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Artificial neural networks and machine learning have now reached a new era after several decades of
improvement where applications are to explode in many fields of science, industry, and technology. Here,
we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases
of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order,
can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin
systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code
states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states
can be represented by short-range neural networks in an exact and efficient fashion—the required number of
hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly
with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can
describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using
reinforcement learning we show that neural networks are capable of finding the topological ground states of
nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results
demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at
the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
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I. INTRODUCTION

Machine learning, grown out of the quest for artificial
intelligence, is one of today’s most active fields across
disciplines with vast applications ranging from fundamental
research in cheminformatics, biology, and cosmology to
quantitative social sciences [1,2]. Within physics, machine
learning techniques have recently been introduced for
gravitational wave analysis [3,4], black hole detection [5], and
material design [6]. More recently, these techniques have been
utilized to improve numerics in studying phase transitions in
conventional systems [7–12].

In general, for a quantum system to fully describe a
many-body state requires a huge amount of information due
to the exponential scaling of the Hilbert space dimension [13].
Yet, typical physical states may only access a tiny corner of
the Hilbert space and in principle could be represented in a
much restricted subspace of reduced dimension. For example,
the area law entangled quantum states [14] can be efficiently
represented in terms of matrix product states (MPS) [15–17] or
tensor-network states in general [18–20], which grant efficient
numeric algorithms to solve complex quantum many-body
problems, e.g., DMRG (density-matrix renormalization group)
method [17,21–23]. Recently, an artificial-neural-network
approach has been proposed as a completely different route
to implement “Hilbert-space reduction” [24], which opens up
a new thrust of machine-learning based algorithms to simulate
quantum many-body systems.

Although the existence of a neural network representation
of arbitrary quantum states is assured by mathematical
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theorems [25–27], how the required classical resources scale is
unknown. In particular, it is unknown whether the topological
states, of crucial relevance to condensed matter physics
[28–32], can be expressed by neural networks efficiently.
These are fundamental questions standing in the way of
applying machine learning techniques to topological quantum
phases of matter.

In this paper, we find that topological states can be
represented with artificial neural networks in an exact and
efficient way from one to three dimensions. Our study is
based on exact construction of neural network representations
for the cluster state in 1D, and toric codes in 2D and 3D.
Strikingly, for the toric-code states we find that they can
be represented precisely by short-range neural networks,
despite their long-range entanglement properties associated
with topological orders. Moreover, we find that our constructed
neural networks can be used to describe anyon braidings and
their nontrivial mutual statistics as well.

In order to show that neural networks can also describe
topological states in more generic nonintegrable systems, we
numerically study a 1D interacting Hamiltonian through rein-
forcement learning. We demonstrate that neural networks are
capable of finding the corresponding topological ground states
and studying the phase transition (from a smmetry protected
topological phase to a ferromagnetic phase) when tuning the
interaction strength. Our results provide valuable guidance
and data resources to the applications of machine-learning
techniques to topological phases in condensed matter physics.

II. ARTIFICIAL-NEURAL-NETWORK REPRESENTATION

To begin with, let us first outline the artificial-neural-
network representation of quantum states, which has recently
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been introduced by Carleo and Troyer in solving many-body
problems via machine learning ideas [24]. Considering a
quantum system with N spins � = (σ1,σ2, · · · σN ), we use the
restricted Boltzmann machine (RBM), which is a stochastic
artificial neural network with widespread applications [33–38],
to describe the many-body wave function �(�). We focus on
spin-1/2 quantum systems. The RBM contains two layers [25],
one visible layer of N nodes corresponding to the physical
spins, and the other a hidden layer of M auxiliary classical
spin variables h1, · · · ,hM [see Fig. 1(b) for an 1D example].
An artificial-neural-network quantum state (ANNQS) has the
form [24]: �M (�; �) = ∑

{hk} e
∑

k akσ
z
k +∑

k′ bk′ hk′+∑
kk′ Wkk′hkσ

z

k′ ,

where {hk} = {−1,1}M denotes the possible configurations of
M hidden auxiliary spins and the weights � = (ak,bk′ ,Wkk′)
are parameters needed to train to best represent the many-body
quantum state. ANNQS should be taken as a variational state
and for a given �M (�; �), the actual quantum many-body state
|�〉 is understood as (up to an irrelevant normalization con-
stant) |�〉 = ∑

� �M (�; �)|�〉, similar to the Laughlin-like
representation of the exact resonating-valence-bond ground
state of the Haldane-Shastry model [39,40].

While the representability theorems guarantee the existence
of ANNQS to approximate arbitrary many-body state [25–27],
such existence would not be practically useful if an exponential
(in system size) number of neurons are required. Moreover,
given a specific quantum system, there is so far no systematic
way to write down its wave function in terms of ANNQS.
It is thus desirable to construct exact ANNQS for nontrivial
quantum many-body systems. In this work, we first introduce
a further restricted RBM (FRRBM), where the hidden neurons
connect only locally to the visible neurons. This further
restriction builds in locality property for the RBM, which
enables us to use ANNQS to represent certain topological
states exactly and efficiently (in the sense that both the number
of neurons and the number of weight variables are linear
in system size). We give three explicit examples, one for
the SPT cluster state in 1D and the other two for the toric
code states with intrinsic topological orders in 2D and 3D,
respectively. For more generic cases, we release this further
restriction and use RBM to numerically solve the topological
ground state of a nonintegrable Hamiltonian and study the
corresponding topological phase transition via reinforcement
learning techniques.

