
PHYSICAL REVIEW B 96, 195146 (2017)

Pairing instability near a lattice-influenced nematic quantum critical point
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We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to
a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant
lattice strain restricts criticality only to certain high symmetry directions. This allows a weak-coupling treatment,
even at the QCP. We develop a criterion distinguishing weak and strong Tc enhancements upon approaching the
QCP. We show that negligible Tc enhancement occurs only if pairing is dominated by a non-nematic interaction
away from the QCP, and simultaneously if the electron-strain coupling is sufficiently strong. We argue this is the
case of the iron superconductors.
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I. INTRODUCTION

The origin of high superconducting transition temperature
Tc of the copper and iron based systems remains to be well
understood [1–5]. Among the various possibilities as likely
causes of high Tc, one is that of the presence of a quantum
critical point (QCP) in the vicinity of which the effective
pairing interaction is strong, leading to enhanced Tc. In fact, Tc

boosted by an antiferromagnetic QCP remains among the more
promising scenarios for these systems [6]. A related question,
addressed here, is whether one expects similar enhancement
of Tc close to a nematic QCP, where the ground state is poised
to break discrete rotational symmetry.

Several recent theoretical works on this issue have con-
cluded that, indeed, the superconducting Tc is boosted near
a nematic QCP [7–10]. The motivation for this conclusion is
intuitively clear, at least in the regime where weak-coupling
theory of pairing is applicable. It is well known that, for small
momentum transfer, the effective electron-electron interaction
mediated by the long-wavelength nematic fluctuations leads
to attractive interaction both in the s- and d-wave channels.
This interaction increases as the system approaches a nematic
QCP, leading to larger Tc. References [7,9] have studied the
problem beyond weak coupling, and both have concluded that
the intuitive picture stays intact.

In the phase diagram of the cuprates the location of a
nematic QCP, if present, remains to be well established.
Consequently, at present the Fe-based systems are better suited
to study the issue of Tc enhancement from an experimental
point of view. However, while for most iron based supercon-
ductors (FeSC) the nematic transition line and the QCP is
well identified [11–16], the presence of a magnetic transition
and its associated QCP complicates the matter [5], since it is
hard to disentangle the effects of the two. In this respect an
ideal system is FeSe1−xSx , which has a nematic QCP but not
a magnetic one. Interestingly, in contradiction with the above
theoretical expectations, in this model system the Tc is hardly
affected by the nematic QCP [17–19]. Thus clearly there is a
missing element in the above theories.

In this work we identify the missing element to be a
symmetry-allowed coupling between the electronic nematic
degree of freedom and a lattice shear strain mode. We
show that, once this coupling is included in the theory of
nematic criticality, the presence of a nematic QCP does not

necessarily lead to significant enhancement of Tc. We identify
the conditions under which the enhancement is negligible near
the QCP. This occurs when the following two conditions are
simultaneously satisfied. Namely, (i) the pairing is dominated
by a non-nematic interaction away from the QCP and (ii) if the
electron-strain coupling is sufficiently large. Note, condition
(i) does not trivialize the problem since, by itself, it does not
preclude the nematic term to dominate near the QCP and
provide significant Tc enhancement. Our result provides a route
to understand qualitatively why Tc is unaffected by the nematic
QCP in FeSe1−xSx .

The main physics ingredient of our work is enshrined in
the standard theory of elasticity for an acoustic instability
involving Ising-nematic symmetry, such as a second order
tetragonal-orthorhombic transition. It is well known that, in
this case, the divergence of the correlation length, which
manifests as vanishing acoustic phonon velocity, is restricted
to two high-symmetry directions [20–25]. This is because
along the generic directions the noncritical shear strains, that
are invariably present in a solid, come into play and cut off
criticality. The physics of this cutoff can be also understood as
follows.

Consider a translation symmetry preserving second order
phase transition involving a local variable X (r) = X0 +∑

q �=0 Xqe
iq·r, where X0 is the order parameter. Within

the Landau paradigm the free energy has mean field and
fluctuation contributions. The former has the structure FMF =
(a/2)X 2

0 + (A/4)X 4
0 , while the latter, to Gaussian order, is

related to the action Sfluc = ∑
q �=0(b + q2)|Xq |2. While in

usual theories b = a, in those involving crystalline strains
b(q̂) is no longer a parameter but, rather, a function of the
Brillouin zone angles q̂ containing information about the
crystalline anisotropy [21,22]. In other words, the concept of
correlation length becomes angle dependent. In this situation,
the condition b(q̂) = a is satisfied only for certain high
symmetry directions, and only along these directions the
correlation length diverges at the transition defined by a = 0.
Along other directions b(q̂) > 0, and correlation length stays
finite at the transition.

