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Quantum field theory of X-cube fracton topological order and robust degeneracy from geometry
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We propose a quantum field theory description of the X-cube model of fracton topological order. The field
theory is not (and cannot be) a topological quantum field theory (TQFT) since, unlike the X-cube model, TQFTs
are invariant (i.e., symmetric) under continuous space-time transformations. However, the theory is instead
invariant under a certain subgroup of the conformal group. We describe how braiding statistics and ground-state
degeneracy are reproduced by the field theory, and how the the X-cube Hamiltonian and field theory can be
minimally coupled to matter fields. We also show that even on a manifold with trivial topology, spatial curvature
can induce a ground-state degeneracy that is stable to arbitrary local perturbations! Our formalism may allow
for the description of other fracton field theories, where the only necessary input is an equation of motion for a
charge density.
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Just as the initial theoretical discovery of (liquid [1])
topologically ordered phases of matter [2,3] led to incredible
discoveries, the same is now occurring in the context of nonliq-
uid topological order, particularly, fracton topological order
[4–20]. Both kinds of topological order have a finite energy
gap to all excitations (although gapless versions of liquid and
nonliquid [21–26] phases also exist), and both host degenerate
ground states which are stable to arbitrary perturbations and
can only be distinguished by nonlocal operators. (This is in
contrast to spontaneous symmetry-breaking states where the
degenerate ground states are protected by symmetry and can
be distinguished by local order parameters.) Both liquid and
nonliquid topological orders also host topological excitations,
which can only be annihilated via contact with the appropriate
antiparticle(s).

The low-energy physics of liquid topologically ordered
phases [1] is topologically invariant, i.e., symmetric under any
continuous (and bijective) space-time transformation which
preserves the topology of the space-time manifold. For exam-
ple, the multiplicity of the ground-state degeneracy depends
only on the topology of the spatial manifold. Additionally, the
braiding statistics of the topological excitations depend only
on the topology of the paths that they take. Exactly solvable
lattice models exist for many of these phases [27]. However, the
topological nature of these phases lends to a more minimal and
universal description in the form of a topological quantum field
theory (TQFT) [28–33] which makes the topological nature of
these phases explicit via an explicit topological invariance,
which is not possible in a lattice model. For example, Kitaev’s
toric code lattice model and the BF theory TQFT in 2+1
dimensions [(2+1)D)] (or equivalently Chern-Simons theory
with K-matrix [34] K = 2σx) both describe Z2 topological
order [35,36].

Nonliquid topologically ordered phases retain many of the
exotic properties of the liquid topological phases, except that
the long-distance physics is not topologically invariant. The
simplest example of a nonliquid phase is a decoupled (or
weakly coupled) stack of two-dimensional (2D) toric codes in
three dimensions. A less trivial example is the X-cube model
[37] with fracton topological order which we study in this

work. Both models have a ground-state degeneracy which is
stable to arbitrary perturbations; however, on an L × L × L

torus their degeneracy is exponentially large with L, and
thus depends on more than just the topology of the spatial
manifold. Both phases also have constrained dynamics which
are stable to perturbations. In the stack of toric codes, the
topological charge and flux excitations can not move between
different toric code stacks, which allows the pointlike charge
and flux particles to have nontrivial braiding statistics in a
three-dimensional (3D) phase. And the X-cube model has
dimension-1 particles [5] which can only move in the x, y,
or z directions. These movement constraints are not invariant
under spatial deformations, and thus these phases are not
topologically invariant and therefore cannot be described by a
TQFT.

Nevertheless, it seems important to ask if it is possible
to describe these nonliquid topological phases with a field
theory which captures as much of the space-time symmetry
as possible (i.e., some subgroup of the group of continuous
space-time transformations). However, as is often the case in
quantum field theories, an obstruction presents itself in the
form of an infinite quantity. In the case of the stacked toric
code example, a natural field theory is BF theory with an extra
z coordinate to index the different stacks:

LBF stack = 1

π

∑
αβγ=0,1,2

εαβγ Bα(t,x,y,z)∂βAγ (t,x,y,z).

However, this field theory appears to have an infinite de-
generacy on a torus: a factor of 4 for each value of z, for
which there are infinitely many. Nevertheless, we argue that
this dilemma can be solved by applying the standard weapon
against infinities in field theories: a short-distance cutoff. That
is, if we impose a short-distance cutoff a, then the degeneracy
on an l × l × l torus is finite and equal to ∼4l/a . Thus, we can
view the field theory as describing a periodic L × L × L cubic
lattice with degeneracy 4L where L ∼ l/a. We propose that
the same trick can be applied to our field theory for the X-cube
model, which also has a degeneracy which is exponentially
large in system size.
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A more practical concern is as follows: How do we write
the correct field theory to describe a given nonliquid phase?
This task was manageable for TQFTs because the topological
invariance greatly limited the possible Lagrangians that could
be written. For the case of nontopologically invariant (i.e.,
nonliquid) topological phases, we do not have this luxury.

However, for the case of toric code and its BF theory
TQFT description, the terms in the toric code Hamiltonian
can be precisely related to the terms in the BF Lagrangian and
also to the gauge invariance of the TQFT. That is, the time
components of the gauge fields act as Lagrange multipliers
which impose zero charge and flux constraints, where the
terms in the toric code Hamiltonian are lattice discretizations
of the charge and flux densities in BF theory. And the gauge
invariance is related to the fact that all of the terms in the toric
code Hamiltonian commute with each other. We review this
relationship in Appendix A [and Appendix B for (3+1)D BF
theory].

In Sec. II we use this intuition to systematically derive
a field theory [Eq. (9)] for the ZN X-cube model [37] of
fracton topological order. The precise relations discussed in
the previous paragraph continue to hold. The field theory
is not topologically invariant, but is instead invariant under
a certain subgroup of the conformal group of space-time
transformations which transforms all coordinates indepen-
dently (Sec. II D). However, there are new surprises which
challenged our previous intuition. For example, we will see
that the parallel movement of a pair of fractons requires a
fracton dipole current in the region between the pair of fractons
(Fig. 2), which is related to the fact that in the lattice model a
membrane operator can be used to move a pair of fractons. This
peculiarity is necessitated by the exotic charge conservation
constraints [Eq. (16)] which enforce, e.g., the immobility of
isolated fractons.

In Sec. II B we explain the generic braiding processes of the
X-cube model and how they are described by our field theory.
In particular, the motion of dimension-1 particles around the
edges of a cube results in a phase factor which depends on
the number of fractons within the cube (modulo N for the
ZN model) [38]. The motion of a pair of oppositely charged
fractons around the top and bottom edges of a cylinder oriented
along the z axis generates a phase which depends on the
difference in the number of x-axis and y-axis dimension-1
particles.

In Sec. II C we show how the X-cube Hamiltonian and field
theory can be coupled to matter fields with subdimensional
symmetries. Before the matter fields are coupled to the gauge
fields, the matter excitations have the same mobility constraints
as the fractons and dimension-1 particles of the X-cube model.
However, while the mobility constraints of the X-cube model
are robust (i.e., stable under arbitrary local perturbations), the
mobility constraints of the matter fields in the absence of the
gauge fields is instead protected by subdimensional symmetry.

In Sec. II E we explain how the ground-state degeneracy
of the X-cube model can be calculated from either the lattice
model or the field theory. As is well known, the degeneracy
is not topologically invariant, but is instead exponentially
large with system size (on a torus) [11,37,39]. However,
when the log of the degeneracy is expressed as an integral
over space [Eq. (63)], it is invariant under the space-time

transformation discussed in Sec. II D when the cutoff is trans-
formed appropriately. We then ask the following: Since the
degeneracy is not topologically invariant, is a nontrivial
topology of the spatial manifold actually necessary for a stable
ground-state degeneracy in the X-cube model? In Sec. III
we show that the answer is no: a cubic lattice with curvature
defects can host a stable ground-state degeneracy. As the size
of the curved portion of the lattice increases, the degeneracy
can be made exponentially large while the energy splitting of
the degeneracy due to perturbations becomes exponentially
small.

In Appendix C we attempt to use our field theory generating
formalism to derive field theories for new nonliquid topolog-
ical phases. With our current formalism, the only necessary
input is an equation for a charge density. Unfortunately, in
this work we only rule out certain simple possibilities. For
example, we find that when the U(1) scalar charge fracton
phase [21,23] is “Higgsed” down to ZN , that the fractons in
the U(1) theory become mobile (and thus not fractons) in the
ZN theory. Other possibilities are left to future work.

I. NOTATION

Before we begin, we will briefly explain some of the non-
standard notation that we use. Roman letters a,b,c,d = 1,2,3
denote spatial indices. Greek letters α,β,γ,δ = 0,1,2,3 denote
space-time indices [a,b,c,d = 1,2 and α,β,γ,δ = 0,1,2 for
the (2+1)D theories in Appendix A]. 0 is the time index.
Hats are placed above operators. A semicolon (e.g., in A0;a

in Sec. II) is used to indicate that the indices following the
semicolon do not transform under space-time transformations
(Sec. II D).

We use the convention that all spatial and space-time indices
are implicitly summed unless they appear on both sides of the
equation or the right-hand side is zero. For example,

j 0;a EoM= N

2π
ε0abc∂cX

c, (5)

J b = 0 (22)

could be written more explicitly as

∀a : j 0;a EoM= N

2π

∑
b,c=1,2,3

ε0abc∂cX
c,

∀b : J b = 0

or

J 1 = J 2 = J 3 = 0,

where ∀a means for all a = 1,2,3.

II. X-CUBE QUANTUM FIELD THEORY

A. Derivation

We will begin by systematically deriving a quantum field
theory (QFT) for the X-cube model of fracton topological
order [37]. See Appendix A 1 and Appendix B for analogous
derivations for BF theory in ( 2+1)D and (3+1)D.
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FIG. 1. Fracton operator Ô and dimension-1 particle Â(a) opera-
tors of the X-cube model [Eq. (1)]. Ô is a product of 12 Ẑ operators
on the links bordering a cube. Â(a) operators are a product of four X̂

operators on the four links neighboring a vertex which are orthogonal
to the xa direction. X̂ and Ẑ are defined in Eq. (2).

