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Exponential and power-law renormalization in phonon-assisted tunneling
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We investigate the spinless Anderson-Holstein model routinely employed to describe the basic physics of
phonon-assisted tunneling in molecular devices. Our focus is on small to intermediate electron-phonon coupling;
we complement a recent strong coupling study [Phys. Rev. B 87, 075319 (2013)]. The entire crossover from the
antiadiabatic regime to the adiabatic one is considered. Our analysis using the essentially analytical functional
renormalization group approach backed up by numerical renormalization group calculations goes beyond lowest
order perturbation theory in the electron-phonon coupling. In particular, we provide an analytic expression for
the effective tunneling coupling at particle-hole symmetry valid for all ratios of the bare tunnel coupling and
the phonon frequency. It contains the exponential polaronic as well as the power-law renormalization in the
electron-phonon interaction; the latter can be traced back to x-ray edgelike physics. In the antiadiabatic and
the adiabatic limit this expression agrees with the known ones obtained by mapping to an effective interacting
resonant level model and lowest order perturbation theory, respectively. Away from particle-hole symmetry, we
discuss and compare results from several approaches for the zero temperature electrical conductance of the
model.
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I. INTRODUCTION

Studying phonon effects on the spectral and transport
properties of bulk electronic systems has a long history in
condensed matter physics and is a topic of textbooks (see, e.g.,
Ref. [1]). The development of molecular electronics led to a
new twist to the electron-phonon problem. In such systems the
molecular phonon modes only couple locally to a restricted
number of relevant molecular electronic levels. The molecule
is additionally coupled to electronic reservoirs via tunnel
barriers with the tunnel coupling providing another energy
scale. The basic physics of such systems can be obtained from
model studies (see, e.g., Ref. [2]).

We here focus on one of the most elementary models of
molecular electronics, the so-called single-level spinless
Anderson-Holstein model (SAHM) defined by the
Hamiltonian

H = Hlead + Hmol + Hcoup. (1)

The first term describes two (for simplicity) identical
fermionic leads (reservoirs) with dispersion εk

Hlead =
2∑

α=1

∑
k

εkc
†
α,kcα,k. (2)

The second one is associated with the single-level molecule
of energy ε0 coupled to a single phonon mode with frequency
ω0 > 0 by the coupling constant λ � 0

Hmol = ε0d
†d + ω0b

†b + λd†d(b† + b) (3)

and the third models the molecule-reservoir tunnel coupling
of amplitude t

Hcoup = t√
Nsites

2∑
α=1

∑
k

(d†cα,k + H.c.). (4)

Here Nsites ∈ N denotes the number of lattice sites in each
of the leads. Considering low temperatures this Hamiltonian
shows intriguing many-body physics. We will discuss
that this even holds in the limit of small to intermediate
electron-phonon coupling λ (for the reference scale, see below)
on which we focus. This allows us to gain analytical results.

Aiming at different goals which range from fundamental
insights into correlation physics (e.g., the Kondo effect) to the
explanation of experimental data the equilibrium physics of
this model and its spinful variant was studied using a variety
of approximate analytical as well as numerical methods [2–9].
Recently the attention shifted towards the nonequilibrium
properties either in a bias-voltage driven steady state [10–21]
or even considering the relaxation dynamics [22]. The former
type of nonequilibrium studies led to a better understanding
of the Franck-Condon blockade which was also observed
in a molecular electronics experiment [23]. However, we
here consider the equilibrium properties (including linear
transport), focus on the low-temperature correlation physics
at small to intermediate λ, and this way fill a gap in our
understanding of the model.

Correlation effects are most prominent if the level energy ε0

is taken to be λ2/ω0 = Ep, the polaronic shift [1], for which the
Hamiltonian Eqs. (1)–(4) becomes particle-hole symmetric.
Later on we will also consider general ε0 but for the following
discussion consider this particle-hole symmetric point.

In the antiadiabatic limit � � ω0, with the (bare) tunnel
coupling � = 2πρleadt

2, as well as the complementary adia-
batic regime � � ω0, the physics is rather well understood.
Here ρlead denotes the (assumed to be) constant lead density
of states (wide-band limit; see below). Deep in the adiabatic
regime � � ω0 the phonon is too slow to respond to the
fermionic tunneling events which occur with high frequency;
the effect of the phonon on the properties of the fermionic
(sub)system is minor. Consistently perturbation theory in λ

can even be used for (fairly) large electron-phonon couplings
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as it turns out that the expansion parameter is Ep/�. In the
antiadiabatic regime the phonon time scale 1/ω0 is much
smaller than the fermionic dwell time 1/� and the phonon
can efficiently respond to hopping events. A polaron forms
which leads to the well known suppression of the tunneling
rate ∼exp {−(λ/ω0)2} (polaronic suppression) [1,24].

In the inspiring recent work by Eidelstein, Goberman, and
Schiller [25] this picture was refined in the antiadiabatic limit
and complemented by results obtained in the crossover regime
from antiadiabatic to adiabatic. Employing a Schrieffer-Wolff-
like mapping of the SAHM to the interacting resonant level
model (IRLM) and borrowing established results for this
the authors showed that the exponential suppression in the
antiadiabatic regime is merely the zeroth order term in
an expansion in �/ω0. In the limits of weak λ � ω0 and
strong λ � ω0 electron-phonon coupling one finds for the
renormalized effective tunneling rate

�IRLM
eff

ω0
=
[

�

ω0
e−(λ/ω0)2

]1− 4
π

�
ω0

uλ

, (5)

with

uλ =
⎧⎨
⎩
(

λ
ω0

)2
for λ � ω0(

λ
ω0

)−2
for λ � ω0

. (6)

An analytic expression for the function uλ beyond these
two limits can be found in Ref. [25]. Within the IRLM
the power-law renormalization with argument �/ω0 can be
traced back to x-ray edgelike physics [26]. The crossover
from antiadiabatic to adiabatic behavior was studied using
the numerical renormalization group (NRG) focusing on large
electron-phonon couplings λ � ω0. It was shown that an
extended antiadiabatic regime exists in which � � ω0 does
no longer hold but the low-energy physics of the SAHM is
still described by an effective IRLM. The crossover to the
adiabatic regime sets in only for �eff ≈ ω0 and the latter is
eventually reached for � � Ep.