The above property is inherited by the electronic nematic
subsystem once its coupling with the strain is included [26–28].
This leads to two important conclusions concerning Cooper
pairing, which are the main results of this paper. (i) Under
certain standard assumptions, the weak coupling BCS analysis
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FIG. 1. Schematic phase diagrams with nematic/orthorhombic
(orange) and superconducting (yellow) phases below temperatures
Ts(r) and Tc(r), respectively. r is a dimensionless control parameter.
T0(r) (dotted lines) is the nominal electron-nematic transition in the
absence of nematoelastic coupling. The coupling shifts the nematic
quantum critical point (QCP) from r = 0 to r = r0. r0 is a measure
of the strength of the coupling (see text). Panels (a) and (b) are two
possible scenarios. In (a) there is “strong” enhancement of Tc(r) at
the QCP. In (b) the enhancement is “weak,” as in FeSe1−xSx [17–19].
We show that (b) occurs if the pairing is dominated by a non-nematic
potential away from the QCP, and simultaneously if the nematoelastic
coupling is sufficiently strong [see Eq. (5)].

remains valid arbitrarily close to the nematic QCP. (ii) We
identify the criterion that distinguishes between strong and
weak Tc enhancements upon tuning the system to the nematic
QCP (see Fig. 1). The latter occurs only if the pairing
is dominated by a non-nematic interaction away from the
QCP, and simultaneously if the electron-phonon interaction is
sufficiently strong. We argue that this is the case of the FeSC.

II. MODEL

We consider a system of itinerant electrons in a tetragonal
lattice, with negligible dispersion along the z axis, which
is close to a nematic/structural QCP that is driven by
electronic correlations. Ignoring electron-lattice interaction for
the moment, the long wavelength fluctuations of the nematic
variable φq, which is a collective mode of the electrons, is
described by a susceptibility of the standard Ornstein-Zernike

form χ−1
0 (q) = r + q2

2d/(2kF )2, where q2d ≡ (qx,qy), and r is
a dimensionless tuning parameter of the theory that governs
closeness to the QCP. Without the lattice coupling, the bare
QCP is at r = 0. In what follows the frequency dependence of
the susceptibility can be ignored.

A crucial ingredient in the model is the symmetry-allowed
nematoelastic term linking φ(r) with the local orthorhom-
bic strain ε(r) = ε + i

∑
q �=0 [qxux(q) − qyuy(q)]eiq·r, where

ε is the uniform macroscopic strain and �u(r) is the
atomic displacement. ε is nonzero only in the symmetry-
broken nematic/orthorhombic phase. This coupling can be
written as g

∫
dr φ(r)ε(r), where g has dimension of

energy.
The effect of the nematoelastic term on criticality has been

discussed earlier [26–28]. Here, for the sake of completeness,
we recapitulate the main points. (i) It shifts the QCP to
r = r0 ≡ g2ν/C0 (see Fig. 1), where ν has dimension of
density of states and C0 is the bare orthorhombic elastic
constant. Thus r0 is a dimensionless parameter that measures
the strength of the nematoelastic coupling. In the following
we take r0 � r � 1. (ii) The nematoelastic coupling leads to
hybridization of φq with the acoustic phonons [see Fig. 2(a)],
which renormalizes the nematic susceptibility to χ−1 =
χ−1

0 − �, with �(q̂) = (g2/ρ)
∑

μ (aq · ûq,μ)2/ω2
q,μ. Here ρ

is the density, μ is the polarization index, aq ≡ (qx,−qy,0),
and ûq,μ is the polarization vector for the bare acoustic
phonons with angle-dependent velocity v(0)

q̂,μ and dispersion

ωq,μ = v(0)
q̂,μ · q. The above follows simply from integrating

out the lattice variables. Evidently, �(q̂) is independent of
the magnitude q and has fourfold symmetry of the tetragonal
unit cell in the non-nematic phase. Thus the nematoelastic
term makes the mass of φq angle dependent with r →
r(q̂) ≡ r + �(q̂), and criticality, or divergence of correlation
length, is restricted to the high symmetry directions q̂1,2 ≡
(q̂x ± q̂y)/

√
2, for which r(q̂1,2) = 0 at the QCP (see Fig. 3).

