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Generalization of Bloch’s theorem for arbitrary boundary conditions: Theory
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We present a generalization of Bloch’s theorem to finite-range lattice systems of independent fermions, in
which translation symmetry is broken solely due to arbitrary boundary conditions, by providing exact, analytic
expressions for all energy eigenvalues and eigenstates. Starting with a reordering of the fermionic basis that
transforms the single-particle Hamiltonian into a corner-modified banded block-Toeplitz matrix, a key step is a
Hamiltonian-dependent bipartition of the lattice, which splits the eigenvalue problem into a system of bulk and
boundary equations. The eigensystem inherits most of its solutions from an auxiliary, infinite translation-invariant
Hamiltonian that allows for nonunitary representations of translation—hence complex values of crystal momenta
with specific localization properties. A reformulation of the boundary equation in terms of a boundary matrix
ensures compatibility with the boundary conditions, and determines the allowed energy eigenstates in the form of
generalized Bloch states. We show how the boundary matrix quantitatively captures the interplay between bulk
and boundary properties, leading to the construction of efficient indicators of bulk-boundary correspondence.
Remarkable consequences of our generalized Bloch theorem are the engineering of Hamiltonians that host
perfectly localized, robust zero-energy edge modes, and the predicted emergence, for instance, in Kitaev’s
Majorana chain, of localized excitations whose amplitudes decay in space exponentially with a power-law
prefactor. We further show how the theorem may be used to construct numerical and algebraic diagonalization
algorithms for the class of Hamiltonians under consideration, and use the proposed bulk-boundary indicator to
characterize the topological response of a multiband time-reversal invariant s-wave topological superconductor
under twisted boundary conditions, showing how a fractional Josephson effect can occur without entailing a
fermionic parity switch. Finally, we establish connections to the transfer matrix method and demonstrate, using
the paradigmatic Kitaev’s chain example, that a defective (nondiagonalizable) transfer matrix signals the presence
of solutions with a power-law prefactor.
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I. INTRODUCTION

Modern electronic transport theory in crystalline solids
relies on two fundamental tenets. On the one hand, because
of the Pauli exclusion principle, electrons satisfy Fermi-Dirac
statistics; on the other, Bloch’s theorem allows labeling of the
one-electron wave functions in terms of their crystal momenta.
The set of allowed momenta, defining the so-called Brillouin
zone, is determined by lattice translational symmetries and
the fact that Born-von-Karman (periodic) boundary conditions
(BCs) are enforced on the system [1]. It is the organization
of electrons within the Brillouin zone that is key to defining
its conduction properties. While the assumption of a perfect
crystal with a unit cell that is periodically repeated emphasizes
the (discrete) symmetry of translation, the torus topological
constraint imposed by the Born-von-Karman condition further
eliminates the potential emergence of edge or boundary
electronic states in a real, finite crystal. Although most of
the transport properties are determined by bulk electrons,
technologically relevant processes on the surface of solids are
known to lead to intriguing phenomena, such as surface super-
conductivity [2] or Kondo screening of magnetic impurities
resulting in exotic surface spin textures [3]. Early theoretical
investigations by Tamm and Shockley [4,5] initiated the
systematic study of surface state physics [6], which witnessed a
landmark achievement with the discovery of the quantum Hall
effect [7], and that today finds its most striking applications in
topological insulating and superconducting materials [8].

The organization of bulk electrons comes with a twist. The
quantum electronic states labeled by crystal momenta organize
in ways subject to classification according to integer values
of topological invariants defined over the entire Brillouin
zone [9,10]. The first Chern number, determined in terms of
the Berry connection, is one of those topological invariants,
defining a topologically nontrivial electronic phase whenever
its value differs from zero [8]. For instance, the transverse
conductivity of a quantum Hall fluid is proportional to such
a Chern number. Perhaps surprisingly, there appears to be a
connection between a nonvanishing value of the topological
invariant, a bulk property, and the emergence of “robust”
boundary states, an attribute of the surface. This principle
is known as the bulk-boundary correspondence [8,10,11]. At
first, this relation seems odd, since surface properties are
totally independent from those of the bulk; for example, one
can deposit impurities, generate strain and reconstruction, or
add externally applied electric fields only on the surface.
Nonetheless, it seems reasonable to assume that as long as
the symmetry protecting the surface states is not broken by
external means, a bulk-boundary correspondence will still
hold, although the quantum surface state will, in general, get
transformed [12]. In other words, although the mere existence
of a boundary mode may be robust, only classical information
may be protected in general [12,13].