The ZN X-cube model is defined by the following Hamil-
tonian [37]:

ĤX-cube = −
∑

x

(Ôx + Ô†
x) −

∑
x,a

(Â(a)
x + Â(a)†

x ), (1)

where x = (x,y,z) denotes the spatial coordinates. Ô and Â(a)

are defined in Fig. 1 in terms of Ẑ and X̂, which are ZN

generalizations of Pauli operators:

X̂iẐj = ωδij Ẑj X̂i ,

ω = e2πi/N , (2)

eigenvalues(Ẑi) = eigenvalues(X̂i) = 1,ω,ω2, . . . ,ωN−1.

If N = 2, then Ẑ and X̂ reduce to the usual Pauli operators
σ̂ z and σ̂ x . Ô = e2πn/N is the fracton operator, where n is the
number of fracton excitations module N . Â(a) is a dimension-1
particle operator; if N = 2 and −Â(1)

x = −Â(2)
x = Â(3)

x = 1,
then there is a z axis dimension-1 particle at x (Fig. 9).

In order to connect the lattice model to the field theory,
we will rewrite the lattice operators as exponents of fields Za

and Xa:

Ẑx,a(t) ∼ exp

(
i

∫ ′

a

Za(t,x)

)
,

X̂x,a(t) ∼ exp

(
i

∫ ′′

⊥a

Xa(t,x)

)
,

(3)
Ôx(t) ∼ exp

(
2πi

N

∫ ′
i0(t,x)

)
,

Â(a)
x (t) ∼ exp

(
2πi

N

∫ ′′
j 0;a(t,x)

)
,

where a = 1,2,3 is a spatial index (roman letters a,b,c,d . . .

are used to denote spatial indices). i0 and j 0;a are fracton and
dimension-1 particle densities, respectively. For the purposes
of this work, we will only interpret Eq. (3) as a rough
correspondence. The integrals integrate over small regions
near x. Specifically,

∫ ′
a

is an integral across the link that
Ẑx,a lives on;

∫ ′′
⊥a

integrates over the dual plaquette that is
orthogonal to the link that X̂x,a lives on;

∫ ′ integrates over
the cube that Ôx is centered at; and

∫ ′′ integrates over the a
plaquette in the place of the Âx operator.

We will usually view Z and X as real-valued fields, which
are distinguished from their corresponding operators Ẑ and X̂

by hats. However, when Z and X are viewed as operators, they
have the following equal-time commutation relation:

[Za(t,x),Xb(t,x′)] = 2πi

N
δb
aδ

3(x − x′). (4)

Using Eq. (3), the fracton and dimension-1 particle densities
i0 and j 0;a can be read off from Fig. 1:

i0 EoM= N

2π
|ε0abc|1

2
∂a∂bZc,

j 0;a EoM= N

2π
ε0abc∂cX

c, (5)

where “
EoM= ” is used to emphasize that these will be equations

of motion and not strict equalities. Ô and Â(a) (Fig. 1) can
be viewed as lattice discretizations of i0 and j 0;a . Note that i0

and j 0;a commute {i.e.. [i0(t,x),j 0;a(t,x′)] = 0 via the bracket
in Eq. (4)}; this occurs because Ô and Â(a) commute (i.e.,
[Ôx,Â(a)

x′ ] = ÔxÂ(a)
x′ − Â(a)

x′ Ôx = 0).
Regarding the notation, |ε0bcd | is just the absolute value of

the Levi-Civita symbol, and merely forces b, c, and d to be
different space-time indices. We will use the convention that
all spatial and space-time indices are implicitly summed unless
they appear on both sides of the equation or the right-hand side
is zero. Thus, in the equation for j 0;a , a is not summed, but
both b and c are implicitly summed over even though b only
appears once and c appears three times. The semicolon is used
to indicate that the indices following the semicolon do not
transform under space-time transformations (Sec. II D).

The Lagrangian description of the degenerate ground-state
manifold can now be written:

L̃X-cube = N

2π
Xa∂0Za

+X0
N

2π
|ε0abc|1

2
∂a∂bZc︸ ︷︷ ︸

i0

+Z0;a
N

2π
ε0abc∂cX

c

︸ ︷︷ ︸
j 0;a

−Z0;aj
0;a − Zaj

a − X0i
0 − Xaia, (6)∑

a

Z0;a = 0. (7)

The first term describes the equal-time commutation relation
[Eq. (4)], while the second and third terms enforce a zero
charge constraint [Eq. (5)] via the Lagrange multipliers Z0;a

and X0. The final four terms are generic couplings of the fields
(Z and X) to the current sources (j and i). Equation (7) is a
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local Hilbert space constraint, which results from the fact that∑
a j 0;a EoM= 0 [Eq. (5)] and

∏
Â(a) = 1.

In order to transition to a more standard notation, we will
redefine Z, X, j , and i in term of A, B, J , and I , respectively
[40]:

A0;a = Z0;a, J 0;a = j 0;a,

Aa = Za, J a = ja,

B0 = X0, I 0 = i0, (8)

Bab = |ε0abc| Xc, I ab = |ε0abc| ic,
Xa = |ε0abc| 1

2Bbc, ia = |ε0abc| 1
2I bc.

In terms of the A and B fields, the Lagrangian L̃X-cube [Eq. (6)]
becomes

LX-cube = N

2π
|ε0abc|1

2
Bab∂0Ac

+B0
N

2π
|ε0abc|1

2
∂a∂bAc︸ ︷︷ ︸

I 0

+A0;a
N

2π
ε0abc∂cBab︸ ︷︷ ︸

J 0;a

−A0;aJ
0;a − AaJ

a − B0I
0 − Bab

1

2
I ab, (9)

∑
a

A0;a = 0. (10)

The equations of motion for the currents are

I 0 EoM= N

2π
|ε0abc|1

2
∂a∂bAc,

I ab EoM= N

2π
|ε0abc|∂0Ac − N

2π
ε0abc∂c(A0;a − A0;b),

J 0;a EoM= N

2π
ε0abc∂cBab,

J a EoM= − N

2π
|ε0abc|1

2
(∂0Bbc − ∂b∂cB0). (11)

The gauge invariance can be derived as follows:

Bab(t,x) → Bab(t,x)

+ i

∫
x′

[
Bab(t,x),

N

2π
|ε0cde|1

2
∂ ′
c∂

′
dAe(t,x′)︸ ︷︷ ︸

I 0(t,x′)

]

×χ (t,x′)
= Bab + ∂a∂bχ,

Aa(t,x) → Aa(t,x)

+ i

∫
x′

[
Aa(t,x),

N

2π
ε0bcd∂ ′

dBbc(t,x′)︸ ︷︷ ︸
J 0;b(t,x′)

]
ζb(t,x′)

= Aa − ε0abc∂aζc, (12)∑
a

ζa = 0, (13)

where the brackets [. . . , . . . ] are evaluated using Eq. (4)
written in terms of A and B fields:

[Aa(t,x),Bbc(t,x′)] = 2πi

N
|ε0abc|δ3(x − x′). (14)

A constraint on ζa [Eq. (13)] is imposed since it does not
reduce the generality of the gauge transformation, and because
it will be needed to fulfill the constraint on A0;a [Eq. (10)]
under its gauge transformation [Eq. (15)]. The transformation
of the fields (Aa and Bbc) corresponds to conjugating the lattice
operators (Ẑx,a and X̂x,d ) by the terms in the Hamiltonian (Â(e)

x′

and Ôx′ ) at the positions where ζe(t,x′) and χ (t,x′) are nonzero,
e.g., Ẑx,a → Â(e)†

x′ Ẑx,aÂ(e)
x′ . The gauge invariance is a direct

result of the fact that the terms in ĤX-cube [Eq. (1)] commute
with each other. For example, I 0 and J 0;a are invariant under
the above transformation because I 0 and J 0;a commute {i.e.,
[I 0(t,x),J 0;a(t,x′)] = 0}, and I 0 and J 0;a commute because
Ô and Â(a) commute.

To derive how A0;a and B0 transform, the above gauge
transformations can be inserted into LX-cube [Eq. (9)], and A0;a

and B0 can be solved for to find

A0;a → A0;a + ∂0ζa,

B0 → B0 + ∂0χ. (15)

Finally, in order for the coupling of the gauge fields (A
and B) to the currents (I and J ) in LX-cube [Eq. (9)] to be gauge
invariant, the currents must obey the following constraint:

∂0I
0 − 1

2∂a∂bI
ab = 0,

∀a : ∂0J
0;a + ε0abc∂cJ

c = 0, (16)

where the “∀a” means that we do not sum over a in the last
equation, which specifies three separate constraints. These
are generalized charge conservation constraints [analogous
to Eq. (A16) for BF theory], which encode the movement
restrictions of the fracton current I and dimension-1 particle
current J [41].

Example currents

A single stationary fracton at the origin is simply
described by

I 0 = δ(x)δ(y)δ(z),

I ab = 0, (17)

where δ(x) is the Dirac delta function. However, the current
source (I ) describing the creation of fractons is more exotic.
Equation (16) allows four fractons to be created at t = 0
and x = (±, ± ,0), forming a fracton quadrupole, via the
following current configuration:

I 0 =
∑

μ,ν=±1

μν θ (t)δ(x − μ)δ(y − ν)δ(z),

I 12 = δ(t)θ ( + x)θ ( − x)θ ( + y)θ ( − y)δ(z), (18)

I 23 = I 13 = 0,

where θ (x) is the Heaviside step function:

θ (x) =
{

0, x < 0
1, x � 0

∂xθ (x) = δ(x).

I 12 is nonzero on a square at time t = 0, which then creates four
fractons (I 0) at the corners for t > 0. This is analogous to the
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FIG. 2. In order for the fractons (labeled a and b) to move to
the right, they must exchange a fracton dipole (circled in black).
Generating this fracton configuration from the vacuum requires a
nonzero fracton current I 12 in the blue region. Thus, I cd can be
interpreted as a fracton dipole current since it describes a combination
of (1) fracton dipoles oriented in the xc direction moving in the xd

direction and (2) fracton dipoles oriented in the xd direction moving in
the xc direction. (Recall that I cd = I dc). The dipole exchange results
in a fracton flow [green, Eq. (31)], most of which will be canceled
out by an additional dipole exchange.