Along the remaining directions r(q̂) > 0 at the QCP. Note,
since divergence of χ also implies vanishing of the sound
velocity renormalized by the coupling g, the above direction
dependence is consistent with the fact that only along q̂1,2 the

χ
=

χ0

+ × ×

Wkk

k

−k −k

k

= Uχ(k − k)

fkk

fkk

+ Vkk

FIG. 2. Diagrammatic representation of the relevant microscopic processes. (a) The bare electron-nematic susceptibility (single wavy line)
is dressed (double wavy line) by the nematoelastic coupling (red crosses). The dashed line is an acoustic phonon. (b) The pairing potential Wk,k′

consists of the dressed nematic interaction of strength U , and a non-nematic interaction Vk,k′ (gluon line) of strength V . The former interaction
vertex is accompanied by a form factor fk,k′ . The interesting regime is V > U , i.e., when pairing is dominated by the non-nematic interaction
away from the nematic QCP.
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FIG. 3. Mass of the nematic susceptibility χ , defined as r(q̂) ≡
limq→0 χ−1(q,ω = 0), becomes anisotropic in the presence of the
nematoelastic coupling. In the non-nematic phase the angular depen-
dence of r(q̂) has tetragonal symmetry. (a) Variation of r(q̂) on the
qz = 0 plane (red line) at the nematic QCP. It is zero only along
the high-symmetry directions q̂1,2 ≡ (q̂x ± q̂y)/

√
2 (blue arrows).

(b) For finite qz, r(q̂) ∝ q2
z .

sound velocity vanishes at this nematic/structural transition
[29,30]. (iii) Since the coupling g cuts off divergence along
the generic directions, the effect of the quantum fluctuations is
weak. Therefore, below the temperature scale TFL ∼ r

3/2
0 TF

the system behaves as a Fermi liquid for thermodynamic
and single-electron properties [28]. Here TF is the Fermi
temperature. Above TFL the nematoelastic coupling can be
neglected.

The effective electron-electron interaction mediated by the
nematic variable φq has the form

Hnem = −U
∑

q

χ (q)NqN−q, (1)

where Nq = ∑
k,σ fk,qc

†
k+q,σ ck,σ , in terms of the creation and

annihilation operators of electron with spin σ . The form factor
fk,q = (hk + hk+q)/2, where hk transforms as (k2

x − k2
y). The

parameter U , with dimension of energy, sets the scale of the
nematic interaction.

In the following we solve the linearized BCS equations
for superconducting gap 
k, assuming singlet pairing. This
involves calculating the largest eigenvalue λ satisfying the
relation

λ
k = νFS

∮
FS′

Wk,k′
k′ , (2)

where νFS is the density of states at the Fermi surface,

Wk,k′ = V
(s,d)

k,k′ + Uf 2
k,k′χ (k − k′), (3)

and FS′ implies the k′ integral is restricted to the Fermi surface
[see Fig. 2(b)].

In the above we added a second interaction −V (s,d) of
non-nematic origin that stays constant as a function of r .
Depending on the context, it favors s- and d-wave pairing,
respectively. The addition of V (s,d) can be motivated as follows.
In all likelihood, the pairing in the FeSC and the cuprates is
mediated not just by the nematic fluctuations. In addition,
there is, e.g., short wavelength spin/charge fluctuations [5] or
Mott correlations [3,4] that mediate pairing. Consequently, it
is physical to expect that, close to a nematic QCP, the pairing
potential has a nematic component which is a strong function
of r [included in χ (q)], and it has a non-nematic component

which does not vary with r (represented by V (s,d)). Note, in
what follows the precise microscopic origin and structure of
V (s,d) is not relevant. Besides this physical relevance, as we
show below, the inclusion of V (s,d) is crucial to distinguish the
two limiting cases of “strong” and “weak” enhancement of Tc

upon tuning the system to the nematic QCP with r → r0.
Our goal is to study how λ(r) changes as the system is

tuned to the QCP, from which we can deduce the variation
of Tc ∼ �e−1/λ, where � 
 EF is the high-energy cutoff
of the pairing problem. Note, an important consequence
of the coupling g is that it is now possible to consider
the case where Tc(r0) < TFL, the Fermi liquid scale. For
T < TFL the dynamics of the nematic pairing potential is
irrelevant, and the problem can be treated within BCS
formalism.

