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We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The
interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the
density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method.
Obtaining the p largest eigenvalues (λ1 > λ2 · · · > λp) requires a parallel circuit depth of O[p(λ1/λp)p] and
O[p log(N )] qubits where up to p copies of the quantum state defined on a Hilbert space of size N are needed
as the input. We validate this procedure for the entanglement spectrum of the topologically ordered Laughlin
wave function corresponding to the quantum Hall state at filling factor ν = 1/3. Our scaling analysis exposes the
tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit
using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting
a topological phase transition and in extracting the localization length in a many-body localized system.
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One important application of quantum computers is ef-
ficiently simulating many-body quantum systems. While a
variety of methods has been advanced for efficiently evolving
a quantum state on a quantum computer, extracting useful in-
formation from a system of qubits is not always as straightfor-
ward. The quantum computing equivalent of the vast array of
diagnostic tools that extract information from classical numer-
ical simulation are still being developed [1]. A recent paper ad-
dresses this paucity by developing efficient techniques to esti-
mate expectation values of arbitrary observables and static and
dynamic correlation functions using a quantum computer [2].

In this paper we address the calculation of quantities which
characterize entanglement between different parts of a quan-
tum state using a quantum computer. We assume that the state
under investigation may be efficiently prepared by any one of
many available techniques for quantum state preparation [3–7].
It may also be obtained as the ground state of a Hamiltonian
[8–14] or as the result of an adiabatic evolution [15–18].

To begin, consider a many-body quantum system composed
of two subsystems A and B. Then a wave function |ψ〉 defined
over the Hilbert spaces of A and B can be written as

|ψ〉 =
∑
ij

cij |ai〉 ⊗ |bj 〉, (1)

where the states |ai〉 and |bj 〉 form orthonormal bases of A
and B, respectively. Note that the division into A and B can be
in any basis including real space, momentum space, or Fock
space. The reduced density matrix for subsystem A is defined
by tracing over the degrees of freedom of B,

ρA = TrB(|ψ〉〈ψ |). (2)

It contains information about the entanglement between A and
B. Using ρA, we can define the nth Renyi entropy,

Sn = 1

1 − n
log(Rn), (3)
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where

Rn = Tr
(
ρn

A

)
. (4)

For a generic many-body wave function (that is, not a product
state), subsystems A and B will be entangled. For nonzero
entanglement, R2 < 1. S2 has the same universality properties
as the von Neumann entropy S = − Tr[ρA log(ρA)]. They
are both nonzero only for entangled subsystems A and B
and increase with growing entanglement. These quantities
provide valuable information about the underlying physics
of the system. For example, whether the entanglement obeys
an area law or volume law [19], and its evolution with time
will determine whether the phase is conducting or insulating
[20–24]. It has been used to probe topological order [25,26],
quantum critical systems [27], and to determine whether
classical computers can efficiently simulate particular quantum
systems [28].

Li and Haldane [29] introduced the concept of the
entanglement spectrum which is the energy spectrum of
the “entanglement Hamiltonian” HE defined through ρA =
exp(−HE). They pointed out that the largest eigenvalues of ρA

[30] contain more universal signatures than the von Neumann
entropy or S2 alone. The entanglement spectrum has been
used to identify topological order [31–33] such as the Haldane
phase and fractional quantum Hall effect, in systems with
broken symmetry [34–38], quantum critical systems [39],
many-body localization [40–42], covalent bonds in molecules
[43], and irreversibility in quantum systems [44]. In classical
simulations of many-body quantum systems, entanglement
entropy and the entanglement spectrum can be extracted from
matrix diagonalization, density matrix renormalization group
calculations [45], quantum Monte Carlo simulations [46–48],
and other approaches.