III. 1D SPT CLUSTER STATE

We consider the following Hamiltonian defined on a 1D
lattice with periodic boundary condition [Fig. 1(a)]:

Hcluster = −
N∑

k=1

σ̂ z
k−1σ̂

x
k σ̂ z

k+1, (1)

where σ̂ z and σ̂ x are Pauli matrices and N denotes the system
size. Throughout this paper, we use •̂ for operators (e.g., σ̂ z and
σ̂ x ) and σ z for classical variables (σ z = ±1). The Hamiltonian
Hcluster has two Z2 symmetries corresponding to σ̂ z,y → −σ̂ z,y

for either even- or odd-indexed sites, and its ground state
is a topological state protected by Z2 × Z2 symmetry [41],
analogous to the Haldane phase of the spin-1 chain [42–44].
Due to the stabilizer nature of the Hamiltonian, the ground

FIG. 1. The 1D symmetry-protected topological cluster state.
(a) A pictorial illustration of the 1D cluster Hamiltonian [see Eq. (1)]
with the periodic boundary condition. The shaded region represents
a prototypic three-body interaction (a stabilizer) at an arbitrary site k.
(b) A short-range neural network representation of the 1D topological
cluster state. The yellow balls (blue cubes) denote the visible (hidden)
artificial neurons.

state |G〉 obeys

σ̂ z
k−1σ̂

x
k σ̂ z

k+1|G〉 = |G〉, ∀k. (2)

In the context of quantum information and computation, this
state |G〉 is called a cluster state [45] or more generally a graph
state [46]. It has important applications in measurement-based
quantum computation [46–48]. We note that a variant of Hcluster

has also been studied recently in the context of many-body
localization, where the symmetry protected topological phase
is shown to persist even to highly excited eigenstates due to
localization protection [49].

Here we construct an exact artificial neural network
representation for the cluster state. Before we provide details of
the construction and derivation, we first outline the main ideas.
Generally speaking, for an arbitrary quantum many-body state,
there is no known method to recast it in the ANNQS form. This
is a challenging task intuitively because there are “infinitely
many” possibilities to choose the network structure and weight
variables. For the cases studied in this paper, our main idea
is, rather than to use the general network with long-range
connections, to choose a special case with only short-range
connections. Using the fact that the RBM does not contain
intra-layer connections, we can factor out the hidden variables
and rewrite �M (�; �) in a product form. We then explore the
constraints on the ground state (such as Eq. (2)) to build up a
series of nonlinear equations and simplify these equations by
canceling all the equal factors on both sides. We solve these
equations by recasting them to an optimization problem to
numerically find out the nonzero parameters. If no solution
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can be found, we choose another network with more nonzero
undetermined parameters and repeat the procedure until a
solution is found. We validate the exactness of the solution in
a rigorous way by analytically checking that all the equations
are satisfied.

In the ANNQS representation, we have |G〉 =∑
� �M (�; �)|�〉. Then Eq. (2) gives

σ̂ z
k−1σ̂

x
k σ̂ z

k+1

∑
�

�M (�; �)|�〉 =
∑
�

�M (�; �)|�〉. (3)

Our aim is to design a network and solve the weight variables �

to satisfy the above equation for all k. Noting that the operator
σ̂ x

k will flip spin on site k and σ̂ z
j |�〉 = σ z

j |�〉, we can reduce
Eq. (3) to

�M (�; �)σ z
k−1σ

z
k+1 = �M

(
�,σ z

k → −σ z
k ; �

)
. (4)

We can explicitly factor out the hidden variables
and rewrite �M (�; �) in a product form [24]
�M (�; �) = ∏N

k=1 eakσ
z
k

∏M
k′=1 �k′(�), with �k′(�) =

2 cosh(bk′ + ∑
l Wk′lσ

z
l ). As a result, Eq. (4) can be reduced to

σ z
k−1σ

z
k+1e

2akσ
z
k

M∏
l=1

�k′(�) =
M∏
l=1

�k′
(
�,σ z

k → −σ z
k

)
, (5)

which is the essential equation to determine the actual neural
network. An exact representation of |G〉 requires Eq. (5) to be
satisfied for all spin configurations � and all k. This gives us a
series of (on the order of ∼N2N ) highly nonlinear equations,
which is hard to solve directly for general neural networks.
With a finite number of neurons, it is unknown whether a
solution even exists. We will thus not attempt to solve the
problem for a general neural network. Instead, we will work
in an alternate direction. By noting that the cluster state |G〉
has translational invariance and is short-range entangled (it has
area law entanglement entropy [14]), it is reasonable to assume
that the RBM representation for |G〉 has a further restricted
form with the inter-layer neurons only locally coupled. This
assumption will be validated by showing analytically that the
final proposed ANNQS satisfy Eq. (5). A simple FRRBM is
shown in Fig. 1(b), with the weight parameters chosen to be

ak = 0, bk = ib, Wkj =
{
iωk−j , if |k − j | = 1

0 otherwise
. (6)

Here we choose the parameters to be purely imaginary to
convert the hyperbolic cosine functions to cosine functions.
By plugging Eq. (6) into Eq. (5) and canceling all the equal
factors at both sides, we arrive at

σ z
k−1σ

z
k+1�k−1�k�k+1 = �−

k−1�
−
k �−

k+1, (7)

where �p = cos(b + ω1σ
z
p−1 + ω0σ

z
p + ω−1σ

z
p+1) (p = k −

1,k,k + 1) and �−
p = �p(σ z

k → −σ z
k ). Eq. (7) should

be satisfied for any spin configurations of �sub =
(σ z

k−2,σ
z
k−1,σ

z
k ,σ z

k+1,σ
z
k+2), giving rise to a set of 25 equations.