Our study is complementary to that of Ref. [25] as we con-
sider the entire crossover in the limit of small to intermediate
λ. Using an approximate functional renormalization group
(FRG) approach which is controlled for such electron-phonon
couplings we provide an analytic expression of �eff for all
�/ω0. It contains the combined exponential and power-law
renormalization of Eq. (5) in the antiadiabatic limit as well as
the perturbative one obtained for Ep � �. A comparison with
NRG data shows that it provides a good approximation for
all �/ω0. We discuss the limits of the mapping to the IRLM
in the antiadiabatic regime. In addition, we discuss transport
and spectral properties away from particle-hole symmetry
ε0 �= Ep. In a followup paper [27] we extend the present
work to investigate, within the NRG approach, the finite
temperature linear thermoelectric properties of the SAHM,
comparing our results, where possible, with corresponding
FRG calculations at finite temperature.

The remainder of the paper is structured as follows. In
Sec. II we introduce our nonperturbative FRG approach to
the SAHM. We consider the lowest order truncation [28]
which is controlled for small to intermediate electron-phonon
coupling; being a single-particle term fermionic tunneling is

considered to all orders. The coupled flow equations for the
complex-valued self-energy are derived. Due to retardation
effects the self-energy is frequency dependent. We discuss
the relation between lowest order truncated FRG and first
order perturbation theory in λ2. Our NRG approach is briefly
summarized. The results Sec. III contains several subsections.
In the first we derive a simplified flow equation for the
imaginary part of the self-energy at particle-hole symmetry;
the real part vanishes. This equation can be solved analytically
for all �/ω0; from the self-energy �eff can be computed.
In the second subsection the renormalized tunneling rate
obtained from the simplified equation is compared to the one
derived from the numerical solution of the full lowest order
flow equation as well as to �eff determined from NRG. For
λ/ω0 � 1 the agreement is very good for all �/ω0. Finally, we
consider the effects of particle-hole asymmetry on the T = 0
linear electrical conductance, comparing perturbation theory,
FRG, and NRG results. We conclude with a brief summary
and outlook in Sec. IV. Details of the implementation of the
numerical solution of the full lowest order FRG flow equations,
the convergence of the NRG results with the number of phonon
states, and a comparison of NRG spectral functions with lowest
order perturbation theory results are given in the Appendices.

II. METHODS

A. General considerations

Before introducing our methods we further characterize
the model and summarize general properties. We assume
that the fermionic leads feature particle-hole symmetric
bands, that is that wave numbers come in pairs such that
εk′ = −εk . Under the transformation d† → d, c

†
α,k → −cα,k′ ,

and b → −b − λ/ω0 the Hamiltonian Eqs. (1)–(4) then
becomes invariant provided the molecular dot level energy
is chosen as ε0 = Ep ≡ λ2/ω0. One obtains nd(ε0) = 〈d†d〉 =
1 − nd(Ep − [ε0 − Ep]) such that ε0 = Ep corresponds to half
filling of the molecular level. This defines the particle-hole
symmetric point of the model. The quantity ε0 − Ep, which
controls the charge on the molecular dot, can be taken as the
gate voltage on the dot.

As we are not interested in effects of details of the
fermionic bands we take the so-called wide band limit and
consider structureless reservoirs with constant density of states
ρlead(ω) = ρlead for ω ∈ [−D,D], with the band width 2D; it
vanishes outside this energy interval. Integrating out the leads
produces a reservoir contribution to the molecular self-energy
of the form 
res(iξn) = −i�sgn (ξn), � = 2πt2ρlead. Here
ξn denotes a fermionic Matsubara frequency. For λ = 0 the
single-particle Green function of the molecular level is then
given by

G0
mol(iξn) = [iξn − ε0 + i�sgn (ξn)]−1 (7)

and the corresponding spectral function is a Lorentzian of
width �.

B. The functional RG

To set up our FRG approach following the standard proce-
dure [28] we integrate out the phonons in a functional integral
approach to the many-body problem (see, e.g., Ref. [21]). This
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way we end up with a purely fermionic action with a local
“on-molecule,” attractive, and retarded (frequency dependent)
two-particle interaction of the form

U (iνn) = − 2ω0λ
2

ν2
n + ω2

0

. (8)

Here νn denotes a bosonic Matsubara frequency. For this
action we employ the FRG in its lowest order truncation
with a bare two-particle vertex and a flowing self-energy
[28]. It is controlled for small to intermediate λ but due
to resummation of certain classes of diagrams inherent to
the RG procedure goes beyond simple perturbation theory.
In particular, it was shown that this truncation captures the
power-law renormalization of the tunnel coupling in the
IRLM with an exponent which agrees with the exact one to
leading order in the two-particle interaction [29]. As already
mentioned in the introduction this piece of renormalization
physics will also become essential in the antiadiabatic limit
of the SAHM. Further justification of our approximation will
be given a posteori by comparing to the exact result in the
antiadiabatic limit as well as to NRG results for general �/ω0.