It is apparent that Bloch’s theorem and its consequences
pertain to the realm of bulk physics. A crystal without
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boundaries is required to establish it. However, can one
generalize Bloch’s theorem for independent electrons to
arbitrary BCs, so that bulk and surface states can be handled
on an equal footing, and physical insight about the interplay
between bulk and boundary may be gained? In light of
our previous discussion, it is clear that to accomplish such
a task one needs to give up on some concepts, such as
the standard notion of a Brillouin zone. If possible, such
a generalization could be instrumental to formulate a bulk-
boundary correspondence principle that makes use of both
bulk and boundary information. It is tempting to argue that
the relative importance of BCs diminishes as the size of
the crystal grows. Notwithstanding, for example, recent work
shows that BCs impact the quasiconserved local charges of
one-dimensional systems, with important consequences for
bulk quench dynamics [14,15]. More generally, the statistical
mechanics of topologically nontrivial systems begs some
answers directly relevant to the questions above [16,17].

In this paper, we generalize Bloch’s theorem to systems
of independent fermions subject to arbitrary BCs. Intuitively
speaking, one may expect such a result on the basis that
translation symmetry is only mildly broken by BCs—namely,
clean (disorder-free) systems are translationally invariant away
from the boundary. Our generalized Bloch theorem makes
this idea precise, by providing an exact (often in fully
closed-form) description of the eigenstates of the system’s
Hamiltonian in terms of generalized eigenstates of nonunitary
representations of translation symmetry in infinite space, that
is, with boundaries at infinity and no torus topology [18].
As a result, both exponentially decaying edge modes and
more exotic modes with power-law prefactors can emerge,
provided the BCs allow them. Our generalized Bloch theorem
leverages the bulk-boundary separation of the Schrödinger
equation we introduced in Ref. [19] and the full solution
of the bulk equation rigorously established in Ref. [20]. It
extends the diagonalization procedure described in Ref. [19],
and recently used in Ref. [21], to a more general class
of Hamiltonians and BCs which, in particular, allows for
different modifications to be imposed on different boundaries.
A unifying theme behind these results is an effective analytic
continuation to the complex plane of the standard Bloch’s
Hamiltonian off the Brillouin zone. This analytic continuation
is remarkably useful because the original problem reduces to a
matrix polynomial function [20]. Interestingly, a recent study
made use of similar polynomial structures for the purpose of
topological classification [22].

The outline of this paper is as follows. In Sec. II, we
discuss a rearrangement of the fermionic basis that allows
us to reduce the diagonalization of the original many-body
finite-range quadratic Hamiltonian in second quantization,
subject to specified BCs, to the one of a single-particle
Bogoliubov-de Gennes Hamiltonian that has the structure of a
corner-modified, banded block-Toeplitz matrix, as introduced
in Ref. [20]. Section III develops a structural characterization
of the energy eigenstates for the many-electron systems under
consideration, culminating into our generalization of Bloch’s
theorem. Like the usual Bloch’s theorem, such a generalization
is first and foremost a practical tool for calculations, granting
direct access to exact energy eigenvalues and eigenstates. In
Sec. IV, we provide two new procedures—one numerical and

another algebraic—for carrying out the exact diagonalization
of the single-particle Hamiltonian, based on the general-
ized Bloch theorem. The algebraic procedure, which may
provide closed-form solutions to the problem, is explicitly
illustrated through a number of examples in Sec. V. While,
in order to illustrate our methodology, we focus largely on
one-dimensional systems here, we anticipate that additional
applications to higher-dimensional problems will be addressed
in a companion paper [23]. Remarkably, while mid-gap modes
with power-law prefactors have been predicted for systems
with long-range couplings, we show analytically here that they
can also prominently manifest in short-range tight-binding
models of topological insulators and superconductors [24–28].