Directly solving these highly nonlinear equations is still
daunting. But we can recast it as an optimization problem. We
define a function f (b,ω1,ω0,ω−1) = ∑

�sub
(L�sub − R�sub )2

where L�sub (R�sub ) denotes the left (right) side of Eq. (7)
with configuration �sub, and then numerically minimize f over
(b,ω1,ω0,ω−1). A zero minimum of f corresponds to a desired

solution to Eq. (7), and we find (b,ω1,ω0,ω−1) = π
4 (1,2,3,1).

The corresponding ANNQS representation of |G〉 is now
obtained,

�M (�; �) =
∑
{hk}

e
iπ
4

∑
k hk

(
1+2σ z

k−1+3σ z
k +σ z

k+1

)
. (8)

This gives a compact neural network representation of the
cluster state whose number of nonzero parameters scales
linearly with the system size(∼4N ). We stress that, although
we have resorted to numerics to solve the highly nonlinear
equations, our final FRRBM-based representation is exact,
in the sense that the corresponding ANNQS satisfies Eq. (2)
exactly. In fact, the exactness can be verified analytically
after some straightforward calculations. A key observation
is that �p = −�p(σ z

p−1 → −σ z
p−1) for (b,ω1,ω0,ω−1) =

π
4 (1,2,3,1). Thus, we have �k+1 = −�−

k+1 and the Eq. (7) re-
duces to σ z

k−1σ
z
k+1�k−1�k = −�−

k−1�
−
k . This can be obtained

from the fact that σk+1�k = �−
k and σk−1�k−1 = −�−

k−1.

IV. 2D KITAEV TORIC CODE STATES

As our second example, we study the 2D toric code model
[50], which was introduced by Kitaev [50] in the context
of topological quantum computation [52] and quantum error
correction [53]. This model gives the simplest and most
well studied spin liquid ground state that has an intrinsic Z2

topological order [54,55]. Considering a L × L square lattice
with the periodic boundary condition (a 2D torus T2) with
each edge of the lattice attached a qubit (Fig. 2). We have
N = 2L2 qubits in total. For each vertex V (face F) [see
Fig. 2(a)] we define a vertex (face) operator AV = ∏

k∈V σ̂ x
k

(BF = ∏
k∈F σ̂ z

k ), which are also called stabilizers in quantum
error correction language. The model Hamiltonian reads

H2D = −
∑
V∈T2

AV −
∑
F∈T2

BF . (9)

This model is exactly solvable since all the four-body operators
in H2D commute with each other. It can be interpreted as a
particular Ising lattice gauge theory [56] with an Abelian Z2

gauge group [57]. Its ground state is four-fold degenerate,
a signature of intrinsic topological order. The low-energy
excitations are Abelian anyons with nontrivial mutual statistics
[50]. Because of its fundamental importance in the studies of
quantum computing and topological phases of matter, the toric
code has attracted tremendous interest in both theory [51,57–
60] and experiment [61–65]. The ground state of the model
satisfies BF |G(2D)

toric〉 = |G(2D)
toric〉 and AV |G(2D)

toric〉 = |G(2D)
toric〉. We

note that |G(2D)
toric〉 has an efficient tensor-network representation

[66,67].
Here, we show that |G(2D)

toric〉 has an exact and efficient
neural-network representation. We present the result and the
verification here and provide the more involved construction
details in the appendixes. As illustrated in Fig. 2, the artificial
neural network representation of the toric code ground state,
|G(2D)

toric〉 = ∑
� �M (�)|�〉, is given by

�M (�; �) =
∑

{hV ,hF }
e

iπ
2

∑
V

hV
∑
j∈V

σ z
j + iπ

4

∑
F

hF
∑
k∈F

σ z
k

. (10)
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ii

j

FIG. 2. The 2D toric code Hamiltonian and a neural-network
representation. (a) An illustration of H2D [see Eq. (9)]. The shaded
green (red) region depicts a prototypic vertex (face) operator at
vertex V (face F). The Hamiltonian is defined as a summation
of these four-body operators with an extra minus sign in front.
The four noncontractible loops (labeled by X1, X2, Z1, and Z2,
respectively) correspond to four nontrivial string operators that
define the commutation relations of the two logic qubits living in
the topologically protected ground subspace [50,51]. (b) A neural-
network representation of one of the ground state of H2D with intrinsic
topological order. The yellow balls stand for the visible artificial
neurons corresponding to the physical spins. The green (red) cubes
denotes the hidden neurons corresponding to the vertices (faces).

To verify the exact nature of our solution, as done in
the 1D example, we can factor out the hidden neurons,
�M (�; �) = ∏

V cos(π
2 (

∑
j∈V σ z

j ))
∏

F cos(π
4 (

∑
j∈F σ z

j )).
Noting that cos(π

4

∑
j∈F σ z

j )
∏

k∈F σ z
k = cos(π

4

∑
j∈F σ z

j ),

the equation BF |G(2D)
toric〉 = |G(2D)

toric〉 can be easily verified.
In order to verify AV |G(2D)

toric〉 = |G(2D)
toric〉, we need to show

�M (�) = �M (�,σ z
j → −σ z

j ,∀j ∈ V). This actually follows
from two observations about the consequence of flipping
spins belonging to a vertex V , which are the sign-change of
all four cosine factors for the neighboring vertices Vs and the
sign-preservation of the product of the four cosine factors for
the neighboring faces Fs.