Here we present a quantum algorithm to compute the
entanglement spectrum via the Renyi entropies on a quantum
computer. We calculate Sn by generalizing the swap trick
[49] which has recently been used in quantum Monte Carlo
calculations, in experiments on ultracold atoms [50], and
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FIG. 1. Quantum circuit to calculate R2 for a quantum state with
a Hilbert space that spans 7 qubits. The qubits labeled αi are in
subsystem A and those labeled βi are in subsystem B. The operator
SwapA is implemented using three controlled swap gates between
qubits αi and α′

i .

proposed in solid-state spin arrays [51]. Next we show how to
obtain the low-lying levels of the entanglement spectrum using
the Newton-Girard method. We then use the Laughlin wave
function which describes the quantum Hall state at filling factor
ν = 1/3 to validate the procedure, showing that entanglement
spectrum levels varying over several orders of magnitude can
be extracted given enough accuracy in determining Rn. We
do a scaling study to analyze the trade-offs between time
and number of qubits in obtaining the entanglement spectrum
in the thermodynamic limit using finite-size digital quantum
computers. We also show that the second Renyi entropy itself
can be used to predict a topological phase transition, and is
also of use in extracting the localization length in a many-body
localized system.

We begin with the design of the quantum circuit for R2. Let
ψ ∈ H be a wave function in a Hilbert space composed of the
two subspaces A and B, i.e., H = A ⊗ B and ψ as in Eq. (1).
We need two copies of the wave function ψ to calculate R2

which is equal to the expectation value of the SwapA operator
for a system prepared in state |ψ〉|ψ〉, i.e.,

R2 = 〈ψ |〈ψ |SwapA|ψ〉|ψ〉, (5)

where the operator SwapA acts as follows:

SwapA|ψ〉|ψ〉 = SwapA

∑
i,j

cij |ai〉|bj 〉
∑
i ′,j ′

ci ′j ′ |ai ′ 〉|bj ′ 〉

=
∑
i,j

∑
i ′,j ′

cij ci ′j ′ |ai ′ 〉|bj 〉|ai〉|bj ′ 〉. (6)

The quantum circuit for measuring R2 uses two copies of the
state |ψ〉 prepared in a basis that encodes the two subspaces A
and B using distinct sets of qubits, see Fig. 1. The eigenvalues

of the swap operator are ±1 and we need only a single ancilla
qubit for a straightforward measurement of its expectation
value. Here the ancilla qubit is put into a superposition by the
Hadamard gate H = 1√

2
[1 1
1 −1]. Repeated measurements in this

manner will result in convergence to the mean with an accuracy
of ε ∼ 1/

√
Nmeas, where Nmeas is the number of measurements.

The technique of quantum amplitude estimation (QAE) [52]
can be used to improve the time scaling. It requires an operator
Q which has |	〉 as an eigenstate with the corresponding
eigenvalue q	 known a priori. An ancilla register stores
the Fourier transform of this value F[q	]. The idea is to
implement an operator V = 1 − 2|	〉〈	| using a projector
onto |	〉 = |ψ〉|ψ〉. The eigenvalues of O = SwapAV are
− exp(±2iθ ) where cos2(θ ) = (〈	|SwapA|	〉 + 1)/2. Quan-
tum phase estimation for the operator O will produce the
value θ to required accuracy in one run of the circuit (Fig. 2).
The number of qubits required to store the value of θ will be
of O[log(1/ε)]. The controlled application of the operator O

effects the following transformation:

|x〉|�〉|F[q	]〉

→ |x〉
⎛
⎝c	 |	〉|0〉 +

∑
i 
=0

ci |φi〉|i〉
⎞
⎠

→ |x〉
⎛
⎝(−1)xc	 |	〉|0〉 +

∑
i 
=0

ci |φi〉|i〉
⎞
⎠

→ |x〉(|�〉 − 2xc	 |	〉)|F[q	]〉
→ |x〉[SwapA(|�〉 − 2xc	 |	〉)]|F[q	]〉. (7)

Here x is the computational basis state of the control qubit,
either 0 or 1. O acts on |�〉 which has overlap c	 with |	〉.
In the first step, the inverse of quantum phase estimation with
the operator Q will send F[q	] to 0 if the input to O is 	

and to a nonzero number otherwise. The runtime for quantum
amplitude estimation is O(TQε−1

Q ε−1), where TQ is the time to
implement a control-Q gate, and εQ is the difference between
q	 and the closest other eigenvalue to it of Q.