Crucially, our generalized Bloch theorem also allows
derivation of a boundary indicator for the bulk-boundary corre-
spondence, which contains information from both the bulk and
the BCs and, as remarked in Ref. [19], is computationally more
efficient than other indicators also applicable in the absence of
translational symmetry [29]. This is the subject of Sec. VI. In
the same section, we expand on the analysis of the two-band
time-reversal invariant s-wave topological superconducting
wire we introduced previously [30,31], by employing our
newly defined indicator of bulk-boundary correspondence—
constructed by using the generalized Bloch theorem, as
opposed to the simplified ansatz we presented in Ref. [19].
Specifically, this indicator is employed in the analysis of
the Josephson response of the s-wave superconductor in a
bridge configuration, sharply diagnosing the occurrence of a
fractional 4π -periodic Josephson effect. Remarkably, we find
that this is possible without a conventional fermionic parity
switch, which we explain based on a suitable transformation
into two decoupled systems, each undergoing a parity switch.
Section VII establishes some important connections between
our generalized Bloch theorem and the widely employed trans-
fer matrix approach [32]. Interestingly, from the standpoint
of computing energy levels, our bulk-boundary separation is
in many ways complementary to the transfer matrix method.
While the latter can handle bulk disorder (at a computational
cost), it does not, a priori, lend itself to investigating the
space of arbitrary BCs in a transparent way. On the contrary,
our generalized Bloch theorem can handle arbitrary BCs effi-
ciently, as long as the bulk respects translational invariance—
with arbitrary (finite-range) disorder on the boundary being
permitted. Looking afresh at the transfer matrix approach
from the generalized Bloch theorem’s perspective yields a
remarkable result: the generalized eigenvectors of the transfer
matrix, whose role has been appreciated only recently [33],
describe energy eigenstates with power-law corrections to
an otherwise exponential behavior. Our generalized Bloch
theorem further suggests a way to extend the transfer matrix
approach to a disordered bulk and arbitrary BCs. A discussion
of the main implications of our work, along with outstanding
research questions, concludes in Sec. VIII, whereas additional
technical material is included in separate Appendixes.

II. FROM INDEPENDENT FERMIONS
TO TOEPLITZ MATRICES

We begin by describing the class of model Hamiltonians
investigated in this and the companion paper [23]. The
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upshot of this section will be a nonconventional reordering
of the physical subsystems’ labels that allows recasting the
single-particle (Bogoliubov-de Gennes, BdG) Hamiltonians in
Toeplitz form, essential for the exact diagonalization procedure
we will describe.

A. Systems with periodic boundary conditions

Consider first a D-dimensional, translation-invariant in-
finite system of independent fermions. Such a system is
described in full generality by a quadratic, not necessarily
particle-number-conserving, Hamiltonian in Fock space. In a
lattice approximation, the vector position of a given fermion in
the regular crystal lattice can be written as the sum of a Bravais
lattice vector and a basis vector [1]. We will include these basis
vectors as part of the internal labels, and denote Bravais lattice
vectors as j ≡ ∑D

μ=1 jμaμ, with a1, . . . ,aD primitive vectors
of the Bravais lattice �D , and jμ ∈ Z. An orthonormal basis
of the Hilbert space of single-particle states is thus labeled by
Bravais lattice vectors j, and a number dint of internal labels.
We denote the corresponding fermionic annihilation (creation)
operators by cj1, . . . ,cjdint (c†j1, . . . ,c

†
jdint

). The Hamiltonian of
a translation-invariant system can then be written as

Ĥp =
∑

r, j∈�D

[
�̂

†
j Kr�̂j+r + 1

2
(�̂†

j �r�̂
†
j+r + H.c.)

]
, (1)

with �̂
†
j ≡ [c†j1 · · · c†jdint

], r,j Bravais lattice vectors, and
the dint × dint hopping and pairing matrices Kr,�r satisfying
K−r = K

†
r ,�−r = −�T

r , where the superscript T denotes the
transpose operation. For arrays, such as �̂

†
j and �̂j, we stick

to the convention that those appearing on the left (right) of a
matrix are row (column) arrays.