More interestingly, we notice that the proposed FRRBM
can precisely describe the excited states with Abelian anyons
and their nontrivial mutual statistics as well. In the 2D Kitaev
toric code model, there are two types of anyons [50]: z-type

FIG. 3. String operators and nontrivial mutual statistics. A pair
of x-type quasiparticles (also called “magnetic vortices”) living on
the faces can be created by acting the string operator Sx

Px
1

= ∏
j∈Px

1
σ̂ x

j

on the ground state |G(2D)
toric〉. Similarly, we can also create a pair of

z-type quasiparticles (“electric charges”) that live on the vertices by
the string operator Sz

Pz
1

= ∏
j∈Pz

1
σ̂ z

j . For a closed contractable path

(such as Px
3), two quasiparticles of the same type meet with each

other and will fuse to the vacuum. If two closed loops of different
types form a nontrivial link (such as the Hopf link formed by Px

2

and Pz
2), the many-body states will acquire a global phase factor −1

due to the nontrivial mutual statistics between the x-type and z-type
quasiparticles. As shown in the main text and Appendix B, we find
that all the quantum states evolved in these process can be described
precisely and efficiently by further-restricted restricted Boltzmann
machines.

quasiparticles (or “electric charges”) living on the vertices and
x-type quasiparticles (or “magnetic vortices”) living on the
faces, which can be created in pairs by the string operators
Sz

Pz = ∏
j∈Pz σ̂ z

j and Sx
Px = ∏

j∈Px σ̂ x
j , respectively. The x-type

(z-type) quasiparticles exist at the endpoints of the path Px (Pz)
and they can be moved around by extending or shortening Px

(Pz) (see Fig. 3 for an illustration). When two quasiparticles of
the same type meet, they will annihilate each other to vacuum
(a fusion process). In addition, if we braid a x-type particle
around a z-type particle and then annihilate them with their
partners, we will obtain a global phase −1 due to the nontrivial
mutual statistics between the x- and z-type particles. This
process correspond to applying the string operators of two
closed paths that are linked together (such as the Hopf link
formed by Px

2 and Pz
2 in Fig. 3) to the ground states (see

Appendix B).
We now show how to describe all the processes discussed

above in the FRRBM framework (see Appendix B for details).
We present two key observations: (i) applying a string operator
Sx

Px is equivalent to flipping all signs of the weight parameters
associated with the visible neurons living on the path Px;
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(ii) applying Sz
Pz is equivalent to adding hidden neurons along

Pz, with each of them connecting only to the corresponding
visible neuron. Based on these observations, a FRRBM
description of the excited states with Abelian anyons follows
directly. For instance, let us consider an excited state |
Px

1
〉

with a pair of x-type particles at the ends of Px
1 (Fig. 3):

|
Px
1
〉 = Sx

Px
1
|G(2D)

toric〉. To represent |
Px
1
〉 by a FRRBM, we

simply flip all signs of the parameters [as specified in Eq. (10)]
that are associated with the visible neurons living on Px

1. More
explicitly, |
Px

1
〉 has the following exact RBM representation

�M =
∑

{hV ,hF }
exp

⎡
⎣ iπ

2

∑
V

hV

⎛
⎝ ∑

j∈V;j /∈Px
1

σ z
j −

∑
j∈V;j∈Px

1

σ z
j

⎞
⎠

+ iπ

4

∑
F

hF

⎛
⎝ ∑

k∈F ;k /∈Px
1

σ z
k −

∑
k∈F ;k∈Px

1

σ z
k

⎞
⎠

⎤
⎦. (11)

Similarly, we can write down the exact RBM expressions
for other excited states with different number of x or z
particles. In Appendix B, we verify that these neural-network
states are indeed eigenstates of H2D with the corresponding
quasiparticles at the desired locations. We also show that the
braiding process and the resulting nontrivial mutual statistics
can be described precisely using the RBM language as well.
This result explicitly shows that neural networks are capable
of exactly (and not just efficiently) describing exotic states
with Abelian anyons. In the future, we hope that it can inspire
more studies on the applications of machine-learning ideas
in numerically simulating anyons (both Abelian and non-
Abelian) and their braidings in strongly correlated systems.

V. 3D TORIC CODE STATES

The above 2D toric code model has a natural 3D gener-
alization defined on a simple cubic lattice with the periodic
boundary condition (a 3D torus T3) [68,69]:

H3D = −
∑
V∈T3

AV −
∑
F∈T2

BF , (12)

where AV = ∏
k∈V σ̂ x

k and BF = ∏
k∈F σ̂ z

k are the corre-
sponding vertex and face operators, respectively. This model
is exactly solvable and has been a paradigmatic model of
topological order in 3D. It features both closed-string and
closed-membrane condensation [68]. At finite temperatures,
it can exhibit “classical” topological order (in the sense that
the topological entropy comes only from the plaquette degrees
of freedom and the system looks like purely classical) up to
a transition temperature Tc (see Ref. [69] for details). This is
in sharp contrast to the 2D case where the total topological
entropy vanishes in the thermodynamic limit at any nonzero
temperature with the topological order being argued to be
fragile [69].