We can generalize the above method to calculate Rn for
n > 2 by using the permutation operator on the tensor product
of n copies of the wave function:

PermA|ψ〉⊗n = Swap(n−1)↔n
A · · · Swap3↔2

A Swap2↔1
A |ψ〉⊗n.

(8)

Then,

Rn = Tr
(
ρn

A

) = Tr

⎡
⎣

⎛
⎝∑

ijk

cij c
∗
kj |ai〉〈aj |

⎞
⎠

n⎤
⎦

=
∑

all indices

γi1i2γi2i3 · · · γini1 = 〈ψ |⊗nPermA|ψ〉⊗n,

(9)

where γik = ∑
j cij c

∗
kj and cij are used in the definition of the

wave function |ψ〉 from Eq. (1).
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FIG. 2. Quantum amplitude estimation to calculate R2. Top: Quantum phase estimation on the operator O = SwapAV will give R2. FT †

refers to the inverse Fourier transform operator. Bottom: Quantum circuit showing controlled implementation of the operator O. The operator
Q has the desired wave function as an eigenstate with the corresponding eigenvalue q	 known a priori. The Fourier transform of this value
F[q	 ] is stored in the ancilla qubits that remain unchanged at the end of the computation. Z refers to the Pauli-Z gate.

To measure Rn we prepare n copies of the wave function and
calculate the expectation value of the permutation operator.
Time efficiency can be improved by using QAE for the
permutation operator as well similarly to how it is used for
the swap operator.

The number of qubits needed for calculating Rn scales as
O[n log(N )], where N is the size of the Hilbert space on which
|ψ〉 is defined. The number of gates for a single measurement
will scale as O[n log(NA)], with NA the size of the Hilbert
space of subsystem A.

The calculation of the entanglement spectrum would at first
glance seem to require the computation of all the elements of
the density matrix ρA. From the series expansion,

Rn =
∑

i

λn
i , (10)

where λi are the eigenvalues of ρA, we see that calculating all
the Rn is equivalent to finding all the eigenvalues. However,
for many Hamiltonians of interest, the eigenvalues of the
entanglement Hamiltonian will differ by several orders of
magnitude and only the largest few eigenvalues are interesting.
For example, to distinguish between the possible conformal
field theories associated with some fractional quantum Hall
wave functions, it is sufficient to have access to between one
and ten of the largest eigenvalues in each momentum sector
even for system sizes approaching the thermodynamic limit
[29]. These large eigenvalues can be estimates from just a few
Rn, for small n.

We use the Newton-Girard method [53] which relates the
coefficients of the characteristic polynomial of a square matrix
(ρA) of size NA to the power sums (Rn) of its roots. Briefly,

(x − λ1)(x − λ2) · · · (x − λNA
) =

NA∑
k=0

(−1)n+ken−kx
k. (11)

Then,

e0 = 1,

e1 = R1,

e2 = 1
2 (e1R1 − R2),

e3 = 1
3 (e2R1 − e1R2 + R3),

e4 = 1
4 (e3R1 − e2R2 + e1R3 − R4),

... (12)

We can truncate the polynomial to order nmax where nmax is
the highest order Renyi entropy we are able to calculate. The
roots of the truncated polynomial will give an approximation
to the nmax largest eigenvalues of ρA.

We now turn to a test case to validate the procedure
discussed above. For this, we use a wave function which
represents a fractional quantum Hall effect (FQHE) state.
FQHE occurs in two-dimensional electron gases (such as in
GaAs-AlGaAs heterojunctions) in the presence of a strong
transverse magnetic field at low temperatures [54,55]. FQHE
states exhibit plateaus in the Hall resistance at certain rational
fractional values of the filling factor ν (the ratio of electrons
to magnetic flux quanta), which are accompanied by the
vanishing of the longitudinal resistance. The topological order
in FQHE states can often be identified from the low-lying levels
of the entanglement spectrum and is related to the spectrum
of the associated conformal field theory. Thus it can be used
as a “fingerprint” for identifying topological order in wave
functions.