As the infinite system is translation-invariant in all D direc-
tions, it is customary to introduce the volume containing the
electrons by imposing Born-von Karman (periodic) BCs over
a macroscopic volume commensurate with the primitive cell
of �D . If the allowed j’s correspond to jμ = 1, . . . ,Mμ, and
the total number of primitive cells is M ≡ M1M2 . . . MD , then
�̂

†
k ≡ (1/

√
M)

∑
j∈�D

eik·j�̂†
j defines the Fourier-transformed

array of creation operators of real Bloch wave vector (or
crystal momentum), k ≡ ∑D

μ=1
kμ

Mμ
bμ, with kμ integers such

that k lies inside the Brillouin zone (BZ), and bμ defines the
reciprocal lattice vectors satisfying aμ · bν = 2πδμν , with δμν

being the Kronecker’s delta [1]. By letting ∗ denote complex
conjugation, one can express the Hamiltonian of Eq. (1) in
momentum space as

Ĥp = 1

2

∑
k∈BZ

(�̂†
kKk�̂k + �̂

†
−kK

∗
−k�̂−k

+ �̂
†
k�k�̂

†
−k + �̂k�

∗
−k�̂−k),

which has a block structure in terms of the matrices

Kk ≡
∑

r∈�D

eik·rKr, �k ≡
∑

r∈�D

eik·r�r.

Λ1

j = 1

j = N

m1

s d1

d2a1

a2

FIG. 1. Example of a D = 2-dimensional Bravais lattice �2

terminated along two parallel lines (bordered with pattern). a1 and
a2 denote the primitive vectors of �2, and its primitive cell is shaded
(in blue). The dotted (black) line connects the points of the surface
mesh (�1) generated by the primitive vector m1. The primitive cell
of the Bravais lattice �̄2, generated by m1 and the stacking vector s,
is also shown (shaded in brown). The original lattice �2 is obtained
by attaching the basis vectors d1 and d2 to each point of �̄2.

B. Systems with arbitrary boundary conditions

We now wish to turn attention to systems that are periodic
along D − 1 directions, and support arbitrary BCs in the
remaining one. The first step is to formalize how the D-
dimensional infinite system may be terminated by two parallel
lattice hyperplanes, implementing open (or hardwall) BCs.
Such a system is quasi-(D − 1)-dimensional in a precise sense:
it can be described in terms of a (D − 1)-dimensional Bravais
lattice, �D−1 (the so-called surface mesh in surface physics
[6]), with basis vectors residing in the original D-dimensional
space. If m1, . . . ,mD−1 denote the primitive vectors of the sur-
face mesh �D−1, then any vector j‖ ∈ �D−1 can be expressed
as j‖ = ∑D−1

μ=1 jμmμ. Let the stacking vector s be any vector
that is not in �D−1. In general, {m1,m2, . . . ,mD−1,s} may
differ from the primitive vectors of �D , and therefore generate
a different D-dimensional Bravais lattice �̄D embedded in the
original one, �̄D ⊆ �D (see Fig. 1). Hence, any point j ∈ �D

in the volume confined by the two hypersurfaces parallel
to �D−1 may be described using one of the basis vectors
dν̄ , ν̄ = 1, . . . ,I − 1 attached to a point in �̄D , so that

j = j‖ + js + dν̄ , j ∈ {1, . . . ,N}, ν̄ ∈ {0, . . . ,I − 1},
where N ∈ Z is proportional to the separation between the two
hypersurfaces, and we let d0 ≡ 0. Accordingly, the fermionic
operators associated to the primitive cell labeled by j‖ can be
arranged in an array to form a basis

�̂
†
j‖ ≡ [�̂†

j‖,1 . . . �̂
†
j‖,N ],

where

�̂
†
j‖,j ≡ [�̂†

j‖+js+d0
. . . �̂

†
j‖+js+dI−1

].

The total number of fermionic operators in each array �̂j‖ is
NIdint. In terms of this basis, the Hamiltonian of the terminated
system subjected to open BCs becomes

ĤN =
∑

r‖, j‖∈�D−1

[
�̂

†
j‖Kr‖�̂j‖+r‖ + 1

2
(�̂†

j‖�r‖�̂
†
j‖+r‖ + H.c.)

]
,
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where the matrices Sr‖ with S = K,� are block-Toeplitz with
entries [Sr‖ ]jj ′ = Sr‖,j ′−j = Sr‖,r defined by

[Sr‖,r ]ν̄,ν̄ ′ ≡ Sr‖+rs+dν̄′ −dν̄
, ∀ ν̄,ν̄ ′ = 0, . . . ,I − 1.