In the above model λ(r) increases monotonically as the
system approaches the QCP, since the nematic interaction itself
is attractive and monotonic. However, the crucial question is
whether this increment is significant. To address this issue
quantitatively, we define δλ ≡ λ(r = r0) − λ(r = 1), and we
distinguish between strong and weak enhancements of Tc,
depending on whether δλ � λ(r = 1) or not, respectively.
Qualitatively, this criteria distinguishes between whether
pairing is dominated by long wavelength nematic fluctuations
or by a non-nematic pairing interaction at the QCP.

III. RESULTS

The momentum anisotropy of the susceptibility χ (q) due
to the coupling g can be modeled as follows. (a) For qz �
q2d , we get χ−1(q) ≈ r(q̂) + q2

2d/(2kF )2. The anisotropic
mass r(q̂) has tetragonal symmetry, and satisfies r(q̂1,2) = 0
at the QCP. The simplest function consistent with these
requirements is r(q̂) = (r − r0) + r0(qz/q2d )2 + r0 cos2 2φq,
where φq is the azimuthal angle of q (see Fig. 3). This
region of q space also contains the critical modes. (b)
For qz � q2d , the nematoelastic coupling can be neglected
and χ (q) ≈ χ−1

0 (q) = r + q2
2d/(2kF )2. However, this does not

imply singular susceptibility at the QCP, since its location is
shifted from r = 0 to r = r0. In this region of q space the
modes are, thus, noncritical.

The main qualitative physics can be already illustrated by
considering the simplest case of a single band with a cylindrical
Fermi surface around the Brillouin zone center, and where the
noncritical pairing term supports s-wave gap with V

(s)
k,k′ = V >

0. The details of the calculation are given in the Appendix. For
a uniform gap the leading r dependence of the eigenvalue
λ(r � r0) is given by

λ/νFS = V + U

2
√

r
− U

π
(ln max[r − r0,r0] + c1), (4)

where c1 = 8/3 − 2 ln 2 ≈ 1.28 is nonuniversal. In the right-
hand side (RHS) of the above the second term comes from
the momentum space (b), as discussed above, where the
fluctuations are massive and noncritical, while the third
term comes from the region (a) which includes the critical
modes. However, since the critical momentum space is rather
restricted (equivalently, the critical theory can be mapped
to an isotropic model in effective space dimension deff = 5
[24]), its contribution to the eigenvalue is subleading. Thus
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FIG. 4. Calculated variation of the BCS eigenvalue λ(r) (main
panel) and the associated superconducting transition temperature
Tc(r) (inset) upon tuning the system to the nematic QCP at r = r0. The
pairing kernel is shown graphically in Fig. 2. Large enhancement (blue
curves) of λ and Tc is observed only when the nematoelastic coupling
strength r0 is sufficiently weak [see Eq. (5)]. Note, in this limit, at
the QCP the Tc ∝ e−√

r0/(νFSU ) (not shown) is still a small fraction of
the ultraviolet cutoff �. In the opposite limit of strong nematoelastic
coupling (orange curves) the enhancement is negligible. This limit is
relevant for the Fe-based superconductors such as FeSe1−xSx [17–19].

the leading nematic contribution to λ is from the noncritical
region (b).

Importantly, from the above we deduce that, upon tuning
the system to the QCP by r → r0, the Tc enhancement will be
“significant,” i.e., δλ � λ(r = 1), provided the electron-lattice
coupling is weak enough such that

r0 
 (U/V )2. (5)

Note, if the nematoelastic coupling is ignored we get r0 = 0
and we recover the result of Refs. [7–10], namely, the presence
of a nematic QCP necessarily implies strong Tc increase. Note
also the complete absence of a non-nematic pairing term (V =
0) leads to strong Tc enhancement as well.