Using similar methods as discussed in the 2D case above,
we can also find an exact and efficient FRRBM representation
for the ground states |G(3D)

toric〉 of H3D. In fact, we find that
one can use the same weight parameters as specified by
Eq. (10) to represent |G(3D)

toric〉 (see Fig. 4). The exactness
of this representation can be verified by showing that the

i

jjjjjjjjjjjjjjjjjjjj

x
y

z

FIG. 4. A neural-network representation for the 3D toric code
states. Similar to the 2D model, the 3D Hamiltonian is also defined
as a summation of vertex and face operators (depicted by the shaded
green and red regions, respectively) with an extra minus sign in front.
However, for the 3D case, each vertex operator will be a product of
six, rather than four, σ̂ x operators. The ground states of H3D can also
be represented by restricted Boltzmann machines, where the hidden
neurons (denoted by green or red cubes) only connect to their nearest
visible neurons. The weight parameters WF,i and WV,j can be chosen
the same as in the 2D case.

equations BF |G(3D)
toric〉 = |G(3D)

toric〉 and AV |G(3D)
toric〉 = |G(3D)

toric〉 are
satisfied. The first equation is straightforward and the second
equation follows from the fact that flipping spins belonging to
a vertex will not change the sign of the product of the nearest
eighteen cosine factors affected by AV . We mention that the
FRRBM can also describe the low-energy excited states of H3D

(obtained by applying different string or membrane operators
on the ground state) and their mutual statistics, analogous to
the 2D case.

It is worthwhile to point out that, although the above results
have rigorously established that both 2D and 3D toric code
states have an exact and efficient FRRBM representation,
it still requires substantial future efforts to find out the
necessary and sufficient conditions for a generic quantum
many-body state with intrinsic topological order to manifest a
FRRBM representation. Future studies of this problem would
facilitate the applications of machine learning techniques in
investigating topological phases of matter. Conversely, such
studies may also provide valuable insights for understanding
why certain machine learning algorithms are so powerful,
similar to the heuristic example of how we understand the
power of DMRG algorithm from the perspective of MPS
representation. We hope that our work demonstrating exact
representations of 1D cluster SPT states as well as 2D and
3D toric codes using FRRBM would inspire future research
into the generic applications of machine learning techniques to
topological phenomena (including the simulation of Abelian
and non-Abelian anyons) and to the understanding of the spe-
cific physical features underlying machine learning algorithms
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making them suitable for understanding entanglement features
in topological models.

VI. REINFORCEMENT LEARNING OF SPT PHASES
AND PHASE TRANSITIONS

In above discussions, we have given analytical results on
representing topological states with neural networks for some
exactly solvable models. In this section, we consider more
generic cases and show, through numerical reinforcement
learning [24,70] that RBM is capable of finding the topological
ground states of nonintegrable interacting Hamiltonians and
studying their topological phase transitions. To this end, we
add an interaction term and a magnetic field into the 1D SPT
cluster Hamiltonian to break its integrability. We consider the
following Hamiltonian:

H1D = −Hcluster − hx

N∑
k=1

σx
k − V

N∑
k=1

σx
k σ x

k+1, (13)

where hx and V denote the strengths of the magnetic field and
interaction, respectively. It is obvious that H1D maintains the
same Z2 × Z2 symmetry. In the limit hx,V → 0, the ground
state of H1D is a SPT state, same to that of Hcluster (up to a
local gauge transformation). We use a string-order parameter
Ost(j,k) = 〈σ z

j σ
y

j+1(
∏k−2

i=j+2 σx
i )σy

k−1σ
z
k 〉 to character the topo-

logical nature of this SPT state [71]. Whilst in the other limit
V → ∞ (we fix hx = 0.02 for simplicity), the ground state
will be a ferromagnetic state, breaking the Z2 × Z2 symmetry.
There should be a phase transition point at some critical value
V = Vc where the system goes from the SPT phase to the
ferromagnetic phase. Here, by using reinforcement learning
we show that RBM is capable of efficiently and faithfully
representing the SPT ground state of H1D and pinning down
the critical value Vc.

Noting that H1D has a lattice translational symmetry, we can
use it to reduce the number of variational parameters, and for
integer hidden-variable density (γ ≡ M/N = 1,2, · · · ), the
weight matrix takes the form of feature filters W

(f )
j with

f ∈ [1,γ ] an integer number [24]. In Fig. 5(a) and 5(b),
we plot the ground-state energy density and the string-order
parameter obtained via reinforcement learning and compare
the RBM result with that from exact diagonalization (ED),
for small system sizes. We see that as the iteration number
of the learning process increases, both of them converge
smoothly to their corresponding exact values. As in Ref. [24],
we quantify the accuracy of the trained RBM by the relative
error on the ground-state energy ε ≡ |ERBM

0 − EED
0 |/EED

0 . In
Fig. 5(c), we plot the feature maps after a typical reinforcement
learning process with γ = 4 and N = 20, where the accuracy
ε ∼ 10−3. One can systematically further inprove this accuracy
by increaing γ and the number of iterations. In Fig. 5(d), we
show the order parameters obtained through RBM for a larger
system size (which is far beyond the capability of the ED
technique). We find that both the magnetization (characterizing
the ferromagnetic phase) and the string-order parameter have
sharp jumps around Vc ∼ 0.9, indicating a phase transition
from the SPT phase to the ferromagnetic phase across this
value. We mention that the reinforcement learning techniques
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FIG. 5. Reinforcement learning of SPT states and topological
phase transitions. (a) The variational ground-state energy density as
a function of the iteration number of the learning process. As the
iteration number increases, the energy converges smoothly to the
exact values (denoted by the dashed red lines). (b) The convergence
of the string-order parameter as the increasing of the iteration number
for V = 0.1. the red dashed line denotes the exact value. (c) The real
and imaginary parts of the learned feature maps for representing
the ground state of H1D with a restricted Boltzmann machine for
V = 0.1. In (a)–(c), the lattice size is N = 20, hx = 0.02, and the
hidden-unit density γ = 4. (d) Reinforceent learning of a topological
phase transition. As we increasing V , the system will go through a
phase transition (at V ∼ 0.9) from a symmetry-protected topological
phase to a ferromagnetic phase. Here the lattice size is N = 50 and
the other omitted parameters are chosen the same as in (b).

may also be used to study topological states and phase transi-
tions in higher dimensions. We leave this for future studies.