We will henceforth assume that the range R of hopping and
pairing in the stacking direction s is finite. This means that, for
every r‖ ∈ �D−1,

Kr‖,r = 0 = �r‖,r , if |r| > R.

In order to model finite-range BCs that are more general
than open BCs, we consider a Hermitian many-body operator
Ŵ on Fock space, which satisfies the following restrictions
(see also Appendix A).

(1) Ŵ has no effect beyond the “boundary slab,” corre-
sponding to points j = j‖ + bs + dν̄ , where j‖ ∈ �D−1, ν̄ =
0, . . . ,I − 1, and

b = 1, . . . ,R, N − R + 1, . . . ,N ;

(2) Ŵ is periodic along the D − 1 directions m1, . . . ,mD−1.
Because of the latter restriction, Ŵ can be expressed as

Ŵ =
�D−1∑
r‖, j‖

[
�̂

†
j‖W

(K)
r‖ �̂j‖+r‖ + 1

2
(�̂†

j‖W
(�)
r‖ �̂

†
j‖+r‖ + H.c.)

]
,

where the matrices W
(K)
r‖ and W

(�)
r‖ satisfy[

W (K)
r‖

]† = W
(K)
−r‖ , [W (�)

r‖ ]T = −W
(�)
−r‖ ,

respectively, due to fermionic statistics. In addition, they also
obey [

W (S)
r‖

]
jj ′ = 0 ∀r‖, S = K,�,

if either of j,j ′ are outside the boundary slabs, that is, taking
values from the set {R + 1, . . . ,N − R}.

Finally, we may restrict our system to the lattice points
corresponding to

j‖ =
D−1∑
μ=1

jμmμ, jμ = 1, . . . ,Nμ, ∀μ,

and enforce periodic BCs along directions m1, . . . ,mD−1. If
n1, . . . ,nD−1 denote the primitive surface reciprocal lattice
vectors satisfying mμ · nν = 2πδμν , for μ,ν = 1, . . . ,D − 1,
the Wigner-Seitz cell of the surface reciprocal lattice defines
the surface Brillouin zone (SBZ) [6]. Using surface crystal
momenta of the form k‖ = ∑D

μ=2
kμ

Nμ
nμ ∈ SBZ, kμ ∈ Z ∀μ,

we may then define the partial Fourier-transformed basis

�̂
†
k‖ =

�D−1∑
j‖

eik‖·j‖
√

NS

�̂
†
j‖ , NS = N1 . . . ND−1. (2)

The total Hamiltonian Ĥ = ĤN + Ŵ can now be rewritten in
terms of one-dimensional “virtual wires” according to ĤN +
Ŵ ≡ ∑

k‖ Ĥk‖,N + Ŵk‖ , and

Ĥk‖,N = 1
2 (�̂†

k‖Kk‖�̂k‖ + �̂
†
−k‖K

∗
−k‖�̂−k‖

+ �̂
†
k‖�k‖�̂

†
−k‖ + �̂k‖�

∗
−k‖�̂−k‖),

Ŵk‖ = 1
2

(
�̂

†
k‖W

(K)
k‖ �̂k‖ + �̂

†
−k‖

(
W

(K)
−k‖

)∗
�̂−k‖

+ �̂
†
k‖W

(�)
k‖ �̂

†
−k‖ + �̂k‖ (W

(�)
−k‖)

∗�̂−k‖
)
,

where the NIdint × NIdint matrices

[Sk‖ ]jj ′ = Sk‖,j ′−j ≡ Sk‖,r ≡
∑

r‖

eik‖·r‖Sr‖,r ,

S = K,�,W (K),W (�),

and the finite-range assumption means that

Kk‖,r = 0 = �k‖,r , ∀ k‖ ∈ SBZ if |r| > R. (3)

Throughout the rest of this paper, we shall focus on
diagonalizing one such block, Ĥk‖ = Ĥk‖,N + Ŵk‖ , for a
fixed value of k‖. We will investigate the interplay between
k‖ and our diagonalization algorithm, (and, more generally,
disordered BCs), in Ref. [23]. Thus the next step consists of
deriving the BdG Hamiltonian for this block. The conventional
way [34] is to use the (Nambu) basis �̂