X-cube lattice model where fractons are created at the corners
of membrane operators. The double derivative in ∂a∂bI

ab in
Eq. (16) is the reason why fractons are created at corners of
membrane operators in the field theory (instead of at the ends
of string operators as is typically the case). Physically, I ab is
can be regarded as a fracton dipole current; see Fig. 2.

A z-axis dimension-1 particle at the origin is represented
by

J 0;1 = −J 0;2 = δ(x)δ(y)δ(z),

J 0;3 = J a = 0. (19)

This is similar to the lattice model where a z-axis particle
excites the Â(1) and Â(2) operators. The z-axis particle can
only move in the z direction. This motion is described by

J 0;1 = −J 0;2 = δ(x)δ(y)δ(z − vt),

J 3 = v δ(x)δ(y)δ(z − vt), (20)

J 0;3 = J 1 = J 2 = 0.

More generally, an xa-axis particle at the origin is given by

xa-axis dim-1 particle:

J 0;b =
∑

c

ε0abcδ(x)δ(y)δ(z), (21)

J b = 0.

If both an x- and y-axis dimension-1 particle are at the
origin, then this is equivalent to a z-axis antiparticle:

J 0;b =
∑
a=1,2

∑
c=1,2,3

ε0abcδ(x)δ(y)δ(z)

= −ε03bcδ(x)δ(y)δ(z), (22)

J b = 0.

The first line in (22) is (21) summed over a = 1,2; this
corresponds to the presence of both an x-axis and a y-axis
particle. The second line shows that this is equivalent to the
negation of (21) with a = 3, which corresponds to just a single
z-axis antiparticle. (This fusion rule can also be understood
from the lattice operators).

B. “Braiding” statistics

If no additional excitations are created, isolated fractons are
immobile and isolated dimension-1 particles can only move
along straight lines. However, when we consider braiding
statistics of topological excitations, we are allowed to create
additional excitations. For example, to measure a flux in Z2

toric code we imagine (1) creating two Z2 charges, (2) moving
one of the charges around the flux, and then (3) annihilating
the two charges. We will find a slightly more exotic scenario
for the “braiding” of X-cube excitations.

1. Dimension-1 particle “braiding”

As a first example, we will use our field theory description
to demonstrate that in order to count the number of fractons
(modulo N ) within a cube, we can create dimension-1 particles
and move them around the edges of the cube [38].

The fracton current I that describes the presence of a single
fracton at x = 0 is

I 0 = δ3(x),

I ab = 0. (17)

A solution to (11) to describe this (motionless) current is

A3 = 2π

N
θ (x)θ (y)δ(z),

A0;a = A1 = A2 = 0. (23)

Using Eq. (3), this can be interpreted as Ẑx,3 ∼ e2πi/N (at the
mean field level [42]) on a square membrane with a corner at
x = 0. Such a wave function can be obtained by acting on the
ground state of the lattice model [Eq. (1)] by a product of X̂x,3

operators on the membrane.
In order to obtain a nonzero braiding statistic with the

fracton, we will consider a dimension-1 particle current J

at time t = 0 around the corners of a cube of length 2 (Fig. 3)
which can be written as

J 0;a = 0,

J a = |ε0abc|1

2
δ(t)

∑
μ,ν=±1

μν θ ( + xa)θ ( − xa)

× δ(xb − μ)δ(xc − ν). (24)
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FIG. 3. Dimension-1 particles are “braided” around a fracton,
resulting in a −2π/N phase. (Red) Dimension-1 particle current J a

around the corners of a cube. (Blue) Rectangular membrane where A3

is nonzero. A single fracton is located at the corner of the membrane,
which is inside of the cube.

This current describes a dimension-1 particle which can only
move in straight without creating any additional excitations. In
this current configuration, 12 different dimension-1 particles
are created so that the edges of a cube are traced out. [And,
indeed, these currents satisfy the constraints in Eq. (16)].

Although we will not need them, there are a couple of nice
solutions to (11) to describe the current J :

Bab = −2π

N

∫ t

−∞
|ε0abc|J c dt,

B0 = 0, (25)

which is trivial to integrate since the integral just replaces the
δ(t) in J a by θ (t). Another gauge-equivalent solution is

B0 = 2π

N
δ(t)

∏
a

θ ( + xa)θ ( − xa),

Bab = 0, (26)

where B0 is nonzero only inside the cube.
We can now evaluate the action

∫
LX-cube [Eq. (9)] for this

configuration. Since the equations of motion for I 0 and J 0;a

are satisfied, the Lagrangian simplifies:

L = N

2π
|ε0abc|1

2
Bab∂0Ac − AaJ

a − Bab

1

2
I ab

= −AaJ
a, (27)∫

t,x
L = −2π

N
.

The second line results because the first and third terms in
the first line are zero since ∂0Aa = 0 [Eq. (22)] and I ab = 0
[Eq. (17)]. Plugging in the expressions for Aa and J a gives the
third line. The integrand is nonzero only where the red current
and blue membrane intersect in Fig. 3. Thus, the presence of
a fracton in the cube is detected by “braiding” dimension-1
particles around the edges of a cube.

2. Fracton “braiding”

As a second example, we show how the presence of a
dimension-1 particle can be detected by moving fractons

FIG. 4. (a) A pair of oppositely charged fractons are “braided”
around an x-axis dimension-1 particle by exchanging fracton dipoles
in the blue shaded region (Fig. 2), resulting in a +2π/N phase. The
fractons are moved parallel to each other; the green arrows are used to
indicate the sign of the fracton flow Ĩ α . (b) Another fracton current I

configuration (blue) which produces the same fracton flow Ĩ (green).
The blue arrows specify the sign of Bab. However, no phase results
from this configuration. (Red line) Region where B23 is nonzero. (Red
point) An x-axis dimension-1 particle. (Blue) Membrane where the
fracton current I ab is nonzero and where X̂ operators are placed in
Eq. (30). (Green) Fracton flow Ĩ [Eq. (32)].

around it. The current describing an x-axis dimension-1
particle at x = 0 is

J 0;2 = −J 0;3 = δ3(x),

J 0;1 = J a = 0, (28)

which has the following field solution:

B23 = 2π

N
θ (x)δ(y)δ(z),

B12 = B13 = B0 = 0. (29)

To detect the x-axis dimension-1 particle within a cube
of length 2, we can simultaneously move two oppositely
charged fractons around the top and bottom edges of the cube
[Fig. 4(a)]. The fractons are capable of moving by exchanging
fracton dipoles (see Fig. 2). However, the current I that
describes this process might seem surprising, so we will instead
begin with the lattice membrane operator that generates this
current and fracton motion [Fig. 4(a)]:

F̂ =
( ∏

−<y�

∏
−<z�

X̂
†
−,y,z,1X̂+,y,z,1

)

×
( ∏

−<x�

∏
−<z�

X̂x,−,z,2X̂
†
x,+,z,2

)
. (30)

The membrane consists of four squares, which each create
fractons at the corners which cancel out with the fractons gen-
erated by neighboring squares. From the X̂ and Ẑ commutation
relations [Eq. (2)], this operator will rotate the expectation
value of Ẑ. Using Eqs. (3) and (8) to relate Ẑ to A, and the
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equations of motion for I ab [Eq. (11)] to shift Ac via the ∂0Ac

term in Eq. (11), we find the following fracton current:

I a3 = ε0ab3 δ(t)θ (xa + )θ (xa − )

× [δ(xb + ) − δ(xb − )] θ (z + )θ (z − ), (31)

I 12 = I 0 = 0.

I a3 is nonzero in the blue regions of Fig. 4(a).
It may seem surprising that the fracton current I ab [Eq. (30)]

is nonzero on a membrane, even though we are trying to
describe the movement of two pointlike fractons. However,
as explained in Fig. 3, this is due to the fact that fractons are
created at corners of membrane operators, which implies that a
membrane operator (or membrane current) is required to move
a pair of fractons. This is manifested in the conservation law
(copied below) by the second derivative in the second term:

∂0I
0 − 1

2∂a∂bI
ab = 0. (16)

Thus, I ab is best regarded as a fracton dipole current.
In order to understand why we must consider a fracton

dipole current in the field theory, let us define a new quantity
Ĩ α , which we will call the fracton flow, in terms of the fracton
current I :

Ĩ 0 = I 0,

Ĩ a = − 1
2∂bI

ab. (32)

Unlike the fracton current (I ), the fracton flow Ĩ α equations
of motion obey the usual current conservation law:

∂αĨ α EoM= 0. (33)

The fracton flow (green in Fig. 4) corresponds to the more
intuitive notion of net movement of fractons. However, on a
closed manifold the fracton flow does not uniquely specify
the fracton current (I ), nor is it sufficient to calculate the
resulting phase from a braiding process. For example, Fig. 4(b)
shows a different current configuration, which results in the
same fracton flow but a different phase factor; on a 3D torus,
there is no reason to prefer one current configuration over the
other. Thus, the current I ab carries some additiona information:
fractons can only move by exchanging fracton dipoles (Fig. 2),
and I ab specifies where the dipole current occurs.

Although we will not need them, I [Eq. (30)] has a couple
of nice field configuration solutions:

Aa = 2π

N

∫ t

−∞
|ε0abc|1

2
I bc dt,

A0;a = 0. (34)

Another gauge-equivalent solution is

A0;3 = −2π

N
δ(t)

∏
a

θ ( + xa)θ ( − xa),

A0;1 = A0;2 = Aa = 0, (35)

which is nonzero inside the cube.
We can now evaluate the action

∫
LX-cube [Eq. (9)] for this

configuration. Making use of the equations of motion for I 0

and J 0;a and the fact that ∂0Bab = J c = 0 for our current

configuration, we find

L = N

2π
|ε0abc|1

2
Bab∂0Ac − AaJ

a − Bab

1

2
I ab

= −Bab

1

2
I ab, (36)

∫
t,x

L = +2π

N
.