To simulate the FQHE state at ν = 1/3, we confine
electrons to the x-y plane in a magnetic field Bẑ. We work
in the Landau gauge with vector potential A = Bxŷ. This
makes the momentum along the y direction ky a good quantum
number. The single particle wave functions or “orbitals” in the
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FIG. 3. Schematic of cylindrical surface showing Norb one-body
Landau gauge wave functions which are Gaussian along the length of
the cylinder (x axis) and periodic along the circular direction. The cut
in orbital space preserves momentum along the y axis of the cylinder.

lowest Landau level have the form

φky
(r) = 1

π1/4
√

L
exp

[
ikyy − 1/2(x/lB − kylB)2

]
, (13)

where lB = √
h̄/eB is the magnetic length, which we set to

1 below. We use periodic boundary conditions along the y

axis at y = 0 and y = L implying that the electrons live on
the surface of a cylinder as shown in Fig. 3. The allowed
values of ky are 2πm/L, where m is an integer. We use a finite
number of orbitals Norb which is set by the filling factor. In
the cylindrical geometry, at ν = 1/3, a unique ground state
occurs when Norb = 3Ne − 2, where Ne is the number of
electrons. The one-body wave functions are thus a product of
a Gaussian function along the x axis centered at x = 2πm/L

and a periodic function along the y axis as shown in Fig. 3.
Instead of the true Coulomb interaction, we first use a short-

range interaction

HL = ∇2δ(r), (14)

in our example, where δ(r) is a two-dimensional delta function
on the surface of the cylinder. The ground state of HL is the
Laughlin wave function which has greater than 99% overlap
with, and captures the topological properties of the ground
state of the Coulomb interaction, but is less susceptible to
finite-size effects. Analytically it can be written as

	L =
∑
i<j

(zi − zj )3 exp

(
−

∑
k

|zk|2/4

)
. (15)

We work in the second-quantized basis in which the
many-body wave function can be written in terms of
occupations of the one-body orbitals in Eq. (13). The total
angular momentum K = (2π/L)

∑
m[nm − (Norb − 1)/2]m

remains a good quantum number under the interaction HL.
To calculate the entanglement spectrum, we use the orbital

basis to partition the system into regions A and B. The electron
number in either region (NeA and NeB ) and the momentum
(KA and KB) are good quantum numbers with the constraint
Ne = NeA + NeB and K = KA + KB . Thus the entanglement
spectrum corresponding to ρA separates into sectors labeled
by NeA and KA.

We calculate Rn for n � 5 for the ground state of HL

(obtained by exact diagonalization) for up to Ne = 11 electrons
at ν = 1/3 and test the feasibility of obtaining the low-lying
values of the entanglement spectrum from the truncated
characteristic polynomial of the matrix ρA. This may not
be straightforward because the higher Rn will be dominated
by the largest eigenvalue since Rn = λn

1[1 + (λ2/λ1)n + · · · ].
Therefore, one may only access the ith-largest eigenvalue

FIG. 4. The entanglement spectrum for the ground state of a
system of Ne = 10 electrons in Norb = 28 orbitals on the surface
of a cylinder. The system is cut in the center with an equal number of
electrons on each side. Blue crosses correspond to results from exact
diagonalization of ρA while red circles correspond to results from the
algorithm.