†
k‖ ≡ [�̂†

k‖ �̂−k‖ ],

with �̂
†
k‖ defined in Eq. (2), so that Ĥk‖ can be expressed in

the form

Ĥk‖ = 1
2 �̂

†
k‖H̃k‖�̂k‖ + 1

2 tr
(
Kk‖ + W

(K)
k‖

)
,

in terms of a Hermitian matrix H̃k‖ (note that the matrix

W
(K)
k‖ has entries [W (K)

k‖ ]jj ′ = 0 if any of j,j ′ take values from
the set {R + 1, . . . ,N − R}). This relation leads us to a BdG
Hamiltonian H̃k‖ ≡ H̃k‖,N + W̃k‖ with

H̃k‖,N =
[

Kk‖ �k‖

−�∗
−k‖ −K∗

−k‖

]
,

W̃k‖ =
[

W
(K)
k‖ W

(�)
k‖

−W
(�)
−k‖

∗ −W
(K)
−k‖

∗

]
.

The diagonalization of the BdG Hamiltonian H̃k‖ implies that
of Ĥk‖ , as detailed for example in Ref. [34].

The 2 × 2 block-structure of H̃k‖ emphasizes the intrinsic
charge-conjugation symmetry under the anti-unitary operator
C ≡ (1NIdintτx) Ccc, i.e., CH̃k‖C−1 = −H̃−k‖ , where τx is the
Pauli σx-matrix in the Nambu basis, and Ccc denotes complex
conjugation. Such a block-structure, however, does not explic-
itly highlight the role of translation invariance. For this reason,
we reorder the (Nambu) basis according to [19]

�̂
†
k‖ ≡ [�̂†

k‖,1 · · · �̂
†
k‖,N ], �̂

†
k‖,j ≡ [�̂†

k‖,j �̂−k‖,j ],

so that the BdG Hamiltonian transforms to

H̃k‖ 
→ Hk‖ ≡ Hk‖,N + Wk‖ ,

in terms of a banded block-Toeplitz matrix Hk‖,N = HN , with
entries [HN ]jj ′ = hj ′−j along the diagonals, and a block matrix
Wk‖ = W , where

hr =
[

Kk‖,r �k‖,r

−�∗
−k‖,r −K∗

−k‖,r

]
,

[W ]bb′ =
[

W
(K)
k‖,bb′ W

(�)
k‖,bb′

−(W (�)
−k‖,bb′ )∗ −(

W
(K)
−k‖,bb′

)∗
]
.
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Explicitly, in array form, we have

HN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 . . . hR 0 · · · 0
...

. . .
. . .

. . .
...

h
†
R

. . .
. . . 0

. . .
. . .

0
. . .

. . . hR

...
. . .

. . .
. . .

...
0 · · · 0 h

†
R · · · h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(l)
11 . . . w

(l)
1R 0 w11 . . . w1R

...
. . .

...
...

...
. . .

...

w
(l)
R1 . . . w

(l)
RR

... wR1 . . . wRR

0 · · · · · · 0 · · · · · · 0

w
†
11 . . . w

†
1R

... w
(r)
11 . . . w

(r)
1R

...
. . .

...
...

...
. . .

...
w

†
R1 . . . w

†
RR 0 w

(r)
R1 . . . w

(r)
RR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we have used the notation

w
(l)
bb′ ≡ Wbb′ , w

(r)
bb′ ≡ WN−R+b,N−R+b′ ,

wbb′ ≡ Wb,N−R+b′ . (4)

Here, the superscript (l) [or (r)] indicates the entries that allow
hoppings only near the bottom [or top] boundary, whereas the
ones without superscript allow hoppings from the bottom to
the top boundary slabs (see Fig. 1). The matrix H = HN + W

is a corner-modified banded block-Toeplitz matrix as defined
in Ref. [20] and is amenable to the exact solution approach
described therein [35].

This transformed BdG Hamiltonian allows us to write the
second-quantized Hamiltonian Ĥk‖ in the form

Ĥ = 1

2

N∑
j=1

�̂
†
j h0�̂j + 1

2

R∑
r=1

⎛⎝N−r∑
j=1

�̂
†
j hr�̂j+r + H.c.