As importantly, the opposite limit of weak Tc enhance-
ment, which is relevant for understanding the phase diagram
of FeSe1−xSx , occurs if 1 � r0 � (U/V )2 (see Fig. 4).
Physically, this implies a situation where the following two
conditions are simultaneously satisfied. (i) The pairing is
dominated by a non-nematic interaction away from the
QCP (since V � U ) and (ii) the electron-strain coupling is
sufficiently large [since r0 � (U/V )2]. Note, condition (i)
does not trivialize the issue since, by itself, it does not preclude
the nematic term to dominate near the QCP and provide
significant Tc enhancement. In fact, this is why condition
(ii) comes into play. The origin of condition (i) lies in the
physical expectation that the energy scale generated by the
electron-lattice interaction is well below the Fermi energy,
i.e., r0 
 1.

Besides the case of the isotropic s-wave gap, we also
study the following situations in the Appendix. (i) An
extended s-wave gap, since the lattice-renormalized nematic
interaction is intrinsically anisotropic, and it can give rise to
angular variations of the gap. (ii) Motivated by the cuprates,
we consider the case where the non-nematic interaction

V
(d)

k,k′ = V cos 2φk cos 2φk′ favors a d-wave gap with 
k =

0 cos 2φk. (iii) Motivated by the FeSC we study a system
with Fermi pockets at (0,0), (±π,0), and (0, ± π ), with a
form of V

(s)
k,k′ that leads to s± gap. In all these cases we find that

qualitatively λ(r) is described by Eq. (4), except with different
numerical prefactors. We conclude that the above criterion for
Tc enhancement in Eq. (5) is robust.

IV. CONCLUSION

The strength of the nematoelastic coupling can be estimated
as r0 ∼ (Ts − T0)/TF , where T0 is the nominal nematic
transition temperature of the electron subsystem in the absence
of this coupling (see Fig. 1), accessible from, say, electronic
Raman scattering [15]. In FeSe we get T0 ∼ 10 K and
Ts ∼ 90 K [31]. We estimate the Fermi temperature from
the bottom of the smallest electron pocket as measured
by photoemission above Ts , which is around 25 meV in
FeSe [17,32]. Thus, for FeSe1−xSx we estimate r0 ∼ 0.3
and TFL ∼ 40 K. Note, the condition Tc < TFL, needed for a
weak-coupling theory, is well respected in this case. A similar
estimate for Ba(Fe1−xCox)2As2 yields r0 ∼ 0.05 and TFL ∼
10 K [28]. Since, in this system the maximum Tc ∼ 25 K
is comparable to TFL, a more careful quantitative analysis is
needed.

The estimation of U and V requires a full microscopic
theory of pairing that is currently unavailable. Consequently,
a quantitative application of the theory to real systems is
not possible at present. However, experimentally it is clear
that FeSe1−xSx has a nematic QCP around x ≈ 0.16, but the
superconducting Tc(x) remains remarkably flat around this
doping [17–19]. This can be due to a strong nematoelastic
effect violating the condition in Eq. (5). In turn, this would
imply that the pairing interaction in FeSe1−xSx is mostly
non-nematic in origin. A similar case can also be made for
Ba(Fe1−xCox)2As2, where quantum critical nematic fluctua-
tions have been detected only over a narrow doping range of
x = 0.65–0.75 in the low-T superconducting phase [14]. It
is remarkable that over the same doping range Tc(x) hardly
varies, implying that even here the lattice cutoff is operational.
Thus the domelike structure of Tc(x) over a wider doping range
in Ba(Fe1−xCox)2As2 is likely due to the antiferromagnetic
QCP, while the absence of a magnetic QCP in FeSe1−xSx

results in a flat Tc(x).
To summarize, we argued that nematoelastic coupling can

play a crucial role in determining if superconducting Tc

is strongly enhanced in the vicinity of a nematic quantum
critical point. We showed that, in the presence of a signif-
icant non-nematic pairing interaction, strong nematoelastic
coupling implies that the nematic fluctuations do not boost
Tc significantly. Based on existing experiments on FeSe1−xSx

and on Ba(Fe1−xCox)2As2 we argued that this is likely the
case of the iron-based superconductors. This would imply that
the main pairing interaction is non-nematic in origin in these
materials. More generally, from the perspective of material
design for high temperature superconductivity, we conclude
that (a) hard crystals are better suited for boosting Tc near a
nematic quantum critical point and that (b) the lattice cutoff
can be also avoided provided the non-nematic pairing potential
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is strong enough to guarantee Tc(r = 1) � TFL, in which case
the physics of Refs. [7–10] will be operational.
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APPENDIX

In this appendix we provide the technical details for the
calculation of the BCS eigenvalue λ defined in Eq. (2) of the
main text which is

λ
k = νFS

∮
FS′

Wk,k′
k′ .