In contrast to earlier applications of lowest order FRG
to correlated quantum dots [29,30] the self-energy acquires
a frequency dependence via the frequency dependence of

the fermionic interaction. The present study must also be
contrasted to an earlier work in which the Anderson-Holstein
model with spin was studied employing FRG [21,31]. In this
the focus was on the Kondo physics in the presence of a local
phonon mode (mainly in bias-voltage driven nonequilibrium)
which requires a truncation of the FRG equations to higher
order.

From now on we consider the zero temperature limit in
which the Matsubara frequency becomes continuous. In our
scheme the RG cutoff  is introduced via this frequency. In
the functional integral representation of the quantum many-
body problem we replace the reservoir-dressed noninteracting
molecular propagator Eq. (7) by G

0,
mol (iν) = G0

mol(iν)�(|ν| −
). Initially we take  → ∞ to suppress any free propagation.
The action is thus purely given by the interaction Eq. (8).
The propagation is now turned on successively by sending
 to 0; at  = 0 the cutoff-free problem is recovered. This
procedure avoids logarithmic divergencies which might appear
in a single-step perturbative treatment (see, e.g., Ref. [29] for
the IRLM). Employing the generating functional of the one-
particle irreducible vertex functions and replacing the flowing
effective two-particle interaction by the bare one this procedure
boils down to a set of coupled differential flow equations for
the self-energy [28]. In the present case they read

∂ε(iν) = − 2Ep

π

ε(i)

[ + � − γ (i)]2 + [ε(i)]2
+ 1

π

ω0λ
2

(ν − )2 + ω2
0

ε(i)

[ + � − γ (i)]2 + [ε(i)]2

+ 1

π

ω0λ
2

(ν + )2 + ω2
0

ε(−i)

[− − � − γ (−i)]2 + [ε(−i)]2
, (9)

∂γ (iν) = − 1

π

ω0λ
2

(ν − )2 + ω2
0

−− � + γ (i)

[+ � − γ (i)]2 + [ε(i)]2
− 1

π

ω0λ
2

(ν + )2 + ω2
0

+ � + γ (−i)

[−− � − γ (−i)]2 + [ε(−i)]2
,

(10)

with the real functions ε(iν) and γ (iν) where 
(iν) =
ε(iν) + iγ (iν). The initial conditions are

ε→∞(iν) = ε0 − Ep, γ →∞(iν) = 0. (11)

Note that not only the flow of the real and imaginary parts of

 are coupled but also the one of the self-energy at different
frequencies [via ε(±i) and γ (±i) appearing on the right
hand sides]. From the structure of the right hand sides and the
symmetry of the initial conditions it is apparent that ε(iν)
is even in ν while γ (iν) is odd; in the following we employ
this.

Discretizing the Matsubara frequency on an appropriate
grid (which might not necessarily be equidistant; see below,
in particular Appendix A) this set of equations can easily
be solved on a computer. When later presenting data of the
numerical solution of the FRG flow equations we always
verified that convergence with respect to the grid size as well
as the lower and the upper bound of the grid was achieved.

C. Perturbation theory in λ/ω0

From FRG truncated to first order it is easy to obtain the
self-energy in lowest order perturbation theory. For this one
simply has to switch off the feedback of the self-energy on

the right hand sides of the flow equations and replace the
initial condition Eq. (11) for ε→∞(iν) by ε0 [28]. Then the
differential equations for the real and imaginary part decouple
and can be integrated leading to the Hartree and Fock parts



pt
H = −Ep

[
1 − 2

π
arctan

(ε0

�

)]
, (12)



pt
F (iν) = λ2

2π
[(d̃+ − d̃−) ln {−� + iε0} − d̃+ ln{ν + iω0}

+ d̃− ln{ν − iω0} − (d+ − d−) ln{� + iε0}
+ d+ ln{ν + iω0} − d− ln{ν − iω0}
− iπ (d̃+ − d̃−) sgn (ε0) − iπ (d+ + d−)], (13)

respectively, with

d± = −1

ε0 ± ω0 − i(ν + �)
, d̃± = −1

ε0 ± ω0 − i(ν − �)
. (14)

These expressions can equivalently be obtained by straight-
forward diagrammatic perturbation theory. The analytic con-
tinuation to the real frequency axis can be performed leading

195155-3



A. KHEDRI, T. A. COSTI, AND V. MEDEN PHYSICAL REVIEW B 96, 195155 (2017)

to


pt,R(ν) = −Ep

[
1 − 2

π
arctan

(ε0

�

)]

+ λ2

2π

∑
s=±

[
iπ�as sgn (ν + sω0)

+ �as ln
{
ε2

0 + �2}− 2�as ln |ν + sω0|
− 2as(ν + sω0 − ε0) arctan

(ε0

�

)

+ π

ν − sω0 − ε0 + i�

]
(15)

for the retarded self-energy in first order (in λ2) perturbation
theory. Here

a± = ±[(ν ± ω0 − ε0)2 + �2]−1. (16)

The perturbative self-energy shows logarithmic singularities
for frequencies ν = ±ω0 leading to zeros in the spectral
function (see Appendix C).

To maintain the particle-hole symmetric point it is more
appropriate to consider first order perturbation theory with a
propagator dressed by a self-consistently determined Hartree
self-energy. For this ε0 on the right hand sides of Eqs. (12)–(16)
must be replaced by ε0 + 
H and Eq. (12) must be solved
self-consistently. This procedure will be used in the following.