Thus, the presence of a dimension-1 particle in the cube is
detected by moving a pair of fractons around the top and
bottom edges of the cube. A more detailed analysis would
show that this motion of fractons actually counts the difference
in the number of x- and y-axis dimension-1 particles inside
the cube.

C. Minimal coupling to matter

In this section we will show how the X-cube Hamiltonian
[Eq. (1)] and field theory [Eq. (9)] can be coupled to matter,
which is related to the gauging procedures introduced in
Refs. [5,14]. We will leave further study of these models to
future work. See Appendix A 2 for an analogous treatment for
toric code and BF theory in (2+1)D.

In the lattice model, matter can be introduced by in-
troducing ZN fracton matter operators τ̂

μ
x at the centers

of the cubes and three dimension-1 matter operators σ̂
μ
x,a

(a = 1,2,3) on the sites of the cubic lattice. The fracton
operator Ôx and and dimension-1 particle operator Â(a)

x are
multiplied by τ̂ x

x and σ̂ x
x,a , respectively. We also introduce

hopping terms F̂ (a)
x and Ĉ(a)

x for the fracton and dimension-1
matter, respectively (Fig. 5). The Hamiltonian with this matter

FIG. 5. τ̂ x
x Ôx, σ̂ x

x Â(a)
x , Ĉ(a)

x , and F̂ (a)
x operators of the X-cube

model [Eq. (36)] after coupling to σ̂ μ and τ̂ μ matter. σ̂ μ
x,a are centered

on the vertices, while τ̂ μ
x are centered on the cubes.
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FIG. 6. Examples of loop operators given in Eq. (47) on a periodic
cubic lattice. A Ŵ operator moves a dimension-1 particle around the
torus, while the T̂ operator moves a fracton dipole. Ẑ and X̂ operators
are placed on the blue and red colored links, respectively. The loop
operators are parametrized by a coordinate. For example, for each
x there is a Ŵx,3,1 operator; changing x moves the loop operator
along the blue line at the bottom. Modulo the redundancy in Eq. (50),
these operators are the nonlocal qubits which act on the degenerate
ground-state manifold of the X-cube model [Eq. (1)].

coupling is

Ĥ
coupled
X-cube = −

∑
x

[
τ̂ x

x Ôx +
∑

a

(
σ̂ x

x,aÂ(a)
x + Ĉ(a)

x + F̂ (a)
x

)

+h
∑

a

σ x
x,a + h′τ x

x

]
+ H.c. (37)

τ̂ x
x and σ̂ x

x,a are ZN fracton and dimension-1 matter number
operators, and “H.c.” denotes the addition of the Hermitian
conjugate of the preceding operators.

Note that all of the operators commute. If h and/or h′ is
small, then the A and/or B gauge fields are “Higgsed,” and
Ĥ

coupled
X-cube is in a trivial phase with no topological order. This

occurs because the Wilson and ’t Hooft loop operators (Fig. 6),
which describe the ground-state degeneracy, do not commute
with the F̂ and Ĉ operators, respectively. When h and h′ are
large, the matter has a large mass gap and has no effect on the
phase.

The fracton matter hopping operator (F̂) hops fracton mat-
ter (i.e., excitations of τ̂ x

x ) with the same mobility constraints as
the fracton excitations in the original X-cube model [Eq. (1)].
For example, it can create four fractons from the vacuum,
or it can move a fracton dipole along a plane as fracton
dipoles are dimension-2 particles. Similarly, the dimension-1
matter hopping operator (Ĉ) hops dimension-1 matter (i.e.,
excitations of σ̂ x

x,a) along straight lines. Thus, τ̂ x
x and σ̂ x

x,a are
analogous to the Ô and Â(a) operators, respectively, in the
X-cube model without explicit matter coupling [Eq. (1)]. In
the X-cube model, the mobility constraints of the fracton and
dimension-1 particle excitations were robust, i.e., stable to
arbitrary local perturbations. If we were to consider the matter
content of Ĥ

coupled
X-cube [Eq. (37)] in the absence of the gauge

fields A and B, then the mobility constraints of the matter
would instead be enforced by subdimensional symmetries.

We can describe the same physics in the field theory by
introducing 2π -periodic (i.e., 2π vortices are allowed) matter
fields θa and φ. The simplest way to systematically construct
a gauge-invariant Lagrangian is to first define currents j and i

[not to be confused with j and i in Eq. (6)] equal to −v2A and
−w2B, respectively, and then apply a gauge transformation
[Eqs. (12) and (15)] with ζa = −θa and χ = −φ:

j0;a = v2(∂0θa − A0;a),

ja = v2

( ∑
bc

ε0abc∂aθc + Aa

)
,

(38)
i0 = w2(∂0φ − B0),

iab = w2(∂a∂bφ − Bab),

where v and w are coupling constants, which are chosen to
be spatially isotropic for simplicity only. We can now define a
Lagrangian for the matter fields:

L
coupled
X-cube = LX-cube +

∑
a

1

2v2
[(j0;a)2 − (ja)2]

+ 1

2w2

[
(i0)2 −

∑
ab

1

2
(iab)2

]
, (39)

∑
a

θa = 0, (40)

where we have imposed a local constraint on θa , analogous
to the local constraint placed on A0;a [Eq. (10)]. [Without the
constraint, θ would have a trivial local symmetry θa(t,x) →
ζ̃ (t,x) [43]].

The advantage of this construction is that the Lagrangian is
gauge invariant as long as θ and φ transform as

θa(t,x) → θa(t,x) + ζa(t,x),

φ(t,x) → φ(t,x) + χ (t,x). (41)

This construction also guarantees that the equations of motion
for θ and φ imply that the matter currents j and i obey the
mobility (or generalized charge conservation) constraints in
Eq. (16).

Note that before φ is coupled to the gauge field B (e.g., set
B = 0 in L

coupled
X-cube ), φ has a subdimensional symmetry

φ(t,x) → φ(t,x) +
∑

a

χ̃a(xa), (42)

where χ̃a is time independent and depends on only a single
spatial coordinate xa . φ is analogous to τ̂ [in Eq. (37)]
and describes the fracton matter where the subdimensional
symmetry [Eq. (42)] protects the fracton mobility constraints.
Gauging φ then promotes the subdimensional symmetry to a
local symmetry [Eq. (41)].

Similarly, before θ is coupled to the gauge field A, θ also
has a subdimensional symmetry

θa(t,x) → θa(t,x) +
∑

b

ζ̃b(xb) − 3ζ̃a(xa), (43)
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where ζ̃a only depends on xa . θ is analogous to σ̂ [in Eq. (37)]
and describes the dimension-1 matter where the subdimen-
sional symmetry [Eq. (42)] protects the dimension-1 particle
mobility constraints. Gauging θ promotes the subdimensional
symmetry to a local symmetry [Eq. (41)].

Alternatively, we can couple the X-cube field theory to a
complex-valued scalar field �, which describes the fracton
matter, by introducing amplitude components to φ, i.e., � =
|�|eiφ . [A treatment of the dimension-1 matter (θa) is omitted
since it is more involved due to the constraint (40).] The
phase of � transforms accordingly under gauge [Eq. (41)]
and subdimensional symmetry [Eq. (42)] transformations. The
matter currents are now equal to the real parts of

ĩ0 = �∗(∂0 − i B0)�,

ĩab = �∗(∂a∂b + Bab)�. (44)

The Lagrangian takes a similar form

L
coupled′
X-cube = LX-cube + 1

2|�|2
[

(i0)2 −
∑
ab

1

2
(iab)2

]

−μ (|�|2 − w2)2. (45)

When μ is large, � ≈ w eiφ and we reproduce Eq. (39) [aside
from the omission of the dimension-1 matter (θa)].

D. Subconformal invariance

The Lagrangians for BF theory in (2+1)D [Eq. (A1)]
and (3+1)D [Eq. (B1)] are topologically invariant (Appendix
A 3). (That is, they are invariant under smooth space-time
transformations, which preserve the topology of the space-time
manifold.) As a result, the ground-state degeneracy only
depends on the topology of the spatial manifold, and the
braiding statistics only depend on the topology of the paths of
the particle (and string) excitations. However, the ground-state
degeneracy of the X-cube model depends on the system size,
and the dimension-1 particles are not even allowed to move
in all directions. Thus, a field theory of the X-cube model can
not be topologically invariant since even rotation symmetry is
broken. Nevertheless, in this section we will show that our X-
cube field theory [Eq. (9)] is invariant under a certain subgroup
of the conformal group of space-time transformations, which
we will refer to as the subconformal group. (The conformal
group is the group of space-time transformations that preserves
angles).

Specifically, the X-cube field theory is invariant under the
following space-time transformation:

t → t̃(t),

x → x̃(x),

y → ỹ(y),

z → z̃(z), (46)

where t̃(t), x̃(x), ỹ(y), and z̃(z) are smooth and monotonic.
Note that each space-time component transforms indepen-
dently of every other component. This is necessary due to
the physics of dimension-1 particles which can only move in
straight lines: the space-time transformation is not allowed to
bend or distort the spatial geometry. The fields transform as

usual [i.e., the same as in BF theory (Appendix A 3) given the
transformation (46)], except for the fact that indices following
a semicolon do not transform:

A0;a(xμ) → Ã0;a(xμ) = dt̃

dt
A0;a[x̃μ(xν)],

Aa(xμ) → Ãa(xμ) = dx̃a

dxa
Aa[x̃μ(xν)],

B0(xμ) → B̃0(xμ) = dt̃

dt
B0[x̃μ(xν)],

Bab(xμ) → B̃ab(xμ) = dx̃a

dxa

dx̃b

dxb
Bab[x̃μ(xν)],

J 0;a(xμ) → J̃ 0;a(xμ) = dx̃

dx

dỹ

dy

dz̃

dz
J 0;a[x̃μ(xν)],

J a(xμ) → J̃ a(xμ) = |ε0abc|1

2

dt̃

dt

dx̃b

dxb

dx̃c

dxc
J a[x̃μ(xν)],

I 0(xμ) → Ĩ a(xμ) = dx̃

dx

dỹ

dy

dz̃

dz
I 0[x̃μ(xν)],

I ab(xμ) → Ĩ ab(xμ) = |ε0abc|dt̃

dt

dx̃c

dxc
I aba[x̃μ(xν)]. (47)

It is then simple to see that the action
∫

LX-cube [Eq. (9)] is
invariant under the above transformation.

