhancements in ZT0 can be found within the spinful
Anderson-Holstein model in the regime of a weak local
Coulomb repulsion on the dot. For larger Coulomb repulsion,
we expect that spin Kondo physics will suppress the observed
enhancement in the thermoelectric efficiency.

In the future, we plan to include the repulsive electron-
electron interaction between the molecular dot and the leads in
a further step to make the model more realistic. As found earlier
[12], models with such short-range Coulomb interactions
exhibit in their nonequilibrium (steady-state) thermoelectric
transport some nontrivial and intriguing features leading to
an enhancement of their thermoelectric efficiency. In this
light, we plan also to go beyond linear response theory and
investigate nonequilibrium thermoelectric transport through a
molecular quantum dot, including vibrational and short-range
Coulomb terms within an FRG approach on the Keldysh
contour. The advantage of the latter, beyond being applicable
to both nonlinear and linear transport, is that it can be carried
out directly on the real energy axis, thereby avoiding problems
with the analytic continuation of numerical data.
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APPENDIX A: FRG AT FINITE TEMPERATURES

To set up FRG in Matsubara space at finite temperatures,
we use the cutoff function as has been introduced in Ref. [44]:

�T (|νn| − �) =

⎧⎪⎨
⎪⎩

0 |νn| − � � −πT

1
2 + |νn|−�

2πT
||νn| − �| < πT

1 |νn| − � � πT

. (A1)

Following the standard procedure within first-order truncated
FRG [34,49], we obtain coupled differential equations for the
real and the imaginary part of the self-energy [��(iνm) =
ε�(iνm) + iγ �(iνm)]:

∂�ε�(iνm) = 1

β
Re{S�(iνñ)}

∑
s=±

[U (iνm − siνñ) − U (0)],

(A2)

∂�γ �(iνm) = 1

β
Im{S�(iνñ)}

∑
s=±

sU (iνm − siνñ), (A3)

where ñ is the integer for which the corresponding Matsubara
frequency νñ ∈ (� − πT,� + πT ) at given temperature T

and a scale factor �. The effective phonon-mediated electron-

electron interaction is

U (iνn) = − 2ω0λ
2

ν2
n + ω2

0

, (A4)

and the single-scale propagator S�(iνñ) reads

S�(iνñ) = iνñ + i� sgn(νñ)

[iνñ + i� sgn(νñ) − α(T ,�)��(iνñ)]2

× �(πT − ||νñ| − �|)
2πT

, (A5)

with α(T ,�) = 1
2 + |νñ|−�

2πT
∈ (0,1). The initial conditions at

� → ∞ are

ε�(iνn) = ε0 − Ep = ε̃0, γ �(iνn) = 0 ∀νn. (A6)

At the particle-hole symmetric point ε0 = Ep, the real part will
not flow, reflecting that the particle-hole symmetry is preserved
at any temperature for all scales �. We used standard adaptive
routines to numerically solve the flow equations.

At low temperatures T � �, we can calculate the transport
integrals Eq. (2) using the Sommerfeld expansion

In = π�

[
Fn + π2

3

F ′′
n

2!β2

]
, (A7)

where

Fn = δn,0
−1

π
Im{G(iν1)}, (A8)

F ′′
n = 2

π
δn,1Im

{
G2

mol(iν1)
}(

1 − Im

{
d�(iνn)

dνn

∣∣∣∣
ν1

})

+ δn,0
−1

π

[
2Im

{
G3

mol(iν1)
}(

1 − Im

{
d�(iνn)

dνn

∣∣∣∣
ν1

})2

+ Im
{
G2

mol(iν1)
}(

Re

{
d2�(iνn)

dν2
n

∣∣∣∣
ν1

})]

+ δn,2
−2

π
Im{Gmol(iν1)}, (A9)

with ν1 = π/β.

APPENDIX B: NRG PARAMETERS

We always check the convergence of the presented results
with respect to the number Nb of bosons kept. Figure 5 shows
an example for the extreme antiadiabatic regime, where the
phonon excitations are significant to capture the physics for
some rather strong electron-phonon coupling λ/ω0 = 2.0. One
sees that results for Nb = 40 are indistinguishable from those
for Nb = 80 at all temperatures. Note also that using a smaller
� = 10−5 did not require more than Nb = 40 phonons for
converged results.