D. The numerical RG

We briefly introduce the NRG procedure applied to the
SAHM which provides an accurate description of physical
properties in all parameter regimes of interest to us. The main
ingredient of this approach is the logarithmic discretization
of the reservoir(s) dispersion εk → ε±,n,n = 0,1, . . . with
ε±,n=0 = ±D and ε±,n = ±D−n+1−z,n = 1,2, . . . . It is con-
trolled via two parameters, namely the scale parameter  (→
1) and the so-called z-averaging parameter z which takes Nz

values ∈ (0,1]. The scale parameter characterizes the relative
spacing of the energy intervals while the z-averaging parameter
provides different realizations of the discretized band with the
same relative spacing. Averaging physical observables over
such different realizations largely eliminates discretization
induced oscillations in physical quantities occurring at scale
parameters  > 1 [32].

The scale parameter  used in NRG should not be confused
with the FRG cutoff . In the respective literature on NRG
and FRG using this symbol for the two parameters is standard
and we thus accept this double meaning.

The next crucial step is the mapping to a semi-infinite chain
where the impurity is only coupled to the first site (representing
a single conduction fermion degree of freedom). Following the
standard tridiagonalization procedure [33–35], we can find the
desired chain Hamiltonian as H = HM→∞, where

HM = Hmol +
√

�

πρlead

2∑
α=1

(d†fα,0 + H.c.)

+
2∑

α=1

M∑
n=0

t zn(f †
α,nfα,n+1 + H.c.), (17)

{fα,n} is a new set of mutually orthogonal (Wannier orbital)
operators constructed from linear combinations of the original
set {cα,±n} (defining the logarithmically discretized band) and
t zn ∼ − (n−1+z)

2 is the hopping amplitude from the nth site of
the chain to the (n + 1)th one. An iterative diagonalization
can be set up using the following recursive formula between
the truncated Hamiltonians

HM+1 = HM + t zn(f †
α,nfα,n+1 + H.c.). (18)

This can also be regarded as the RG transformation T such
that T [HM ] = HM+1 [34]. The maximum chain length N ,
required to describe the full spectrum of the Hamiltonian H at
zero temperature, can be chosen such that β−1

N ≡ 
−(N−1)

2 �
� exp {−(λ/ω0)2} to capture the well known polaronic sup-
pression [1,24].

The dimension of the Hamiltonian matrix in the very
first iteration, HM=−1 = Hmol, is already infinite due to the
presence of bosonic degrees of freedom. However, as has
been established earlier [6], we can resolve the low-energy
behavior of the system with a finite number of bosons Nb;
for a given electron-phonon coupling λ one has to keep
� ((λ/ω0)2 + 5λ/ω0) phonons [36]. Therefore, the dimension
of the Hilbert space of HM=−1 = Hmol is 2 × Nb at the first
iteration and it grows by a factor of 4 at each stage. Due
to this exponential growth in the dimension of the Hilbert
space, we are forced to neglect high-energy states beyond
some iteration m = m0 and retain only the first Ns (∼1500)
low-energy states, thereby keeping the calculations feasible at
each iteration m = m0,m0 + 1, . . . .

To calculate a dynamical quantity, such as the molecular
dot spectral function A(ν) ≡ − 1

π
Im{GR

mol(ν)}, with GR
mol(ν) =

〈〈d; d†〉〉ν+iη = −i
∫∞

0 dt〈[d(t),d†(0)]+〉ei(ν+iη)t , η → 0+ and
〈· · · 〉 denoting the thermal expectation value, we follow the
procedure of Ref. [32]. At vanishing temperature and a given
frequency ν, we choose the best shell M for this frequency
such that t zM−1 � ν < tzM−2 and obtain

A(ν) = 1

ZM

Ns∑
n,l=1

|〈n|d|l〉|2δ(ν − EM
n + EM

l

)

× (e−βN EM
n + e−βN EM

l

)
. (19)

Here ZM =∑n exp{−βNEM
n } denotes the partition function

of the best shell M; {|n〉} are the eigenvectors and {EM
n } the

eigenvalues of HM . We use the standard logarithmic Gaussian
broadening with dimensionless parameter b = 0.3 [35].

The phonon contribution to the fermionic (retarded) self-
energy 
R(ν) at frequency ν can be calculated within
NRG in terms of the retarded Green functions F R(ν) =
〈〈(b + b†)d†; d〉〉ν+iη and GR

mol(ν) via 
R(ν) = F R(ν)
GR

mol(ν)
[19,37].

Using 
R(ν), and the exact self-energy contribution from
the reservoirs −i�, allows the spectral function A(ν) to be
calculated via

A(ν) = − 1

π
Im

{
1

ν − ε0 − 
R(ν) + i�

}
. (20)

This approach to calculating A(ν) can significantly improve
the spectral function as compared to Eq. (19), as discussed in
more detail in Ref. [37]. For all the subsequent calculations,
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we used  = 4, Nz = 4 [only for Fig. 6(a), we used Nz = 6],
Nb = 40 (see Appendix B) and � = 10−5D.