The interaction potential is Wk,k′ = V
s,d

k,k′ + Uf 2
k,k′χ (k′ − k).

The form factor fk,k′ = (hk + hk′)/2, where hk transforms as
k2
x − k2

y in the kx − ky plane. A simple choice is hk = cos(2φk),
where φk is the azimuthal angle of k. Note that the nematic
pairing potential is intrinsically anisotropic in the presence of
the nematoelastic coupling. This anisotropy can be taken into
account by dividing the momentum space into two regions, (a)
qz � q2d and (b) qz � q2d , and by working with asymptotic
forms of χ in these two regions. Therefore, the pairing
potential can be broken in three parts:

Wk,k′ = V
s,d

k,k′ + Uf 2
k,k′χ (k′ − k)|qz�q2d

+Uf 2
k,k′χ (k′ − k)|qz�q2d

(A1)

The asymptotic forms of χ in the two regions are described
in the main text. Note, the critical manifold is contained in
the third term above, while the second term above involves
noncritical modes. Furthermore, we will assume that V > U ,
where V is the strength of the non-nematic pairing potential
V

s,d
k,k′ . Physically this implies that sufficiently far from the

nematic QCP the pairing is dominated by the non-nematic

term. As noted in the main text, the opposite limit of U > V is
trivial, since if the nematic potential already dominates pairing
far away from the QCP, then, irrespective of the strength
of the nematoelastic coupling, it will invariably lead to
large Tc enhancement because the dominant pairing po-
tential grows (even if it stays finite) as the QCP is
approached.

(a) s-wave superconductivity with a uniform gap and a
cylindrical Fermi surface (FS). We will assume that the non-
nematic pairing potential is a constant with V s

k,k′ = V . Since
Eq. (2) of the main text is restricted to the Fermi surface,
q2D = 2kF | sin( φk−φ′

k
2 )| and cos2(2φq) = cos2(φk + φ′

k). The
FS integral turns into angular integrals λ = 〈Wk,k′ 〉, where

〈f 〉 =
∫ 2π

0

du dv

(2π )2
f (u,v), (A2)

and u = φk + φ′
k and v = φk − φ′

k. This mean value is to be
estimated to lowest order in the parameter r � 1 which governs
the nearness to the QCP (see Fig. 1, main text).

The contribution from the second term of Eq. (A1) is given
by

U

〈
cos2 u cos2 v

1

r + (1 − cos v)/2

〉
≈ U

2
√

r
(A3)

Note, in the above estimation, typical qz ∼ π/c, where c is
unit cell length along the z direction, while typical q2d ∼ r1/2.
Therefore, to leading order in r the constraint qz � q2d is
automatically satisfied in the above estimation, even though
the angular integrals are performed freely.

The third term of Eq. (A1) involves momentum dependence
along the z direction and, therefore, the estimation of its
contribution to λ(r) involves averaging along the length of
the cylindrical Fermi surface. Anticipating that the typical
momentum transfer along z is small compared to Fermi
wave vector kF we can write

∮
FS → ∫ 2π

0
dφ

2π

∫ 1
0 d(kz/kF ). This

implies that the contribution from the third term of Eq. (A1) is
given by

2U 〈cos2 u cos2 v| sin
v

2

∣∣∣∣
∫ 1

0
dx

1

r − r0 + r0 cos2 u + sin2(v/2) + r0x2

〉
≈ −U

π
(ln max[r − r0,r0] + c1), (A4)

where c1 = 8/3 − 2 ln 2 ≈ 1.28. This leads to the equation

λ(r � r0)/νFS = V + U

2
√

r
− U

π
(ln max[r − r0,r0] + c1),

which is Eq. (4) of the main text. Note, the leading r

dependence comes from the noncritical modes, rather than
the critical ones which have a rather limited volume in
momentum space. The critical contribution gives only to a
weak logarithmic dependence which can be ignored to leading
order in r .