APPENDIX C: TRENDS IN ZT0 VERSUS ω0/� FOR
STRONG COUPLING

For completeness, and in order to further elucidate on
the trends previously observed, we show results for the
dimensionless figure of merit as a function of ω0/� extending
up to very large ω0/� in Fig. 6. We see that while initially
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FIG. 5. The dimensionless figure of merit ZT0 vs reduced
temperature T/�eff for different numbers of bosons and different
�/D deep in the antiadiabatic regime ω0/� = 103 for λ/ω0 = 2.0,
ε̃0 = −�, and illustrating the convergence with respect to the number
of bosons kept.

for ω0/�eff � 1 the peak value of the dimensionless figure of
merit decreases with increasing ω0/� (see inset to Fig. 6),
for ω0/�eff � 1 its peak value exhibits a monotonically
increasing behavior (main panel in Fig. 6). This maximum
value eventually saturates to approximately 35 for ω0/� � 1.
This maximum is located at a temperature T/�eff ≈ 30.

APPENDIX D: SPECTRAL FUNCTION

The thermopower directly probes the asymmetry of the
spectral function about the Fermi level, so the dependence of
this asymmetry on parameters such as the electron-phonon
coupling strength, the temperature, the phonon frequency, and
the gate voltage can give some qualitative insight into the
observed trends of the Seebeck coefficient. Hence, we discuss
these dependences in this Appendix.

Figures 7(a)–7(d) show the spectral function A(ν) vs ν upon
varying λ/ω0 (for ω0/� = 5 and T = 0), T/� (for λ/ω0 = 2

FIG. 6. The dimensionless figure of merit ZT0 vs the reduced
temperature T/�eff for different ω0/� at ε̃0 = −� and λ/ω0 = 2.
The values of ω0/�eff are also listed. The main panel shows the
monotonically increasing behavior of the peak value of ZT0 with
increasing ω0/� in the extended antiadiabatic regime (ω0/�eff � 1),
while the inset shows the opposite behavior for ω0/�eff � 1. The λ =
0 curve in the inset lies on top of the ω0/� = 0.01 curve, illustrating
that the noninteracting and adiabatic limits are almost identical.

and ω0/� = 5), ω0/� (for λ/ω0 = 2 and T/� = 0.4), and
ε̃0/� (for ω0/� = 5 and λ/ω0 = 2).

In Fig. 7(a), one sees how the asymmetry in the spec-
tral function develops with increasing λ/ω0 with additional
phonon satellite peaks appearing at λ/ω0 � 1. The resulting
asymmetry in the spectral function, with sharp peaks at
ν ≈ ε̃0 − ω0,ε̃0 − 2ω0, . . . , qualitatively explains the mono-
tonically increasing thermopower with increasing λ/ω0 � 2.
Eventually, however, for λ/ω0 � 2 these satellite peaks ac-
quire less weight and the first moment of the spectral function
starts to decrease, resulting in a reduction of the thermopower
at very strong coupling. This qualitatively explains the trends
seen in Fig. 1(b).

The spectral function shown in Fig. 7(a) is obtained by
broadening the discrete spectra with logarithmic Gaussians
using broadenings proportional to the excitation energies of
the delta peaks [9]. At strong coupling the phonon excitations
merge into a broad peak centered at a large negative frequency
for the broadening parameters used here. One can resolve
the individual satellite peaks under this broad feature by
further reducing the broadening, see Ref. [38]. However,
in the actual transport calculations reported in Sec. III, we
work directly with the discrete spectra using Eq. (6), and
the results for the transport properties do not depend on any
broadening procedure, which are hence highly accurate for all
temperatures [42].

For the optimal parameters of Fig. 7(b), the Seebeck
coefficient shows a maximum for �eff � T � �, where the
asymmetric resonant tunneling is realized within the Fermi
window. As we increase the temperature further, the phonon
side peaks in the spectral function are increasingly broad-
ened, as shown in Fig. 7(b). In addition, the asymmetry
in the spectral function is reduced. The latter reflects the
fact that thermal excitations involving emission of phonons
(ν ≈ nω0) are becoming as relevant as those involving
absorption of phonons (ν ≈ −nω0) as the temperature is
increased.