III. RESULTS

A. The effective tunneling rate at particle-hole symmetry:
Analytical insights

As a first application we study the FRG flow equations at
the particle-hole symmetric point ε0 = Ep. In this case the
initial condition Eq. (11) for the effective level position is
ε→∞(iν) = 0. The flow equation (9) then implies ε = 0 for
all . The remaining equation (10) can be simplified to

∂γ (iν) = 4ω0λ
2

π

1∣∣ + � − γ (i)
∣∣

× ν[
(ν − )2 + ω2

0

][
(ν + )2 + ω2

0

] . (21)

Defining a frequency grid this equation can easily be solved
on a computer using standard routines. For details on this, see
Appendix A. The propagator of the molecular level at the end
of the RG flow is given by (ν � 0)

Gmol(iν) = [iν + i� − iγ (iν)]−1, (22)

where we defined γ (iν) = γ =0(iν).
To read off the renormalized tunnel coupling we Taylor

expand

γ (iν) = γ 
1 ν + γ 

3 ν3 + · · · (23)

employing that γ (iν) is odd and rewrite the propagator for
small ν at the end of the flow as

Gmol(iν) ≈ (1 − γ1)[iν + i�/(1 − γ1)]−1. (24)

From this expression the renormalized tunneling rate follows
as

�eff = �/(1 − γ1) ≈ �(1 + γ1), (25)

where in the last step we used that γ1 is small if λ � ω0. In
fact, the second expression to relate �eff and γ1 turns out to be
more consistent.

Using Eqs. (21) and (23) we can write down a flow equation
for the dimensionless first Taylor coefficient γ 

1 of γ (iν)

∂γ 
1 = 4ω0λ

2

π

1

| + � − γ (i)|
(

2 + ω2
0

)2 (26)

which, however, is not closed as the full function γ (iν)
appears on the right hand side. The use of this equation
thus requires further considerations. Before presenting these
in Sec. III A 2 we next use Eq. (26) to derive an expression for
�eff in lowest order perturbation theory.

1. Lowest order perturbation theory in λ/ω0

For ε0 = Ep a self-consistent solution of the Hartree equa-
tion [Eq. (12) with ε0 → ε0 + 
H] is given by 
H = −Ep. It
turns out to be unique as long as Ep/� = λ2/(ω0�) < π/2.
Thus ε0 + 
H appearing on the right hand side of the Fock
part of the self energy computed with the Hartree propagator
[Eq. (13) with ε0 → ε0 + 
H] vanishes in this case and

Eq. (26) with the self-energy feedback set to zero provides
an equation for γ1 to lowest order in λ2. It reads

∂

(
γ

pt
1

) = 4ω0λ
2

π

1

 + �

(
2 + ω2

0

)2 (27)

and can be integrated from  = ∞ down to  = 0 employing

the initial condition (γ pt
1 )

=∞ = 0. Inserting γ
pt
1 = (γ pt

1 )
=0

into the second relation of Eq. (25) we obtain in lowest order
perturbation theory

�
pt
eff

�
= 1 −

(
λ

ω0

)2
[

1 +
(

�

ω0

)2
]−2

×
[
1 + 4

π

�

ω0
ln

�

ω0
+ �

ω0

{
2

π
− �

ω0
+ 2

π

(
�

ω0

)2
}]

.

(28)

In the adiabatic limit � � ω0 this reduces to the well known
result [19,38]

�
pt
eff

�
= 1 − 2

π

(
λ

ω0

)2
ω0

�
+ O([ω0/�]2)

= 1 − 2

π

Ep

�
+ O([ω0/�]2). (29)

In the antiadiabatic regime � � ω0 we obtain

�
pt
eff

�
=1−

(
λ

ω0

)2[
1+ 4

π

�

ω0
ln

�

ω0
+ 2

π

�

ω0
+ O({�/ω0}2)

]
.

(30)

This result should be compared to the lowest order Taylor
expansion in λ/ω0 of Eq. (5) obtained by the mapping to an
IRLM

�IRLM
eff

�
= 1−

(
λ

ω0

)2
[
1+ 4

π

�

ω0
ln

�

ω0
+O

({
�

ω0
ln

�

ω0

}2
)]

.

(31)

This shows that the mapping only holds up to order �
ω0

ln �
ω0

(at least for small λ/ω0); already the linear term ∼�/ω0 is not
properly represented. This defines the limit of the mapping of
the SAHM to the IRLM in the antiadiabatic regime.

2. Approximate solution of the FRG equation

When numerically integrating the full lowest order flow
equation (21) from  = ∞ to  = 0, γ (i) takes sizable
values [starting at γ =∞(iν) = 0 for all ν] only when  is
so small that one can linearize γ (i) ≈ γ 

1 . Inserting this
expansion on the right hand side of Eq. (26) leads to a closed
equation for γ 

1

∂γ 
1 ≈ 4ω0λ

2

π

1

1 − γ 
1

1

 + �

1−γ 
1

(
2 + ω2

0

)2 . (32)

As γ 
1 ∼ λ2 we can further expand

∂γ 
1 ≈ 4ω0λ

2

π

(
1+ γ 

1

) 1

+ �
(
1+ γ 

1

) (
2 + ω2

0

)2 . (33)
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For � � ω0 the last factor of Eq. (33) ensures that γ 
1

changes significantly only on the scale  ≈ ω0. In this regime
�γ 

1 in the denominator of the second to last factor can be
neglected as compared to  + �. In this antiadiabatic regime
the differential flow equation thus reduces to

∂

(
1 + γ 

1

)
1 + γ 

1

= 4ω0λ
2

π

1

 + �

(
2 + ω2

0

)2 , (34)

which according to Eq. (25) is a flow equation for �eff/�.
Remarkably the right hand side has exactly the form
as obtained in perturbation theory Eq. (27). Rewriting
Eq. (33) as

∂γ 
1 = 4ω0λ

2

π

(
1 + γ 

1

) 1

 + �

1

1 + �γ 
1

+�

(
2 + ω2

0

)2 (35)

it is obvious that in the adiabatic limit �γ 
1 /( + �) can be

neglected as compared to 1 and we recover Eq. (34); it is thus
tempting to conclude that Eq. (34) is valid for all �/ω0. The
solution of this equation is given by

�FRG
eff

�
= exp

⎧⎨
⎩−
(

λ

ω0

)2
[

1 +
(

�

ω0

)2
]−2

×
[
1+ 4

π

�

ω0
ln

�

ω0
+ �

ω0

{
2

π
− �

ω0
+ 2

π

(
�

ω0

)2
}]⎫⎬
⎭.