VII. CONCLUSION AND DISCUSSION

In summary, we have demonstrated, both analytically and
numerically, that quantum topological states (both symmetry
protected and intrinsic) can be efficiently represented by
classical artificial neural networks. We have constructed exact
representations for SPT states (the 1D cluster states) and intrin-
sic topologically ordered states (2D and 3D toric code states),
by using the FRRBM method. For all cases, the number of
neurons in the hidden layer of the RBM is equal to the number
of physical spins, and the number of nonzero weight variables
scales only linearly with the system size. For the toric-code
models, we show that the proposed FRRBM is also capable
of describing the excited states with Abelian anyons and their
nontrivial mutual statistics. We expect that our construction
carries over to other graph states and the 3D time-reversal
SPT phase of bosons with intrinsic surface topological order
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[72]. Our method may also generalize to other frustration-free
Hamiltonians with translational symmetry, where the ground
state is a simultaneous ground state of all local terms [73]. In
addition, through numerical reinforcement learning we have
also demonstrated that RBM is capable of finding the topolog-
ical ground states of generic nonintegrable Hamiltonians and
identifying their topological phase transitions.

Our results manifest the remarkable power of neural net-
works in describing and computing exotic quantum states and
thus would have far-reaching implications in the applications
of machine learning techniques in condensed matter physics.
In practice, our exact results should provide valuable guidance
and data resources. For instance, our exact results could
be used as “training data” in supervised learning or the
exact parameter values can be used as the initial parameter
values for RBM-based reinforcement learning in solving
quantum many-body problems. In turn, our work may help
the study of machine learning itself, especially in the efforts
toward understanding why machine learning techniques are
surprisingly powerful [37,74] from a physical perspective.
As a first step to connect quantum topology and artificial
neuron networks, the present study focused on the simplest
network, namely the single-layer model. A straightforward
generalization to deep neuron networks is expected to further
improve the corresponding representation power, details of
which are left for future investigation.
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APPENDIX A: CONSTRUCTING FRRBM FOR
THE 2D TORIC CODE STATES

In this section, we give the details about how we construct
the neural network representation of the 2D toric code states
with intrinsic topological order. Noting that all these four-body
operators in H2D commute with each other, thus the eigenstates
of the Hamiltonian are also the eigenstates of these operators.
The ground state satisfies the following equations:

BF
∣∣G2D

toric

〉 =
∏
j∈F

σ̂ z
j

∣∣G2D
toric

〉 = ∣∣G2D
toric

〉
, ∀F , (A1)

AV
∣∣G2D

toric

〉 =
∏
j∈V

σ̂ x
j

∣∣G2D
toric

〉 = ∣∣G2D
toric

〉
, ∀V. (A2)

We propose the following neural network state to represent
|Gtoric〉:

�M (�; �) =
∑

{hV ,hF }
exp

{ ∑
k

akσ
z
k +

∑
V

bVhV +
∑
F

bFhF

+
∑
Vk

WVkhVσ z
k +

∑
Fk

WFkhFσ z
k

}
, (A3)

where hV = {−1,1} (hF = {−1,1}) are the set of hidden
neurons corresponding to the vertices (faces); the weights � =
(ak,bV ,bF ,WVk,WFk) are parameters we need to train. The vis-
ible neurons corresponding to the physical spins live on edges
of the square lattice. Throughout these appendixes, the lower-
case letters (k or j ) are used to label individual physical spins
(or visible neurons in the restricted Boltzmann machine (RBM)
language). For convenience, we also introduce a combined
index like (F ,μ), with F labeling the faces, and μ the spins
within each face. As there is no intralayer connection in the
network, we can rewrite the RBM �M (�; �) in a product form:

�M (�; �) =
N∏

k=1

eakσ
z
k

∏
V

�V (�)
∏
F

�F (�), (A4)

with

�V (�) = 2 cosh

(
bV +

∑
k

WVkσ
z
k

)
,

�F (�) = 2 cosh

(
bF +

∑
k

WFkσ
z
k

)
.

To simplify the problem, we introduce a further restriction that
the hidden vertex (face) neurons only connect to the visible
neurons belonging to the corresponding vertex (face) [with a
corresponding rule shown in Fig. 2(b) in the main text]:

WVk = 0, if k /∈ V, (A5)

WFk = 0, if k /∈ F . (A6)

We need to find out the weight parameters � so to make
Eq. (A3) represent the ground state of H2D. Since the face
operators do not involve spin flip, it is easier to solve Eq. (A1),
and then we get bF and WFk . To this end, we plug Eq. (A4)
into Eq. (A1) and obtain

∏
j∈F

σ z
j

N∏
k=1

eakσ
z
k

∏
V

�V (�)
∏
F ′

�F ′(�)

=
N∏

k=1

eakσ
z
k

∏
V

�V (�)
∏
F ′

�F ′(�), ∀F . (A7)

Canceling all [except �F (�)] equal factors on both sides of
Eq. (A8), we have

∏
j∈F

σ z
j cosh

⎡
⎣bF +

4∑
μ=1

WF ;(F,μ)σ
z
(F,μ)

⎤
⎦

= cosh

⎡
⎣bF +

4∑
μ=1

WF ;(F,μ)σ
z
(F,μ)

⎤
⎦, ∀F , (A8)

where we have used (F ,μ) (μ = 1,2,3,4) to denote the four
visible neurons belong to F . Noting that

∑4
μ=1 σ z

(F,μ) =
0, ± 2, ± 4, it is straightforward to find a solution to Eq. (A9):

bF = 0, WF ;(F,μ) = iπ

4
, ∀μ,F .