if (λi/λmax)i > ε, where ε is the accuracy of Rn. The blue
crosses in Fig. 4 show the entanglement spectrum for Ne = 10
electrons in Norb = 28 orbitals with the cut resulting in
NeA = 5 with an equal number of orbitals in A and B. It is
clear that the eigenvalues in each momentum sector vary over
several orders of magnitude. Rather than the exact values,
the number of nonzero eigenvalues in each momentum sector
is important here. In order to obtain the maximum number of
eigenvalues with maximum accuracy from the Renyi entropies,
we find that the following iterative strategy works well.
We truncate the characteristic polynomial to order p, then
calculate p roots using Matlab’s root-finding function. If
(λmin/λmax)p < 10−15, we terminate the procedure because we
cannot hope to obtain the next smallest eigenvalue accurately.
Otherwise, we increase p by 1 and repeat. The results from
the algorithm (red circles) faithfully reproduce the results
from exact diagonalization (blue crosses) for the lower part
of the spectrum. The higher part of the spectrum remains
inaccessible because of the limited accuracy (∼10−15) of the
double data type. Using less precision would mean that we
obtain fewer levels in each momentum sector. We also point
out that relatively low-lying levels such as the fifth level at
KA = 4 for which even (λ4/λ1)4 ∼ 10−20 could be missed by
our technique. To remedy this, we need to go to larger system
sizes as discussed below.

While the above procedure provides proof-of-principle that
eigenvalues varying over several orders of magnitude can be
extracted from Rn, the high accuracies required will take an
impractical amount of time. However, the way around this is
to realize that, for a given momentum sector, as the system size
increases, the eigenvalues of the density matrix will become
closer together in magnitude and in the thermodynamic limit
they will be degenerate [56]. Figure 5 shows the spread �3 =
log10(λmax/λmin) in the momentum sector KA = 3 which has
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FIG. 5. Spread of the entanglement spectrum of the Laughlin
wave function at KA = 3 as a function of system size. The solid
line is the least-squares fit of the form a(1/Ne)c + b, with values
a = 10.22,b = 0,c = 0.6. The inset shows the accuracy required to
get the correct number of nonzero eigenvalues at KA = 3 versus
the number of qubits required to represent the wave function. The
least-squares fit log(ε) = a′N−c′

q gives c′ = 0.8 which is close to the
value of c obtained from the fit in the main figure as predicted by the
arguments in the text.

three nonzero eigenvalues as a function of inverse system
size. A fit to the data of the form a(1/Ne)c + b shows that
in the thermodynamic limit the splitting goes to zero. The
inset shows the corresponding implications for the number of
qubits required to represent the wave function and the accuracy
required by the Renyi entropy technique to get the right number
of nonzero eigenvalues. In the thermodynamic limit, when the
entanglement spectrum levels are degenerate, the values of
Rn will need only to be determined to O(1) accuracy. For an
arbitrary momentum sector, the spread � = log(λmax/λmin) ∼
N−c

e , where c > 0. Then the accuracy required is ε ∼
(λmin/λmax)p to determine p nontrivial eigenvalues. Therefore,
ε ∼ exp(−N−c

e p), and the time required is O[p exp(N−c
e p)].

The space requirements scale as ∼pNe since the size of
the Hilbert space N ∼ 2Ne for constant filling factor ν at
large sizes.

This technique should be compared with the method in
Ref. [57] where the time and space requirements both scale
with the accuracy as 1/ε2. For finite size systems, with
several orders of magnitude splitting between eigenvalues, our
technique provides a clear advantage in terms of the number
of qubits required. With quantum amplitude estimation, our
time scaling is also better.

We next show how the second Renyi entropy S2 can
by itself be used to capture a topological phase transition
even when it is known only to accuracy of O(1). Figure 6
shows the value of S2 diverging at a phase transition between
a topologically ordered Laughlin phase and a topologically
trivial phase. Here the Hamiltonian used is Hc + f HL where
Hc is the Coulomb interaction for electrons on the surface of
the cylinder described above and HL is the Laughlin interaction

-1

f

0.5

1

1.5

2

S
2

FIG. 6. The second Renyi entropy S2 diverges at the phase
transition between the Laughlin state and a topologically trivial phase
for Ne = 8 electrons in Norb = 22 electrons, cut in the center with
equal electrons on either side at KA = 0.

as before. As larger amount of HL is subtracted from Hc, the
short-range repulsive component of the interaction disappears
leading to the destruction of topological order at a critical value
fc = 0.61.