(36)

Figure 1 shows that for sufficiently small λ, in which our
lowest order FRG approach is controlled, Eq. (36) agrees rather
well with the �eff obtained from the numerical solution of
the full lowest order flow equation (21) as well as with the
renormalized tunneling rate computed using NRG for all �/ω0;
for more, see the next section.

In the adiabatic regime � � ω0 Eq. (36) reduces to the
perturbative result Eq. (29). In the opposite antiadiabatic limit
� � ω0 in which only the term �

ω0
ln �

ω0
in the argument

of the exponential function in Eq. (36) is kept we exactly
reproduce the small λ result for �eff obtained by the mapping
to the IRLM Eq. (5). The lowest order truncated FRG thus
provides a proper resummation of diagrams (perturbative
in λ) to reproduce the involved interplay of exponential
(polaronic) as well as power-law (x-ray edge) renormalization
in the electron-phonon coupling λ. From the perspective of
the method this remarkable result provides another example
that essentially analytical truncated FRG, which leads to
transparent equations, can be used to study complex many-
body physics including correlation effects [28–30]. From the
perspective of the physics Eq. (36) provides a remarkably
simple closed expression for the renormalized tunneling rate
at small to intermediate electron-phonon coupling λ going
way beyond lowest order perturbation theory in λ which is
(approximately) valid for all �/ω0.

B. Numerical results for the effective tunneling rate
at particle-hole symmetry

We want to verify the validity of the approximated tunneling
rate Eq. (36) obtained analytically in the previous section, by

FIG. 1. (a) and (b): The ratio of the effective tunneling rate �eff

to the bare value � as a function of �/ω0 using different approaches.
(c) The ratio (λ/ω0)−2 ln (�eff/�) as a function of �/ω0 for different
electron-phonon couplings computed within NRG.

comparing it to the numerical solution of the full first order
truncated FRG flow equation (21) and also to NRG results. In
NRG, the renormalized tunneling rate is calculated from the
charge susceptibility:

�eff = 1

πχc
, (37)

with

χc = −dnmol(ε0)

dε0

∣∣∣∣
ε0=Ep

. (38)
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The occupancy nmol of the molecular level can be calculated as

nmol = 1

ZN

∑
n

〈n| d†d |n〉 e−βN EN
n , (39)

with {EN
n } and {|n〉} being the eigenvalues and the eigenvectors

of the longest chain Hamiltonian HN .
As mentioned before, the RG resummation within lowest

order truncated FRG is well controlled up to first order in λ2.
After numerically solving the full flow equation (21) for γ (ν)
for consistency we thus compute the effective tunneling rate as
in Eq. (25) by expanding �eff/� ≈ 1 + dγ (iν)

dν
|
ν=0

. The details
of the numerical implementation of the solution of the flow
equation can be found in Appendix A.

Figure 1(a) shows a comparison of �eff obtained by the
different methods introduced for electron-phonon coupling
λ = 0.5ω0 all the way from the antiadiabatic limit to the adi-
abatic one (note the logarithmic x-axis scale). In the adiabatic
limit the results of all the methods agree very well, however,
as we approach the antiadiabatic limit, the purely perturbative
result Eq. (28) starts to deviate. In particular, it fails to produce
the result obtained from the mapping to the IRLM Eq. (5); in
the antiadiabatic regime the physics is nonperturbative even at
fairly small λ/ω0. The nice match of the NRG and the FRG
data sets proves that this physics can indeed be captured within
lowest order truncated FRG. Additionally, the agreement of the
analytical expression Eq. (36) to the result from the numerical
solution of the full flow Eq. (21) [‘FRG’ in Fig. 1(a)] verifies
the validity of the approximations introduced in Sec. III A 2.

The phonon-assisted suppression of tunneling processes
depends on the strength of the electron-phonon coupling,
as it is shown in Fig. 1(b). As we approach the strong
coupling regime λ > ω0, higher order coefficients in the
Taylor expansion of the self-energy feedback in Eq. (23)
produce sizable contributions. Therefore the solution of the
first order truncated FRG Eq. (21) becomes different from
the approximated formula Eq. (36), which was obtained by
including the linear coefficient γ1 only. The approximated
formula matches better with the NRG data as compared to
the results obtained from the numerical solution of the full
lowest order truncated FRG for λ ≈ ω0 which, however, must
be regarded as accidental.

Figure 1(c) shows that also the NRG data for �eff approx-
imately follow a scaling form as it is exactly fulfilled in the

approximate (in λ2) expression Eq. (36); ( λ
ω0

)−2 ln (�FRG
eff
�

) is
only a function of ω0

�
. This seems to be valid even for λ � ω0

as long as we stay away from the crossover regime between
antiadiabatic and adiabatic; in this the exact solution and thus
the highly accurate NRG approximation to the latter contains
λ/ω0 dependent corrections to the simple scaling form. This
insight is consistent to the earlier study [25], where it was
found that in the strong coupling regime the aforementioned
ratio is a function of Ep/�.