E. Robust degeneracy

The ground-state degeneracy of the X-cube model is robust
in the sense that generic local perturbations to the Hamiltonian
or Lagrangian do not split the degeneracy. (More precisely, on
a finite system the degeneracy splitting is exponentially small
in system size.) However, the degeneracy is not topological
in the sense that the degeneracy depends on more than the
topology of the spatial manifold, a fact that we will explore
further in Sec. III. On a torus, the degeneracy is exponentially
large with the lengths of the torus. In this section, we explain
how to calculate the ground-state degeneracy of the X-cube
model and its field theory. We also express the degeneracy in
terms of an integral [Eq. (63)], which is invariant under the
subconformal transformation (Sec. II D).

1. Lattice model degeneracy on a 3D torus

First, we will explain how the degeneracy of the X-cube
lattice model can be understood in terms of nonlocal qubit
operators on an L1 × L2 × L3. (Other derivations of the
degeneracy are given in [11,37,39].) Similar to toric code, the
X-cube model also has noncontractible loop operators (Fig. 6):

Ŵx,3,1 =
∏

z

Ẑx,ȳ,z,3, T̂x,3,1 =
∏
y

X̂x,y,z̄,3,

Ŵy,3,2 =
∏

z

Ẑx̄,y,z,3, T̂y,3,2 =
∏
x

X̂x,y,z̄,3,

Ŵy,1,2,Ŵz,1,3,Ŵx,2,1,Ŵz,2,3 and corresponding

T̂ operators are similarly defined, (48)

where x̄, ȳ, and z̄ are arbitrary constants. Ŵ and T̂ correspond
to moving a dimension-1 particle and a fracton dipole around
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the torus, respectively. These operators are observables capable
of distinguishing the degenerate ground states.

The above operators have the following nontrivial commu-
tation relations:

T̂x,3,1Ŵx ′,3,1 = ωδx,x′ Ŵx ′,3,1T̂x,3,1,

T̂y,3,2Ŵy ′,3,2 = ωδy,y′ Ŵy ′,3,2T̂y,3,2,

T̂y,3,2Ŵx,3,1 = ωδy,ȳ Ŵx,3,1T̂y,3,2, (49)

T̂x,3,1Ŵy,3,2 = ωδx,x̄ Ŵy,3,2T̂x,3,1,

ω = e2πi/N (2)

and similar for Ŵy,1,2, Ŵz,1,3, Ŵx,2,1, Ŵz,2,3, and the corre-
sponding T̂ operators. Thus, Ŵ and T̂ are conjugate operators,
with the exception of some redundancy which resulted in the
third and fourth equations above. The redundancy is

Ŵx̄,3,1 = Ŵȳ,3,2,∏
x

T̂x,3,1 =
∏
y

T̂y,3,2 (50)

and similar for Ŵy,1,2, etc. We can define new loop operators
without this redundancy:

Ŵ ′
x,3,1 = Ŵx,3,1,

Ŵ ′
y,3,2 = Ŵy,3,2Ŵ

†
ȳ,3,2,

and ignore Ŵ ′
ȳ,3,2 and T̂ȳ,3,2 (51)

and similar for Ŵy,1,2, etc. If we use Ŵ ′ instead of Ŵ , and
ignore Ŵ ′

ȳ,3,2 and T̂ȳ,3,2, then the only nontrivial commutation
relations are

T̂x,3,1Ŵ
′
x ′,3,1 = ωδx,x′ Ŵ ′

x ′,3,1T̂x,3,1,

T̂y,3,2Ŵ
′
y ′,3,2 = ωδy,y′ Ŵ ′

y ′,3,2T̂y,3,2, (52)

and similar for Ŵy,1,2, etc. Therefore, we have (L1 +
L2 − 1) + (L2 + L3 − 1) + (L3 + L1 − 1) = 2L1 + 2L2 +
2L3 − 3 independent pairs of conjugate ZN operators that
commute with the X-cube Hamiltonian [Eq. (1)]. The degen-
eracy is therefore

degen = N2L1+2L2+2L3−3. (53)

2. Field theory degeneracy on a torus

Now, we want to calculate the ground-state degeneracy
of the X-cube field theory on an l1 × l2 × l3 torus. (The
superscripts in la are spatial indices, not exponents.) However,
now the lengths la have units of length and are no longer
integers.

To understand how to deal with this issue, let us first
consider the example of a stack of L3 layers of ZN toric codes.
The degeneracy on an L1 × L2 × L3 torus is N2L3 [44]. A
natural field theory for this model is the (2+1)D BF theory
[Eq. (A1)] with an extra dimension in the z direction:

LBF stack = N

2π

∑
αβγ=0,1,2

εαβγ Bα(t,x,y,z)∂βAγ (t,x,y,z).

(54)

Note that there is no z derivative ∂3; each layer is decoupled.
Since the z direction is continuous in the field theory, the
ground-state degeneracy on a torus appears to be infinite.
However, if we impose a UV cutoff length a, then the
degeneracy is finite:

degen ∼ N2l3/a (55)

for a torus of length l1 × l2 × l3. This is the degeneracy
because the effective number of layers is L3 ∼ l3/a and the
lattice model degeneracy is N2L3 . (Recall that l3 is not l cubed;
it is the z component of l.) Thus, the UV cutoff allows us to
calculate a finite degeneracy.

With this in mind, we can now understand the degeneracy
of the X-cube field theory [Eq. (9)] on an l1 × l2 × l3 torus.
Integrating over A0;a and B0 enforces a zero fracton and
dimension-1 particle constraint: I 0 = J 0;a = 0 [where I 0 and
J 0;a are given by their equations of motion (11)]. Modulo
gauge redundancy [Eq. (12)], on an l1 × l2 × l3 torus the
solutions to these constraints can be written as

Aa(t,x) = |ε0abc|δ(xa − x̄a)q;ab(t,xb),

Bab(t,x) = |ε0abc|δ(xb − x̄b)

[
p;ca(t,xa)−1−ε0abc

2
δ(xa−x̄a)

×
∫

x̃a

p;ca(t,x̃a)

]
+ (a ↔ b), (56)

q;ab(t,x̄b) = p;ab(t,x̄b) = 0 if ε0abc = −1, (57)

where q;ab(t,xb) and p;ab(t,xb) describe the topological
contribution. The second two lines are accounting for the
redundancy described in Eq. (50). Without this correction, the
action [Eq. (61)] would contain additional unwanted terms.
p;ab and q;ab are closely connected to Ŵ ′ and T̂ in Eqs. (51)
and (48):

Ŵ ′
xb,a,b(t) ∼ ei p;ab(t,xb), T̂xb,a,b(t) ∼ ei q;ab(t,xb). (58)

For example,

Ŵ ′
x,3,1(t) =

∏
y

X̂x,y,z̄,3

∼ exp

(
i

∫
y

B12(t,x,y,z̄)

)

= ei p;31(t,x).

In a different gauge, Aa and Bab can also be written as

Aa(t,x) = |ε0abc|q;ab(t,xb)/la,

Bab(t,x) = |ε0abc|
[
p;ca(t,xa)

− 1 − ε0abc

2

∫
x̃a

p;ca(t,x̃a)/la
]
, (59)∫

xb

q;ab(t,xb) =
∫

xb

p;ab(t,xb) = 0 if ε0abc = −1. (60)

This choice makes Aa and Bab more smooth by removing the
delta functions, but is less closely connected to Ŵ ′ and T̂ .
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If we insert either Eq. (56) or (59) into the action
∫

LX-cube

[Eq. (9)], we find∫
t,x

L = N

2π
|ε0abc|

∫
t,xb

p;ab(t,xb)∂0q;ab(t,xb). (61)

With a UV cutoff a, this action describes 2l1/a + 2l2/a +
2l3/a − 3 qubits (Ŵ ′ and T̂ ). The −3 comes from the three
pairs of constraints in Eq. (57) or (60). Thus, the field theory
has the following ground-state degeneracy:

degen ∼ N2l1/a+2l2/a+2l3/a−3 (62)

which is consistent with the X-cube lattice model degeneracy
[Eq. (53)].

Note that this expression for the degeneracy can be made
subconformally invariant (Sec. II D) if we generalize it to an
integral:

logN degen ∼ −3 +
∑
bcd

∫
x

|ε0bcd |
lblcad (xd )

, (63)

where we now allow the cutoff ad (xd ) to be position and
direction dependent. This integral is only appropriate for a
flat l1 × l2 × l3 torus. A more general expression (which we
leave to future work) is necessary for curved spaces (Sec. III).
Under the subconformal transformation, the cutoff transforms
as (using the notation of Sec. II D)

ab(xb) → ãb(xb) = dxb

dx̃b
ab[x̃b(xb)]. (64)

III. ROBUST DEGENERACY VIA LATTICE CURVATURE

For toric code and BF theory on a manifold without a
boundary, the ground-state degeneracy only depends on the
topology of the manifold. However, as reviewed in the previous
section, the degeneracy of the X-cube model on a torus depends
on the size of the torus, which is a geometric (not topological)
property. Since the topology of the spatial manifold is
insufficient to determine the ground-state degeneracy, it is
plausible that a manifold with nontrivial topology may not
even be necessary for a ground-state degeneracy. Indeed, in this
section we will demonstrate that the X-cube model can have
a stable ground-state degeneracy on a manifold with trivial
topology! We will focus on lattice models in this section and
leave a field theory description to future work. For simplicity,
we take N = 2 here, so that Ẑ = Ẑ† and X̂ = X̂†, which makes
it easier to generalize the X-cube model to more complicated
lattices.

We will consider examples of a curved lattice with angular
defects [Figs. 7(a) and 7(b)]. Figures 7(c) and 7(d) show an
instructive example of a 2D lattice with angular defects with an
important property: there are “straight loops” (green in figure).
These loops are straight in the sense that they can be traversed
by dimension-1 particles.