We now turn to the more involved case of solving Eq. (A2)
to obtain ak , bV , and WVk′ . Plugging (A4) into Eq. (A2) and
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FIG. 6. Affected region for acting the vertex operator AV . AV
flips four spins belonging to V (denoted by the red balls). The shaded
region stands for the region that are affected by the spin flip.

fix ak = 0, ∀k, we obtain∑
Ξ

∏
V ′

�V ′(�)
∏
F

�F (�)
∣∣Ξ ; σ z

j → −σ z
j ,∀j ∈ V

〉
=

∑
Ξ

∏
V ′

�V ′(�)
∏
F

�F (�)|Ξ 〉, ∀V.

Thus we have∏
V ′

�V ′(�)
∏
F

�F (�) =
∏
V ′

�V ′
(
�; σ z

j → −σ z
j ,∀j ∈ V

)
×

∏
F

�F
(
�; σ z

j → −σ z
j ,∀j ∈ V

)
, ∀V.

(A9)

Let us consider spin flips caused by a given ver-
tex V . This corresponding vertex operator AV only flips
four spins that belong to V . As shown in Fig. 6, we
denote the four vertices (faces) nearest to V as V1,
V2, V3, and V4 (F1, F2, F3, and F4). Then by us-
ing Eq. (A5), we have �V ′(�) = �V ′(�; σ z

j → −σ z
j ,∀j ∈

V), for V ′ �= V1,V2,V3, or V4 and �F (�) = �F (�; σ z
j →

−σ z
j ,∀j ∈ V), for F �= F1,F2,F3, or F4. Canceling out these

equal factors, Eq. (A9) reduces to

�V (�)
4∏

μ=1

�Vμ
(�)�Fμ

(�)

= �V
(
�; σ z

j → −σ z
j ,∀j ∈ V

)
×

4∏
μ=1

�Vμ

(
�; σ z

j →−σ z
j ,∀j ∈ V

)
�Fμ

× (
�; σ z

j → −σ z
j ,∀j ∈ V

)
. (A10)

FIG. 7. Anyons created by string operators and their mutual
statistics. (a) Creating a pair of x-type quasiparticles living at faces
F1 and F7 by apply string operator Sx

Px
1

on the ground state |G2D
toric〉.

(b) Creating a pair of z-type quasiparticles by Sz
Pz

1
. (c) A trivial

contractible loop that leave the ground state unchanged. (d) A Hopf
link formed by two loops Px

2 and Pz
2. Acting the corresponding string

operators on the ground state will give rise to an overall phase −1,
which manifests the nontrivial mutual statistics between the x- and
z-type quasiparticles.

Let Ξ ′
sub denote the spins of the corresponding visible neurons

belong to V1, V2, V3, V4, F1, F2, F3, or F4 (neurons in the
shaded region in Fig. 6). Equation (A10) should be satisfied
for any configurations of Ξ ′

sub, giving a series of 216 = 65 536
equations. Directly solving these equations is daunting. As
discussed in the 1D case in the main text, we can recast
Eq. (A10) to an optimization problem and find a solution
numerically:

bV = 0, WV;(V,μ) = iπ

2
, ∀μ,V.

This gives the exact ANNQS representation of the 2D toric
code state in the main text.

APPENDIX B: EXCITED STATES WITH ABELIAN
ANYONS

In this section, we provide more details on describing
excited states with Abelian anyons in the FRRBM framwork.
We begin with an excited states with two x-type quasiparticles.
As shown in Fig. 7(a), we consider a string operator

Sx
Px

1
= σ̂ x

6 σ̂ x
5 σ̂ x

4 σ̂ x
3 σ̂ x

2 σ̂ x
1 . (B1)

When it acts on the ground state |G2D
toric〉, anyons will be

created and moved as follows [50,51]. First, acting σ̂ x
1 will

create a pair of x-type quasiparticles on faces F1 and F2.
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In the FRRBM language, it corresponds to flipping the
signs of the weight parameters associated to the visible
neuron at site 1, i.e., WV1;(V1,1) → −WV1;(V1,1), WV2;(V2,1) →
−WV2;(V2,1), WF1;(F1,1) → −WF1;(F1,1), and WF2;(F2,1) →
−WF2;(F2,1). To see that the x-type particles are located on
faces F1 and F2, one can apply the face operators BF1 and
BF2 to the new states |
(1)〉 = σ̂ x

1 |G2D
toric〉:

BF1 |
(1)〉 = BF1 σ̂
x
1

∣∣G2D
toric

〉 = −σ̂ x
1 BF1

∣∣G2D
toric

〉 = −|
(1)〉,
(B2)

BF2 |
(1)〉 = BF2 σ̂
x
1

∣∣G2D
toric

〉 = −σ̂ x
1 BF2

∣∣G2D
toric

〉 = −|
(1)〉.
(B3)

Thus |
(1)〉 is an eigenstate of both BF1 and BF2 with
eigenenergy −1, indicating a pair of local x-type quasiparticles
at faces F1 and F2. For all other vertex or face operators,
|
(1)〉 is an eigenstate with eigenenergy 1 since they
commute with σ̂ x