We address the two extreme antiadiabatic and adiabatic
regimes separately in Fig. 2. In the adiabatic limit, the slow
molecular vibrations cannot change the charge fluctuations
significantly; conventional perturbation theory suffices and
matches well with other methods [see Fig. 2(a)]. As we go
sufficiently deep into the adiabatic regime, we obtain the well
known asymptotic behavior Eq. (29). We note in passing that

FIG. 2. (a) 1 − (�eff/�) as a function of Ep/� for ω0 = 0.2�

and ω0 = 0.02� (adiabatic limit). (b) 1 − (�eff/�) as a function of
(λ/ω0)2 for ω0 = 103� (antiadiabatic limit).

in Ref. [19] the ratio �/ω0 was not chosen large enough to
properly reproduce the simple expression Eq. (29); for the
value considered in this work corrections in ω0/� as given in
Eq. (28) must be kept.

Figure 2(b) shows that in the antiadiabatic limit, perturba-
tive results start to deviate already for small electron-phonon
couplings. The overall physical picture is the following:
phonons induce a retarded and attractive fermion-fermion
interaction on the dot [see Eq. (8)] and therefore, the tunneling
processes from the dot into the leads are suppressed. This
suppression is more significant in the antiadiabatic regime,
where phonons are quite fast compared to the tunneling
processes.

C. Gate voltage dependence of the T = 0 electrical conductance

Having investigated within perturbation theory, FRG and
NRG the emergent low-energy scale �eff at particle-hole
symmetry, we now turn to the case of finite particle-hole
asymmetry and investigate how this scale manifests itself in the
gate voltage dependence of the T = 0 electrical conductance,
making comparisons between the different approaches. Within
the FRG approach, as formulated here in Matsubara space,
one would need to analytically continue the molecular dot
Green function to the real axis in order to calculate the linear

195155-7



A. KHEDRI, T. A. COSTI, AND V. MEDEN PHYSICAL REVIEW B 96, 195155 (2017)

FIG. 3. Comparison of the different approaches to compute the
T = 0 linear conductance as a function of the gate voltage ε0 − Ep

for a given phonon frequency ω0 = 2� in the weak coupling regime
(λ = 0.5ω0).

conductance from the molecular spectral function [39] as it is
often done. This analytic continuation is an ill-posed problem.
We can, however, compute the linear conductance as a function
of the (bare) level position from the FRG self-energy data
without performing the analytic continuation by employing a
continued fraction (CF) representation of the Fermi function f

f (βν) = 1

2
− 1

β

M∑
p=1

{
Rp

ν − i
zp

β

+ Rp

ν + i
zp

β

}
(40)

at inverse temperature β. Here the M poles zp

β
and residues Rp

can be calculated as proposed in Refs. [40,41]. The poles are
concentrated densely close to the real axis and they are further
apart as we go up and down the imaginary axis. This leads
to a very fast convergence of the sum in Eq. (40) as compared
to the Matsubara representation. To obtain the conductance
at vanishing temperature we choose a sufficiently small
β−1 = 10−4�FRG

eff . Employing the above mentioned relation
between the molecular spectral function A(ν) and the linear
conductance G we obtain [39]

G

G0
= −π�

∫ ∞

−∞
dνA(ν)∂νf (βν)

= 2π�

β

M∑
p=1

RpIm

[
dGmol

(
i

zp

β

)
d
( zp

β

)
]
, (41)

where G0 = e2/h, with e and h denoting electric charge and
Planck’s constant, respectively.

To test the CF approach in the present context in Fig. 3
we compare the linear conductance obtained from the self-
energy in lowest order perturbation theory after performing
the analytic continuation as in Eq. (15) [using the first
line of Eq. (41)] (dashed line) and the continued fraction
representation employing Matsubara frequency data as in
Eqs. (12) and (13) [using the last line of Eq. (41)] (plus signs).
Both conductance curves agree well. For the weak interaction
of this figure, and on the scale of the plot, perturbation theory
matches the FRG data (obtained from the continued fraction

FIG. 4. Comparison of FRG (dashed lines) and NRG (stars)
results for the zero temperature linear conductance as a function
of the gate voltage ε0 − Ep for different strength of electron-phonon
couplings in the antiadiabatic limit (ω0 = 103�). The inset shows
the zero temperature conductance from NRG as a function of the
rescaled gate voltage (ε0 − Ep)/�eff for different strength of the
electron-phonon coupling in the antiadiabatic limit (ω0 = 103�).

representation; circles) as well as the NRG ones (stars). The
latter were obtained from the spectral weight A(ν = 0) [see the
T = 0 limit of the first line of Eq. (41)]. Due to the presence
of phonons, the linear conductance is narrower as compared to
the noninteracting case. This effect can be captured within
perturbation theory as long as Ep/� < π/2. Therefore, if
we are deep in the antiadiabatic limit, perturbation theory is
limited to extremely small coupling constants λ/ω0.

Figure 4 shows that FRG results for G match very well
to the NRG data for λ/ω0 � 1. The narrowing of the linear
conductance reflects that due to molecular vibrations, small
misalignment of the gate voltage to the chemical potential of
the leads can result in a substantial drop in transport. This is just
another indication of the suppression of tunneling processes.
In fact, if we rescale the level position with the renormalized
tunneling rate �eff , all the NRG curves corresponding to
different strengths of electron-phonon coupling collapse, with
good accuracy, to the noninteracting curve as shown in the
inset of Fig. 4. This shows that �eff is the relevant low-energy
scale also away from particle-hole symmetry; the width of the
linear conductance resonance as a function of the level position
is given by �eff .