In Fig. 8 we now show the 3D lattice example of interest:
a cubic lattice with angular defects around the edges of a
rectangular torus. Importantly, the lattice has straight loops
(blue in figure) which can be traversed by dimension-1
particles. When N = 2, the lattice has ground-state degeneracy

(a) -90◦ defect (b) +90◦ defect

(c)
(d)

FIG. 7. Examples of 2D lattices with curvature defects. (a), (b)
±90◦ square lattice defects. (c) A square lattice with four −90◦ defects
(purple) and four +90◦ defects (orange). The 2D lattice is embedded
in 3D space where the 2D surface takes the shape of an oversized
tablecloth that is placed over a square table. The resulting curvature of
the lattice leads to the creation of “straight loops” around the square,
i.e., a geodesic loop without any kinks. These loops are colored
green. Straight loops are important because they can be traversed
by a dimension-1 particle (via loop operators as in Fig. 6). (d) The
same lattice, but embedded in 2D space by stretching some of the
plaquettes and drawing new (green) links.

22 due to the two pairs of loop operators (red and blue in the
figure), which are analogous to the operators in Fig. 6. Since
the topology of the lattice is trivial (its topology is the same
as the original cubic lattice), the degeneracy is a result of the
geometry of the lattice, not the topology! The degeneracy is
robust in the sense that if perturbations are added, the energy
splitting is exponentially small in the size of the torus-shaped
(green in figure) curved region [45]. The degeneracy can also
be made exponentially large by adding more layers. Figure 8
only adds a single layer of links (green in figure); if  layers
are added [e.g., Figs. 7(c) and 7(d) have three layers], then the
degeneracy is 22 (when N = 2).

Some of the cubes in Fig. 8 have been split into two 3-
cells. (Links, plaquettes, and cubes are examples of 1-, 2-, and
3–cells.) Thus, for each of these cubes, the original fracton
operator Ô (Fig. 1) in the Hamiltonian ĤX-cube [Eq. (1)] must
be replaced by two new operators (one for each new 3-cell),
which are each a product of Ẑ operators on the links on the
edge of the 3-cell. Also, vertex operators Â(a) will need to
be added to ĤX-cube at the new vertices [where the black and
green lines intersect in Fig. 8(a)]. (Recall that we are only
considering N = 2 so that Ẑ = Ẑ† and X̂ = X̂†, and thus we
do not need to worry about which operators require complex
conjugation).
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(a) (b)

FIG. 8. A cubic lattice with many angular defects. (a) Similar to
Fig. 7(d): we start with a cubic lattice (black) and then add the colored
links. For clarity, we only show the y < 0 < x quadrant; the other
four quadrants are obtained by reflecting about the two light-orange
colored planes. The colored links thus take the shape of a torus. (b) A
larger example: We start with a cubic lattice (not shown for clarity)
and then add the green links. This time, the green links form a larger
torus. If this geometry were embedded in 4D space, it would take
the shape of a 3D plane with a torus raised into an orthogonal fourth
dimension [similar to Fig. 7(c), which took the shape of a 2D plane
with a square raised into the third dimension]. When N = 2, the
above lattices have a ground-state degeneracy 22 due to the two pairs
of red and blue loop operators (analogous to the operators in Fig. 6).
Note that the topology of the above lattice is trivial: its topology is
the same as the original cubic lattice. The degeneracy results from the
geometry, not the topology! (Although it appears similar, the physics
on the green lattice is not the same as toric code on a torus, e.g., toric
code lacks dimension-1 particles).

IV. CONCLUSION

In this work we have exemplified a generic method to
derive a quantum field theory from either certain exactly
solvable lattice models or from a charge density [e.g., Eq. (A7),
(5), or (B4)]. We used the method to derive a quantum
field theory [Eq. (9)] for the X-cube model [37] of fracton
topological order in Sec. II. Consistent with our expectations,
the field theory is not topologically invariant, but is instead
only invariant under a subgroup of the conformal group (Sec.
II D). We demonstrated that the constrained mobility of the
particle excitations is enforced by the generalized charge
conservation laws [Eq. (16)], and how the braiding statistics
and ground-state degeneracy are described by the field theory.
We also gave examples of how the X-cube Hamiltonian and
field theory can be coupled to matter fields.

A natural future direction would be to derive more field
theories for other fracton models. This could be done by
applying our methods to different charge densities. Some
possibilities were attempted in Appendix C. Unfortunately,
in this work we only rule out certain simple possibilities. For
example, we find that when the U(1) scalar charge fracton
phase [21,23] is “Higgsed” down to ZN , that the fractons in
the U(1) theory become mobile (and thus not fractons) in the
ZN theory. Alternatively, one could generalize our formalism
to allow for more fields as in Chern-Simons theory with a
K-matrix or a field theory for non-Abelian fracton order [6]
could be derived.

We have shown that the X-cube model has a field theory
description. However, there are many other exactly solvable
fracton lattice models [5,6,9,11,17,37], and it is not clear if all
fracton phases admit a field theory description. In particular,

it is not easy to imagine how a fractal-type fracton order, such
as Haah’s code [9], could be described by a field theory.

The dependence of ground-state degeneracy on the topol-
ogy of a spatial manifold has been studied in detail for liquid
topological orders using topological quantum field theories.
In Sec. III we used a specific example to demonstrate that
spatial curvature can induce a stable ground-state degeneracy
on a manifold with trivial topology for the X-cube model. An
interesting direction would be to find a general description of
how the ground-state degeneracy of the X-cube model and
other nonliquid topological orders depend on the geometry of
the lattice or manifold. It is not clear if a lattice model, our
field theory, or some other mathematical description would be
ideal to describe this.
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APPENDIX A: BF THEORY IN (2+1)D

1. Derivation

In this Appendix we review how BF theory [36] in 2+1
space-time dimensions can be systematically derived from its
lattice model, toric code [35]. In Appendix B, we will also
review the derivation for BF theory in (3+1)D.

ZN BF theory is a TQFT with ZN topological order and is
described by the following Lagrangian:

LBF = N

2π
εαβγ Bα∂βAγ − AαJα − BαIα, (A1)

where summation over the space-time indices α,β,γ = 0,1,2
is implied (greek letters will denote space-time indices where
0,1,2 correspond to the t,x,y directions); Aα(t,x,y) and
Bα(t,x,y) are 1-form gauge fields; and Iα and J α are the
charge and flux currents. BF theory in (2+1)D is a special case
of Abelian Chern-Simons theory with a particular K-matrix
[34]:

LCS = 1

4π
Kij ε

αβγ Ai;α∂βAj ;γ − Ai;αJ α
i , (A2)

K =
(

0 N

N 0

)
.

BF theory in (2+1)D has a lattice description given by ZN

Kitaev toric code [35]:

Ĥtoric = −
∑

x

(B̂x + B̂†
x) −

∑
x

(Âx + Â†
x), (A3)

B̂x,y = Ẑx+1,y,2Ẑ
†
x,y,2Ẑ

†
x,y+1,1Ẑx,y,1,

Âx,y = X̂x,y,1X̂
†
x−1,y,1X̂x,y,2X̂

†
x,y−1,2, (A4)

where x = (x,y) denotes the spatial coordinates. The Ẑ and
X̂ are ZN generalizations of Pauli operators and are defined
in Eq. (2). B̂ = e2πn/N is the flux operator, where n is the
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FIG. 9. Flux B̂ and charge Â operators of the toric code model
[Eq. (A3)], which are each products of four Ẑ or X̂ operators on the
neighboring links.

number of flux excitations module N . Similarly, Â is the
charge operator (Fig. 9).

In order to connect the lattice model to the field theory, we
will write the lattice operators in terms of fields Z and X:

Ẑx,a(t) = e+iĤ Ẑx,ae
−iĤ

∼ exp

(
i

∫ ′

a

Za(t,x)

)
,

X̂x,a(t) ∼ exp

(
i

∫ ′′

⊥a

Xa(t,x)

)
, (A5)

B̂x(t) ∼ exp

(
2πi

N

∫ ′
i0(t,x)

)
,

Âx(t) ∼ exp

(
2πi

N

∫ ′′
j 0(t,x)

)
,

where a = 1,2 is a spatial index (roman letters a,b,c,d . . . are
used to denote spatial indices). iα and jα will be the flux and
charge currents, respectively. For the purposes of this work, we
will only interpret Eq. (A5) as a rough correspondence. The
integrals integrate over small regions near x. Specifically,

∫ ′
a

is an integral across the link that Ẑx,a lives on;
∫ ′′
⊥a

integrates
over the dual link that is orthogonal to the link that X̂x,a lives
on;

∫ ′ integrates over the plaquette that B̂x is centered at; and∫ ′′ integrates over the dual plaquette that is centered on the
vertex that Âx is centered at.

We will usually view Z and X as real-valued fields, which
are distinguished from their corresponding operators Ẑ and X̂

by hats. However, when Z and X are viewed as operators, they
have the following equal-time commutation relation:

[Za(t,x),Xb(t,x′)] = 2πi

N
δb
aδ

2(x − x′). (A6)

Using Eq. (A5), the flux and charge densities i0 and j 0 can
be read off from Eq. (A4) or Fig. 9:

i0 EoM= N

2π
ε0bc∂bZc,

j 0 EoM= N

2π
∂bX

b, (A7)

where “
EoM= ” is used to emphasize that these will be equations

of motion and not strict equalities. B̂ and Â [Eq. (A4)] can
be viewed as lattice discretizations of i0 and j 0. Note that i0

and j 0 commute {i.e., [i0(t,x),j 0(t,x′)] = 0 via the bracket
in Eq. (A6)} since B̂ and Â commute (i.e., [B̂x,y,Âx ′,y ′ ] =
B̂x,yÂx ′,y ′ − Âx ′,y ′ B̂x,y = 0).

We can now write the Lagrangian description of the
degenerate ground-state manifold:

L̃BF = N

2π
Xa∂0Za + X0

N

2π
ε0bc∂bZc︸ ︷︷ ︸

i0

+Z0
N

2π
∂bX

b

︸ ︷︷ ︸
j 0

−Z0j
0 − Zaj

a − X0i
0 − Xaia. (A8)

The first term describes the commutation relation of Xa and
Za [Eq. (2)]. The second and third terms impose the equations
of motion for the charge and flux densities [Eq. (A7)], where
Z0 and X0 are introduced as Lagrange multipliers. The final
four terms are generic couplings of the fields (Z and X) to the
current sources (j and i).