Figure 7(c) shows the dependence of the spectral function
on phonon frequency for optimal coupling λ/ω0 = 2 and at
temperature T/� = 0.4 [where the Seebeck coefficient has
its maximum value for the case ω0/� = 5 in Fig. 1(e)]. For
this case of strong coupling, the spectral function retains
a large weight in the peak close to the Fermi level upon
increasing ω0/� [see also the inset to Fig. 7(c)]. This low-
energy peak, which can be identified with the quasiparticle
peak in the limit T → 0, remains pinned at the gate voltage
ε̃0 = −� and sharpens with increasing phonon frequency.
The resulting asymmetry explains the monotonic increase
of the low-temperature thermopower with increasing phonon
frequency in Fig. 1(h) for ω0 � �eff . In addition, its pinning
at the gate voltage ν = ε̃0 = −� explains why the maximum
in the thermopower occurs at a temperature correlating with
the gate voltage and largely independent of ω0 [inset to
Fig. 1(h)].

Figure 7(d) shows the gate voltage dependence of the T = 0
spectral function. For |ε̃0/�| � 1, the main contribution to the
low-temperature thermopower comes from the quasiparticle
peak at low energies, which is seen to be quite symmetrical
about the Fermi level, thereby resulting in a small ther-
mopower. Increasing ε̃0 shifts this peak away from the Fermi
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FIG. 7. The normalized spectral function π�A(ν) vs frequency ν. (a) The coupling strength dependence of the T = 0 spectral function
for ε̃0 = −� and ω0 = 5�. (b) The temperature dependence of the spectral function for ε̃0 = −�, ω0 = 5�, and λ/ω0 = 2. (c) The (phonon)
frequency dependence of the spectral function for ε̃0 = −�, λ/ω0 = 2.0, and T/� = 0.4. (d) The gate voltage dependence of the T = 0
spectral function for ω0 = 5� and λ/ω0 = 2. We used NRG parameters � = 4 and Nz = 20. The spectral sum rule

∫ +∞
−∞ A(ν)dν = 1 is

satisfied numerically to within a few percent for all parameters and temperatures shown.

level, increasing the asymmetry of the spectral function within
the Fermi window and thereby increasing the thermopower.
Eventually, for sufficiently large gate voltage, most weight
will lie outside the Fermi window and the thermopower will
decrease. The optimal thermopower is found for ε̃0 = −� (for
the chosen ω0 = 5� and λ/ω0 = 2).

APPENDIX E: EVOLUTION OF THE THERMOPOWER
VERSUS GATE VOLTAGE FROM ITS

HIGH-TEMPERATURE PERTURBATIVE LIMIT TO ITS
LOW-TEMPERATURE STRONG-COUPLING LIMIT

In this Appendix, we present the gate voltage dependence of
the thermopower deep in the antiadiabatic limit ω0/� � 1 for
different temperatures and show how it evolves as we approach
the nonperturbative low-temperature regime T � �eff from
the high-temperature perturbative one D � T � � > �eff .
The latter regime can also be accessed within a rate equation
approach, valid for weak lead-molecule couplings, in which
only sequential and cotunneling processes are included [17]. In
contrast, the NRG, which accounts for all tunneling processes,
is able to capture the whole temperature range.

Starting from low temperatures T = �eff , one sees a single
peak in S(ε̃0) at a gate voltage related to the temperature (inset
to Fig. 8). This is similar to the low-temperature results in
the main text, see Fig. 2(b). For sufficiently high temperatures
T � � > �eff , and within a small temperature window 108 �
T/�eff � 4 × 108 (corresponding to 0.04 � T/ω0 � 0.15), a
number of peaks appear in S, approximately separated by
integer multiples of ω0, which can be attributed to signatures
of molecular vibrations in the thermopower. This result,

for the spinless Anderson-Holstein model, is similar to that
found for the spinful Anderson-Holstein model (including a
local Coulomb repulsion) within the rate equation approach
of Ref. [17], and demonstrates the ability of the NRG to
access the high-temperature limit in addition to accessing
low temperatures. On further increasing the temperature, the
peaks in S become shoulders and eventually merge to form a
smooth hump whose height decreases with further increase of
temperature (not shown).

FIG. 8. Thermopower S vs the normalized gate voltage −ε̃0/ω0

for various temperatures, in the extreme antiadiabatic limit ω0/� =
4.0 × 107 and for a fixed electron-phonon coupling λ/ω0 = 2.0. The
inset shows S vs −ε̃0/�eff for the five lowest temperatures of the
main panel. We choose �/D = 10−10 to resolve high-temperature
results more precisely. The renormalized tunneling rate is �eff =
1.659 × 10−2�.
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