Next, we show that the Renyi entropy can also be used
to compute the localization length of a many-body localized
(MBL) system. For an eigenstate of a sufficiently large MBL
system, the entanglement spectrum decays as a power law,
namely λk = ck−γ . γ = 4κ/ ln(2), where κ is the many-body
localization length and c is a constant [42]. Since we also know
that

∑
k λk = 1, we can express the second Renyi entropy as

a function of γ :

R2 =
∑

k k−2γ(∑
k k−γ

)2 . (16)

Thus R2 is a monotonic function of γ and a measurement of R2

provides a direct measurement of the many-body localization
length without measuring all the components of the wave
function.

We verify this for a standard model of MBL—the antifer-
romagnetic Heisenberg chain consisting of N spin-1/2 sites
with random z fields:

HMBL =
N−1∑
i=1

J σi.σi+1 +
N∑

i=1

hiσ
z
i . (17)

We set J = 1 and use a uniform distribution between −w

and w for the random fields hi . This model is known to
have a many-body localization transition at w ≈ 3.5. We
use exact diagonalization to obtain the eigenstates over
the entire spectrum for various values of w and disorder
realizations with up to 12 sites. Using the eigenstates in the
middle third of the spectrum, we disorder-average over 1000
samples to obtain both the entanglement spectrum and S2

with the system being cut in the center. Figure 7(a) shows that
the value of S2 increases with decreasing disorder around the
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FIG. 7. (a) The second Renyi entropy S2 as a function of
the disorder parameter w for different system sizes obeying the
Hamiltonian in Eq. (17). (b) The parameter γ which is a measure of
the many-body localization length as extracted from a fit to the first
few levels of the entanglement spectrum, and the same as extracted
from R2 using Eq. (16).

phase transition. To the right of the critical point, in the
localized phase, the Renyi entropy is independent of N

indicating area-law entanglement, whereas to the the left, in the
thermalized phase, it increases with the system size, indicating
volume-law entanglement. We use the formula in Eq. (16) to
obtain γ . We also obtain γ from fitting the first 2N/2−1 − 1
entanglement spectrum levels (which are the ones expected
to follow power-law behavior according to the arguments in
[42]) to a straight line. Figure 7(b) shows the results for γ as a
function of disorder strength from both these techniques. Both
values follow the same trend with greater convergence as the
system size increases. Thus we verify the usability of the for-
mula in Eq. (16) and show that the second Renyi entropy alone
is enough to give a good approximation to the many-body lo-
calization length. On a quantum computer, 2N + 1 qubits can
perform this computation with accuracy required being O(1).

Thus, in this paper, we have shown how quantum computers
can be used to extract the Renyi entropies and the entanglement
spectrum, quantities that are relevant to several areas of
quantum physics. The entanglement spectrum is entirely a
property of the wave function and can thus be used to
differentiate between several candidate wave functions even
when the Hamiltonian is not available. We have validated
the algorithm for the topologically ordered Laughlin wave
function and shown that our technique can be used to extract
entanglement spectrum levels that are separated by several
orders of magnitude. Furthermore, we have analyzed the
tradeoffs between time and number of qubits for obtaining
the thermodynamic entanglement spectrum on a finite-size
digital quantum computer. We have also shown the utility of
the second Renyi entropy in studying phenomena as diverse as
topological phase transitions and many-body localization. If
real quantum computers are to be used on a regular basis, such
techniques will be important for their application to studying
many-body problems in condensed matter physics. As the next
step, we aim to determine quantum gate counts for determining
the entanglement spectrum of correlated wave functions that
describe such systems.
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Michailidis. D.S.S. and M.T. have been supported by the
Swiss National Science Foundation through the National
Competence Center in Research QSIT.
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