If we make the following field redefinitions, then L̃BF

[Eq. (A8)] will take the form of the BF theory Lagrangian
LBF [Eq. (A1)]:

Aα = Zα, J α = jα,

B0 = X0, I 0 = i0, (A9)

Ba = −εab0X
b, I a = −εab0ib.

Strictly speaking, L̃BF [Eq. (A8)] and LBF [Eq. (A1)] describe
the same theory; however, LBF is a much nicer way of writing
this theory as it makes the topological invariance more explicit.

The equations of motion are now

Iα EoM= N

2π
εαβγ ∂βAγ , (A10)

J α EoM= N

2π
εαβγ ∂βBγ . (A11)

The gauge invariance can be systematically derived as follows:

Aa(t,x) → Aa(t,x)

+ i

∫
x′

[
Aa(t,x),

N

2π
ε0bc∂ ′

bBc(t,x′)︸ ︷︷ ︸
J 0(t,x′)

]
ζ (t,x′)

= Aa(t,x) + ∂aζ (t,x),

Ba(t,x) → Ba(t,x)

+ i

∫
x′

[
Ba(t,x),

N

2π
ε0bc∂ ′

bAc(t,x′)︸ ︷︷ ︸
I 0(t,x′)

]
χ (t,x′)

= Ba(t,x) + ∂aχ (t,x), (A12)

where the brackets [. . . , . . . ] are evaluated using Eq. (A6)
written in terms of A and B:

[Aa(t,x),Bb(t,x′)] = 2πi

N
ε0abδ

2(x − x′). (A13)

The transformation of the fields (Aa and Bb) corresponds
to conjugating the lattice operators (Ẑx,c and X̂x,d ) by the
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FIG. 10. σ̂ x
x Âx and Ĉ(a)

x operators of the toric code model
[Eq. (A17)] after coupling to σ̂ μ matter.

terms in the Hamiltonian (Âx′ and B̂x′ ) at the positions where
ζ (t,x′) and χ (t,x′) are nonzero, e.g., Ẑx,c → Â†

x′Ẑx,cÂx′ .
This derivation shows that this gauge invariance is a direct
result of the fact that the terms in Ĥtoric [Eq. (A3)] commute
with each other. For example, I 0 and J 0 are invariant under
the above transformation because I 0 and J 0 commute {i.e.,
[I 0(t,x),J 0(t,x′)] = 0}, and I 0 and J 0 commute because B̂
and Â commute.

To derive how A0 and B0 transform, the above gauge
transformations can be inserted into LBF [Eq. (A1)], and A0

and B0 can be solved for to find

A0 → A0 + ∂0ζ,

B0 → B0 + ∂0χ. (A14)

The complete gauge transformation therefore takes the stan-
dard form

Aα → Aα + ∂αζ,

Bα → Bα + ∂αχ. (A15)

Finally, in order for the coupling of the gauge fields (A
and B) to the currents (I and J ) in LBF [Eq. (A1)] to be gauge
invariant, the currents must obey the usual charge conservation
constraint

∂αIα = ∂αJ α = 0. (A16)

2. Minimal coupling to matter

In this section we briefly review how toric code and BF
theory can be minimally coupled to bosonic matter with a
ZN global symmetry that carries charge. In the lattice model,
this can be done by introducing ZN operators σ̂ μ on the sites
of the lattice, multiplying the charge operator Âx by σ̂ x

x , and
introducing a hopping term Ĉ(a)

x for the matter (Fig. 10):

Ĥ
coupled
toric = −

∑
x

(
B̂x + σ̂ x

x Âx +
∑

a

Ĉ(a)
x + h σ̂ x

x

)
+ H.c.,

Ĉ(a)
x = σ̂ z†

x Ẑx,aσ̂
z
x+x̂a (A17)

where x̂a is a unit vector in the a direction, and “H.c.” denotes
the addition of the Hermitian conjugate of the preceding
operators. Matter that carries flux can also be introduced in
a similar way by introducing operators τ̂ μ at the centers of

FIG. 11. Noncontractible Wilson and ’t Hooft loop operators (on
a lattice with periodic boundary conditions): Ŵ1 [Eq. (A28)] and T̂2

[Eq. (A29)]. Ẑ and X̂ operators are placed on blue and red links,
respectively. These operators (along with Ŵ2 and T̂1) are the nonlocal
qubits that act on the degenerate ground-state manifold of the toric
code [Eq. (A3)]. For example, they obey a version of Eq. (2): T̂1Ŵ1 =
ωŴ1T̂1 and T̂2Ŵ2 = ωŴ2T̂2.

plaquettes. Ĉ(a)
x is a ZN Ising coupling which has been coupled

to the gauge field Ẑx,a . σ̂ x
x is a ZN matter number operator.

Note that B̂, Â, and Ĉ commute. When h is small, Ĥ
coupled
toric

is Higgsed and is in a trivial phase with no topological order.
This occurs because the ’t Hooft loop operator (Fig. 11), which
describes the ground-state degeneracy, does not commute with
Ĉ. When h is large, the matter has a large mass gap and has no
effect on the phase.

We can describe the same physics in the field theory by
introducing a 2π -periodic (i.e., 2π vortices are allowed) matter
field θ . The simplest way to systematically construct a gauge-
invariant Lagrangian is to start with a v2

2 AαAα term, where v

is a coupling constant, and then apply a gauge transformation
[Eq. (A15)] with ζ = −θ :

L
coupled
BF = LBF + v2

2
(∂αθ − Aα)2

= LBF + v2

2
(∂αθ )2 − Aα v2(∂αθ − qAα)︸ ︷︷ ︸

jα

, (A18)

where jα [not to be confused with j in Eq. (A8)] is the charge
current of θ . The Lagrangian is gauge invariant as long as θ

transforms as

θ (xμ) → θ (xμ) + ζ (xμ) (A19)

under the gauge transformation [Eq. (A15)]. Note that before
θ is coupled to the gauge field A (e.g., set A = 0 in L

coupled
BF ),

θ has a global symmetry θ (xμ) → θ (xμ) + ζ̃ with constant ζ̃ ,
which is then promoted to a local symmetry [Eq. (A19)] when
coupled to the gauge field A. The equation of motion for θ

implies that its charge is conserved [Eq. (A16)]:

0
EoM= ∂α v2(∂αθ − Aα)︸ ︷︷ ︸

jα

.

Similar to the lattice model, the phase is Higgsed for large v,
and is topologically ordered for small v.
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Alternatively, we can couple BF theory to a complex-valued
scalar field �:

L
coupled′
BF = 1

2 |(∂α − i Aα)�|2 − λ (|�|2 − v2)2. (A20)

When λ is large, θ in Eq. (A18) can be viewed as the phase part
of � with constant magnitude (or vacuum expectation value)
|�| ≈ v, i.e., � ≈ veiθ .

3. Topological invariance

In this section we quickly review one of the hallmarks of BF
theory: its topological invariance. The topological invariance
can be seen explicitly when the BF theory action is written in
terms of differential forms:

SBF = N

2π

∫
B ∧ dA − A ∧ J − B ∧ I, (A21)

where A and B are 1-forms and J and I are 2-forms. The action
is topologically invariant because it is invariant under smooth
space-time transformations: xα → x̃α(xμ). When written in
components, this transformation can be formalized as follows
[48]:

Aα(xμ) → Ãα(xμ) = dx̃α̃

dxα
Aα̃[x̃μ(xν)],

εαβγ J γ (xμ) → εαβγ J̃ γ (xμ) = dx̃α̃

dxα

dx̃β̃

dxβ
εα̃β̃γ̃ J γ̃ [x̃μ(xν)],

B and I transform in the same way as A and J , (A22)

where Aα[x̃μ(xν)] = Aα[t̃(t,x,y),x̃(t,x,y),ỹ(t,x,y)]. As seen
above, the currents transform most naturally as 2-forms (i.e., an
antisymmetric tensor with two lowered indices). The current
transformation could also be written as

J γ (xμ) → J̃ γ (xμ) = εαβγ 1

2

dx̃α̃

dxα

dx̃β̃

dxβ
εα̃β̃γ̃ J γ̃ [x̃μ(xν)].

(A23)

It is straightforward to show that the action is invariant under
the transformation

SBF[A,B,I,J ] = SBF[Ã,B̃,Ĩ ,J̃ ], (A24)

which is the condition for topological invariance.

4. Topological degeneracy

We will now review how the topological degeneracy can be
derived [34,49,50]. It is useful to expand the Lagrangian

LBF = N

2π
εa0cBa∂0Ac

+B0
N

2π
ε0bc∂bAc︸ ︷︷ ︸

I 0

+A0
N

2π
εab0∂aBb︸ ︷︷ ︸

J 0

. (A25)

Integrating over A0 and B0 enforces a zero charge and flux
constraint: I 0 = J 0 = 0.

On an l1 × l2 torus (the superscripts here are spatial
indices), solutions to the zero charge and flux constraints can

be written as

Aa(t,x) = q;a(t)/la + ∂aζ (t,x),

Ba(t,x) = εa0cp
;c(t)/la + ∂aχ (t,x), (A26)

where we have factorized out the gauge redundant parts ζ and
χ so that q;a and p;a describe only the topological contribution
[51]. (In this work, we use a semicolon to indicate that the
indices following the semicolon do not transform under space-
time transformations). Inserting this back into

∫
LBF gives∫

t,x
L = N

2π

∫
t

p;a∂0q;a. (A27)

This is then identified with the action describing two ZN qubits
with a Hamiltonian equal to zero [49,50], and therefore the
ground-state degeneracy is N2.