IV. SUMMARY AND OUTLOOK

Using a combination of lowest order perturbation theory,
(truncated) FRG, and NRG we studied phonon assisted tunnel-
ing in an elementary model of a molecular electronics device.
Complementing an earlier strong coupling study [25] our focus
was on weak to intermediate electron-phonon coupling. We
derived an analytic expression for the renormalized tunnel
coupling at particle-hole symmetry valid for all ratios �/ω0

from the antiadiabatic into the adiabatic regime. It captures
the combined exponential (polaronic) and power-law (x-ray
edge singularity) renormalization in the antiadiabatic limit
known from the mapping to an effective IRLM. Away from
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particle-hole symmetry we investigated the influence of the
emergent low-energy scale �eff on the T = 0 electrical conduc-
tance, comparing also the results within different approaches.

In a followup paper [27], we consider a (small) temperature
bias as the driving force and in this way extend our study to
linear thermoelectric properties of molecular devices. Such
devices are considered to be promising building blocks for
waste heat conversion and cooling on the molecular level
[42,43]. Indeed, in Ref. [27], employing the NRG [44], we find
parameter regimes where the linear thermoelectric response
through such a device is significantly enhanced.

In the near future we plan to further extend the FRG
to the Keldysh contour [21,29,45] in order to compute the
equilibrium spectral function without the need for an analytic
continuation. This will in addition enable us to investigate the
nonlinear (finite voltage and temperature bias) thermoelectric
transport properties of molecular devices described by the
SAHM.
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APPENDIX A: NUMERICAL IMPLEMENTATION OF
THE FLOW EQUATIONS

To solve the coupled differential Eqs. (9) and (10), first
we discretize the Matsubara frequency. In the light of the
emergent low-energy scale, we use the following logarithmic
grid to resolve the low-frequency regime better

νk = �
2k − Ntot

Ntot
exp

{ |Ntot − 2k| − Ntot

S

}
, (A1)

with k = 0,1, · · · Ntot. It distributes Ntot + 1 frequencies sym-
metrically around zero (Fermi level) in interval [−�,�].
With parameter S, we can control the concentration of
points around zero. We choose the parameters such that the
desired convergence (10−10 in units of ω0) is achieved. Linear
interpolation is used to evaluate the feedbacks ε(i) and
γ (i) on the right-hand side of Eqs. (9) and (10). The set
of 2(Ntot + 1) differential equations can then be solved using
standard adaptive routines.

APPENDIX B: PHONON PARAMETERS

The minimum number of phonons required to resolve
the low-energy behavior of the system depends on the
strength of the electron-phonon coupling. Figure 5 shows the
convergence of the effective tunneling rate with the number
of phonons retained. We used Nb = 40 phonons throughout,
which suffices to obtain converged results for all parameters
used.

FIG. 5. The ratio of the effective tunneling rate �eff to the bare
value � as a function of Nb for different electron-phonon couplings
in the antiadiabatic limit (ω0 = 100�).

FIG. 6. Comparison of the molecular spectral function obtained
from perturbation theory (solid lines) and NRG (dashed lines). (a)
shows the spectral function at the particle-hole symmetric point ε0 =
Ep for different �/ω0 at a fixed electron-phonon coupling λ = 0.7ω0

as a function of ν/�. Note the logarithmic x-axis scale. (b) depicts
the spectral function at different gate voltages for ω0 = 1.5� and
λ = 0.5ω0 as a function of ν/ω0.
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APPENDIX C: NRG AND PERTURBATION THEORY
COMPARISONS FOR THE T = 0 SPECTRAL FUNCTION

In the FRG approach, as formulated here, we have access
to the propagator of the molecular level only in Matsubara
space and hence in order to obtain its spectral function, we
have to perform an analytic continuation to the real axis; this
constitutes an ill-posed problem. It becomes an obstacle as
the self-energy at the end of the RG flow is known only
numerically. This problem was avoided in the calculation of
the conductance in Sec. III C by using a continued fraction
expansion of the Fermi function. While we can obtain results
for spectral functions within FRG by performing the analytic
continuation numerically via a Páde approximation, we found
this to be a quite unstable procedure in the sense that the results
strongly depend on the number of data points and the frequency
grid. An alternative, avoiding analytic continuation altogether,
which we plan to follow in the future, is to use FRG within
the Keldysch formalism, which would also allow accessing
nonequilibrium [21,29,45]. In order, nevertheless, to compare
our results for NRG spectral functions with another method,
we show here comparisons to lowest order perturbation theory.

Figure 6(a) shows the comparison of the spectral function
computed within NRG and perturbation theory at particle-
hole symmetry as we go from the adiabatic limit to the
antiadiabatic one. We see that the central peak gets narrower,
reflecting the suppression of tunneling processes. In addition,
distinctive satellite peaks at multiples of ω0 start to form. In the
antiadiabatic limit, the width of the spectral function calculated
from the two approaches do not quite match in agreement to
our previous discussion of the effective tunneling coupling �eff

[see Fig. 2(b)].
As discussed in connection with Eq. (15) the perturbative

retarded self-energy shows spurious logarithmic divergencies
as ν = ±ω0. These lead to zeros of the spectral function
which manifest as rather sharp dips in Fig. 6. These sharp
features are artifacts of the perturbation theory and are absent
in the NRG results. Similar artifacts of perturbation theory
were found for the spinful Anderson-Holstein model by
comparison to spectral functions obtained from Keldysh FRG
(in equilibrium) [21]. For ε0 > Ep (ε0 < Ep) the central peak,
located at ν = 0 for particle-hole symmetry, is shifted to
the right (left). This effect is captured rather accurately by
perturbation theory for Ep/� < π/2 [Fig. 6(b)].
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