It is clear from the above that there will be considerable Tc

enhancement close to the nematic QCP defined by r = r0 only
if in this regime the nematic contribution dominates. This, in
turn, is possible only if the nematoelastic coupling is weak

enough such that

r0 < (U/V )2

This is the condition mentioned in Eq. (5) of the main text.
In the following we consider few other cases and we show

explicitly that the structure of Eq. (4) remains the same; only
numerical prefactors change. This implies that the conclusion
obtained in Eq. (5) is robust.

(b) s-wave superconductivity with higher order gap
harmonics. Keeping s-wave symmetry we can introduce
anisotropy in the gap function by considering higher order
harmonics as 
(k) = 
0 + √

2
4 cos(4φk). The second term
of the RHS is the normalized first higher order s-wave
harmonic. We proceed to project the gap equation onto each
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orthogonal polynomial to get the secular equation

λ
0 = λ00
0 + λ40
4,
(A5)

λ
4 = λ40
0 + λ44
4,

where we have defined λnn′ = 〈Wkk′gngn′ 〉, with gn the nth
orthogonal cosine polynomial. The secular system implies that
the physical Tc is to be given by the largest value of the matrix
(λnn′). With the above ansatz for the gap we get

λ = λ00 + λ44

2
+

√(
λ00 − λ44

2

)2

+ λ2
40 (A6)

The calculation is then identical to case (a). Ignoring the log
corrections from the critical manifold, we find to lowest order
in r ,

λ(r � r0)/νFS = V +
(

1 + 1√
2

)
U

2
√

r
, (A7)

which is the same as in case (a) except for a numerical
prefactor. It is also possible to do the calculation in the limit
of an infinite number of s-wave harmonics, and we find that
the superconducting eigenvalue goes as λ(r) = V + U/

√
r .

(c) d-wave superconductivity. Motivated by the cuprates,
we take a non-nematic pairing interaction which promotes d-
wave superconductivity V d

k,k′ = 2V cos(2φk) cos(2φ′
k) on top

of the nematic pairing potential. With a d-wave gap ansatz

(k) = 
0 cos(2φk), we find

λ(r � r0)/νFS = V + 3U

4
√

r
(A8)

Thus once again the BCS eigenvalue is the same as in Eq. (4)
except for a numerical prefactor.

(d) The multiband case of Fe-based superconductors.
Motivated by the physics of the Fe-based superconductors,
we now consider a three band model with one hole band
centered around the (0,0) point of the Brillouin zone and two
electron pockets located at (π,0) and (0,π ), respectively, in
the one-Fe/unit cell representation. The non-nematic pairing

potential is now a matrix in the band space, and we take it to
be

V s
k,k′ = −V

⎛
⎜⎝

0 1/2 1/2

1/2 0 −1/2

1/2 −1/2 0

⎞
⎟⎠. (A9)

Note, Eq. (2) is written with the convention that repulsive
interactions have negative sign and attractive ones have
positive sign. Thus the above interaction implies that the
non-nematic pairing potential is only interband, and that it
is repulsive for the electron-hole pairing term, while it is
attractive for the electron-electron pairing term. This invariably
leads to a s± gap, which in the three-band language has the form

0(1,−1,−1), which is the most discussed gap structure for
these systems. Note, the nematic pairing potential is attractive
and is, by definition, intraband. For circular Fermi surfaces,
and assuming that the gaps on each of the pockets are constant,
we get, following case (a),

Wk,k′ = V

⎛
⎜⎝

x −1/2 −1/2

−1/2 2x 1/2

−1/2 1/2 2x

⎞
⎟⎠, (A10)

where x = U/(2
√

rV ). This leads to a BCS eigenvalue:

λ(r � r0)/νFS = 1

4

(
V + 3U√

r
+

√
9V 2 + U 2

r
+ 2UV√

r

)

(A11)

Since the only energy scales here are V and U/
√

r , it is simple
to check that significant Tc enhancement is only possible if the
condition in Eq. (5) holds. Note also that, while the magnitudes
of the gaps become different on the hole and the electron
pockets with the inclusion of the nematic pairing, both for
small and for large x there is a change in the sign of the gap
between the hole and the electron surfaces.

We conclude that in all the above cases the condition for
significant Tc enhancement is given by Eq. (5), while in the
opposite limit there is hardly any impact of the QCP on the Tc.
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