A noncontractible Wilson loop operator Ŵ1 in the x

direction takes the following form (Fig. 11):

Ŵ1(t) =
∏
x

Ẑx,ȳ,1(t)

∼ exp

(
i

∫
x

Z1(t,x,ȳ)

)

= eiq;1(t), (A28)

where ȳ is arbitrary and the last equation is obtained by
plugging in Eq. (A26). Similarly, a noncontractible ’t Hooft
loop operator T̂2 in the y direction takes the form

T̂1(t) =
∏
y

X̂x̄,y,1(t)

∼ exp

(
i

∫
y

X1(t,x̄,y)

)

= eip;1(t). (A29)

Similarly, Ŵ2(t) ∼ eiq;2(t) and T̂2(t) ∼ eip;2(t). Thus, we can
explicitly see the connection between q;a and p;a and the ZN

qubits (Ŵa and T̂a) of the toric code model describing the
ground-state degeneracy.

APPENDIX B: BF THEORY IN (3+1)D

In this Appendix we review how BF theory [36,49] in
(3+1)D can be systematically derived from its lattice model.
BF theory is a TQFT with ZN topological order and in (3+1)D
is described by the following Lagrangian:

L
(3+1)D
BF = N

2π
εαβγ δ 1

2
Bαβ∂γ Aδ − AαJα − Bαβ

1

2
Iαβ

= N

2π
B ∧ dA − A ∧ ∗J − B ∧ ∗I, (B1)

where Aα(t,x,y,z) is a 1-form gauge field; Bαβ(t,x,y,z) is an
antisymmetric (in α and β) 2-form gauge field; and J α and
Iαβ are the charge and flux currents. The second line is written
using differential form notation.

BF theory in (3+1)D has a lattice description given by
a generalization of ZN Kitaev toric code to three spatial
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dimensions:

Ĥ
(3+1)D
toric = −

∑
x,b

(B̂(b)
x + B̂(b)†

x ) −
∑

x

(Âx + Â†
x),

B̂(b)
x,y,z = Ẑx+1,y,z,d Ẑ

†
x,y,z,d Ẑ

†
x,y+1,z,cẐx,y,z,c

where c and d are chosen such that ε0bcd = 1,

Âx,y,z = X̂x,y,z,1X̂x,y,z,2X̂x,y,z,3

× X̂
†
x−1,y,z,1X̂

†
x,y−1,z,2X̂

†
x,y,z−1,3, (B2)

where x = (x,y,z) denotes the spatial coordinates, and X̂ and
Ẑ are ZN Pauli operators defined in Eq. (2).

Similar to Eqs. (A5) and (3), we rewrite lattice operators as
exponents of fields:

Ẑx,a(t) ∼ exp

(
i

∫ ′

a

Za(t,x)

)
,

X̂x,a(t) ∼ exp

(
i

∫ ′′

⊥a

Xa(t,x)

)
,

B̂(b)
x (t) ∼ exp

(
2πi

N

∫ ′

⊥b

i0b(t,x)

)
,

Âx(t) ∼ exp

(
2πi

N

∫ ′′
j 0(t,x)

)
. (B3)

The integrals integrate over small regions near x. Specifically,∫ ′
a

is an integral across the link that Ẑx,a lives on;
∫ ′′
⊥a

integrates
over the dual plaquette that is orthogonal to the link that X̂x,a

lives on;
∫ ′
⊥b

integrates over the plaquette that B̂(b)
x is centered

on; and
∫ ′′ integrates over the dual cube that is centered at the

vertex that Âx is centered on.
Using Eq. (B3), the flux and charge densities i0 and j 0 can

be read off from Eq. (B2):

i0b EoM= N

2π
ε0bcd∂cZd,

j 0 EoM= N

2π
∂bX

b. (B4)

The Lagrangian is therefore

L̃
(3+1)D
BF = N

2π
Xa∂0Za + X0b

N

2π
ε0bcd∂cZd︸ ︷︷ ︸

i0b

+Z0
N

2π
∂bX

b

︸ ︷︷ ︸
j 0

−Z0j
0 − Zaj

a − X0bi
0b − Xaia, (B5)

where Z0 and X0b were introduced as Lagrange multipliers.
With the following field redefinitions, L̃

(3+1)D
BF [Eq. (B5)]

will take the form of the standard BF theory Lagrangian L
(3+1)D
BF

[Eq. (B1)]:

Aα = Zα, J α = jα,

B0a = −Ba0 = X0a, I 0a = −I a0 = i0a, (B6)

Bab = ε0abcX
c, I ab = ε0abcic.

APPENDIX C: NEW MODELS?

Similar to the gapless U(1) fracton theories [21,23], a
ZN fracton theory can also be uniquely defined by a charge

density equation. It therefore seems worthwhile to determine
what happens when the U(1) fracton theories are “Higgsed”
down to ZN . We will show that in the scalar charge theory,
“Higgsing” down to ZN will make the fractons mobile. We
also briefly study the traceless scalar charge and vector charge
theories.

The ZN version of the scalar charge theory does not have
fractons. In the U(1) scalar charge theory, the fracton density is
ρ = ∂a∂bE

ab [21,23]. Eab = Eba is symmetric (and could be
called N

2π
Xab in the notation used in this work). Now, consider

the following electric field string:

Eab = xθ (x)θ ( − x)δ(y)δ(z)δa
1δb

1 . (C1)

This field creates the following charges:

charges at x = 0:
∫ +ε

−ε

ρ ′ dx = +1,

charges at x = :
∫ +ε

−ε

ρ ′ dx = −1,

dipoles at x = 0:
∫ +ε

−ε

xρ ′ dx = 0, (C2)

dipoles at x = :
∫ +ε

−ε

(x − )ρ ′ dx = ,

where ρ ′ =
∫ +ε

−ε

dy

∫ +ε

−ε

dz ρ.

In the U(1) theory, the  dipoles at the end of the string would
cost an energy ∼, which confines this kind of string excitation.
However, in a ZN theory, N dipoles are equivalent to zero
dipoles. Therefore, a string of length  = N only creates a
pair of charges at the ends of the string. The existence of this
string implies that the charges are mobile, and are therefore
not fractons.

In addition to the scalar charge theory, we have also
investigated the ZN version of the traceless scalar charge
theory (with ρ = ∂a∂bE

ab, Eab = Eba , and
∑

a Eaa = 0),
and vector charge theory (with ρa = ∂bE

ab and Eab = Eba)
[21,23]. Unfortunately, according to our computer calculations
[52] on finite L × L × L periodic lattices with L � 12, all
theories have a complicated degeneracy which depends on L

module N . The asterisk denotes if N = 2, then degen = N12

if L/2 is odd.

Degeneracy

N does not
Model N divides L divide L

Scalar charge N12 N 6

Traceless scalar charge N15 (*) N 5

Vector charge N22 if N = 2 N 6

N 18 if N = 2

The lattice models were obtained by discretizing ρ and B

from [21,23] in terms of X̂ and Ẑ operators on a cubic lattice
[47]. This complicated degeneracy dependence on system size
suggests that these theories may be complicated and very
different from their U(1) versions. For example, these models
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may not have any subdimensional particle excitations and the
scalar charge models could be in the same phase as multiple

copies of ZN (3+1)D toric code, which has degeneracy N3.
We will leave further study of these models to future work.
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x = 1, then |ψ〉 is the

exact ground state of the X-cube Hamiltonian [Eq. (1)].
[43] Note, in this work we are writing all Lagrangians in real time

for consistency; in imaginary time two signs will flip in Eq. (38)
so that L

coupled
X-cube is positive definite.

[44] This degeneracy is stable to perturbations since on a finite
lattice the degeneracy is only lifted at order ∼ min(Lx,Ly) and
therefore the energy splitting is exponentially small with system
size.

[45] This can be shown using degenerate perturbation theory, which
will have to generate a large loop operator around the torus at a
large perturbative order.

[46] K. Slagle and Y. B. Kim, arXiv:1708.04619.
[47] K. Slagle, degeneracy, https://github.com/kjslag/degeneracy/

blob/master/degen.nb.
[48] Equation (A22) assumes that the space-time transformation is

orientation preserving. If the orientation is flipped (i.e., if the
Jacobian matrix dx̃α̃/dxα has negative determinant), then the
following transformation should also be applied: Bα → −Bα

and J α → −J α .
[49] T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys. (NY) 313,

497 (2004).
[50] X.-G. Wen and A. Zee, Phys. Rev. B 58, 15717 (1998).
[51] In a different gauge, Eq. (A26) can also be written as Za =

δ(xa)q;a(t) and Xa = |εab0|δ(xb)p;a(t).
[52] We used [47], which implements a method equivalent to the

method described in Appendix B of [11].

195139-17

https://doi.org/10.1103/PhysRevB.91.125121
https://doi.org/10.1103/PhysRevB.91.125121
https://doi.org/10.1103/PhysRevB.91.125121
https://doi.org/10.1103/PhysRevB.91.125121
https://doi.org/10.1093/nsr/nwv077
https://doi.org/10.1093/nsr/nwv077
https://doi.org/10.1093/nsr/nwv077
https://doi.org/10.1093/nsr/nwv077
http://arxiv.org/abs/arXiv:1704.04221
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
http://arxiv.org/abs/arXiv:1706.07070
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
http://arxiv.org/abs/arXiv:1707.02308
http://arxiv.org/abs/arXiv:1709.09673v1
http://arxiv.org/abs/arXiv:1709.10071
http://arxiv.org/abs/arXiv:1709.10094
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051
http://arxiv.org/abs/arXiv:1601.08235
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.2307/1971013
https://doi.org/10.2307/1971013
https://doi.org/10.2307/1971013
https://doi.org/10.2307/1971013
http://arxiv.org/abs/arXiv:math/0512103
http://arxiv.org/abs/arXiv:hep-th/0011260
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF01223371
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/0003-4916(91)90240-9
https://doi.org/10.1016/0003-4916(91)90240-9
https://doi.org/10.1016/0003-4916(91)90240-9
https://doi.org/10.1016/0003-4916(91)90240-9
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
http://arxiv.org/abs/arXiv:1701.00762
http://arxiv.org/abs/arXiv:1708.04619
https://github.com/kjslag/degeneracy/blob/master/degen.nb
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1103/PhysRevB.58.15717
https://doi.org/10.1103/PhysRevB.58.15717
https://doi.org/10.1103/PhysRevB.58.15717
https://doi.org/10.1103/PhysRevB.58.15717