1 . This simply means no other excitation
is created. In the FRRBM context, Eqs. (B2) and (B3)
can be verified by noting cos[ π

4 (
∑

j∈F1,j �=1 σ z
j − σ z

1 )]BF1 =
− cos[π

4 (
∑

j∈F1,j �=1 σ z
j − σ z

1 )] and cos[π
4 (

∑
j∈F2,j �=1 σ z

j −
σ z

1 )]BF2 = − cos[π
4 (

∑
j∈F2,j �=1 σ z

j − σ z
1 )]. Then we act σx

2

on |
(1)〉, and this create another pair of x-type particles
on faces F2 and F3, but the x-type particle on face F2

will annihilate with the original one. Effectively, the
original particle on face F2 is moved to face F3. In the
FRRBM language, this process corresponds to flipping the
signs of the weight parameters associated to the visible
neuron at site 2, i.e., WV2;(V2,2) → −WV2;(V2,2), WV3;(V3,2) →
−WV3;(V3,2), WF2;(F2,2) → −WF2;(F2,2), and WF3;(F3,2) →
−WF3;(F3,2). This procedure continues until σx

6 has been
applied and the x-type particle originally at face F2 will be
moved to face F7. Correspondingly, the signs of all weight
parameters associated to the visible neurons living on the
path Px

1 will be flipped. Thus, we obtained the exact RBM
representation of |
Px

1
〉, as given in Eq. (11) in the main text.

In Fig. 7(b), we consider a z-type string operator

Sz
Pz

1
= σ̂ z

5 σ̂ z
4 σ̂ z

3 σ̂ z
2 σ̂ z

1 . (B4)

When we act it on the ground state |G2D
toric〉, anyons will be

created and moved as follows. First, acting σ̂ z
1 will create a

pair of z-type quasiparticles on vertexes V1 and V2. In the
FRRBM language, it corresponds to adding a hidden neuron
h1 at site 1 with the additional nonzero parameter chosen to be

b1 = − iπ

2
, W11 = iπ

2
. (B5)

In other words, the hidden neuron only connects to the visible
neuron at site 1. To see that adding h1 leads to the creation

of two z-type quasiparticles on vertexes V1 and V2, one can
apply the vertex operators AV1 and AV2 to the new states
|ϕ(1)〉 = σ̂ z

1 |G2D
toric〉. Due to the anticommutation relations, it

is straightforward to show that |ϕ(1)〉 is an eigenstate of
both AV1 and AV2 with eigenenergy −1, giving a pair of
z-type quasiparticles at vertices V1 and V2. In the FRRBM
context, this can be obtained by noting cos[ iπ

2 (−1 + σ z
1 )] =

− cos[ iπ
2 (−1 − σ z

1 )] and AV1 |G2D
toric〉 = AV2 |G2D

toric〉 = |G2D
toric〉.

We then act σ z
2 on |ϕ(1)〉 to effectively move the z-type particle

originally on vertex V2 to vertex V3. This corresponds to
adding another hidden neuron h2 at site 2 with the same
nonzero parameter as specified in Eq. (B5). We continue this
procedure until σ z

5 is applied and the z-type particle moved
to vertex V6. In the FRRBM context, five hidden neurons
corresponding to the path Pz

1 will be added to represent the
final state |ϕ(5)〉 = Sz

Pz
1
|G2D

toric〉.
In Fig. 7(c), we consider a closed x-type (z-type) string

operator Sx
Px

3
(Sz

Pz
3
) defined on a contractible loop Px

3 (Pz
3). It is

obvious that Sx
Px

3
= AV1AV2 and Sz

Pz
3
= BF1BF2BF3BF4 . Thus

acting them on the ground state will leave it unaltered. In the
FRRBM context, acting Sx

Px
3

corresponds to flipping signs of
all weight parameters associated to the visible neurons living
on the path Px

3 . The new RBM state is the same as the original
ground state, following from the facts that: (i) each face
operator and Sx

Px
3

correspond to either 0 or 2 common visible
neurons; (ii) the sign flippings preserve the sign of the product
of the two cosine factors related to V1 and V2. Similarly, acting
Sz

Pz
3

corresponds to adding eight hidden neurons living on Pz
3

and this will not alter the ground state, either.
In Fig. 7(d), two string operators of different type form

a Hopf link. in this case, anyons will be created, moved,
and annihilated as follows. First, we act σ z

1 on the ground
state to create two z-type particles at V1 and V2, respective.
We then act σx

1 to create two x-type particles at F1 and F2,
and σx

12σ
x
11σ

x
10σ

x
9 σx

8 σx
7 σx

6 σx
5 σx

4 σx
3 σx

2 to move one of the x-type
particles along the path Px

2 and then annihilate it with its
partner. Finally, we act σ z

20σ
z
19σ

z
18σ

z
17σ

z
16σ

z
15σ

z
14σ

z
13 to move one

of the z-type particles along the path Pz
2 and annihilate it with its

partner. Effectively, an x-type particle is braided with a z-type
particle and the ground state will gain a −1 phase factor due
to the nontrivial mutual statistics [50]. In the FRRBM context,
this process corresponds to the following steps: (i) adding a
hidden neuron at site 1 with parameters specified in Eq. (B5);
(ii) flipping the signs of all weight parameters associated to
path Px

2; (iii) adding nine neurons along path Pz
2. Following

similar reasoning as discussed above, it is straight forward to
obtain that the final RBM state is the same as the ground state,
but with an extra overall phase −1. This extra phase results
from the beginning of the step (ii), noting that flipping the sign
of W11 leads to an extra −1 factor.
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