⎞⎠
+ 1

2

∑
b,b′

�̂
†
bWbb′�̂b′ + 1

2
tr(K + W (K)),

where we have dropped the label k‖ everywhere. In particular,
for one-dimensional systems (D = 1), we recover (up to a
constant) the class of Hamiltonians considered in Ref. [19],
provided that Ŵ is expressible as

Ŵ = 1

2

R∑
r=1

N∑
b=N−r+1

(�̂†
b gr �̂b+r−N + H.c.),

for some 2dint × 2dint matrices gr (for one-dimensional sys-
tems, s = a1, therefore I = 1).

Observe that for particle number-conserving systems (� =
0 = W (�)), the single-particle Hamiltonian is just H = K +
W (K), which is already a corner-modified, banded block-
Toeplitz matrix. In such cases, the reordering of the basis is
not required, and one may directly apply the diagonalization
procedure described in the following sections to H , with
internal blocks of dimension Idint. In order to have a uniform
notation, we shall use

d ≡
{
Idint if � = 0 and W (�) = 0
2Idint if � �= 0 or W (�) �= 0

.

III. ALGEBRAIC CHARACTERIZATION
OF ENERGY EIGENSTATES

A main goal of this work is to diagonalize the single-particle
Hamiltonian H = HN + W , which is a corner-modified,
banded block-Toeplitz matrix. In this section, we investigate
the structure of its energy eigenstates, which will culminate
in a generalization of Bloch’s theorem to systems described
by such model Hamiltonians. Our analysis will illustrate, in
particular, that for nongeneric parameter values, Hamiltonians
may display a finite number of exceptional (singular) ener-
gies corresponding to dispersionless, flat bands. The latter
represent a macroscopic number of energy eigenstates that
are localized in the bulk and, thus, are completely insensitive
to BCs. It is remarkable that the analytic continuation of the
Bloch Hamiltonian can still encompass this situation. We will
show how to use it to construct the localized flat band energy
eigenstates directly in real space.

A. An impurity problem as a motivating example

Consider the simple tight-binding Hamiltonian

ĤN = −t

N−1∑
j=1

(c†j cj+1 + c
†
j+1cj ),

defined on an open chain of N (even) lattice sites with nearest-
neighbor hopping strength t , and lattice constant a = 1. The
corresponding single-particle Hamiltonian is

HN = −t

N−1∑
j=1

(|j 〉〈j + 1| + |j + 1〉〈j |)

and breaks translation-invariance due to the presence of
the boundary, so that the crystal momentum is not a good
quantum number. In fact, for any k ∈ (0,2π ], the state |k〉 =

1√
N

∑N
j=1 eikj |j 〉 (labeled by k) obeys

HN |k〉 = −2t cos k|k〉 + t√
N

(|1〉 + eik(N+1)|N〉), (5)

with a similar relation holding for −k,

HN |−k〉 = −2t cos k|−k〉 + t√
N

(|1〉 + e−ik(N+1)|N〉). (6)

The first term on the right-hand side of Eqs. (5) and (6)
indicates that |k〉 and |−k〉 “almost” (for large N ) satisfy
the eigenvalue relation with energy −2t cos k, while the two
terms in the brackets show that the eigenvalue relation is
violated near the two edges of the chain. Under periodic BCs,
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−2t cos k is the actual energy eigenvalue of the eigenstate
|k〉 (and |−k〉), and k is the crystal momentum, given by
k = 2πq/N, q = 1, . . . ,N ∈ (0,2π ] [1].

Because of the identical first term −2t cos k in Eqs. (5) and
(6), the states |k〉 and |−k〉 can be linearly combined in order
to cancel off the similar-looking boundary contributions. For
α,β ∈ C, the eigenvalue relation

HN (α|k〉 + β|−k〉) = −2t cos k(α|k〉 + β|−k〉),
is recovered provided that the constraint

t√
N

(α + β)|1〉 + t√
N

(αeik(N+1) + βe−ik(N+1))|N〉 = 0

is satisfied. For this to hold, the coefficients of both |1〉 and
|N〉 must vanish, which leads to the kernel equation

t

[
1 1

eik(N+1) e−ik(N+1)

][
α

β

]
≡ B

[
α

β

]
= 0. (7)

The determinant of the above “boundary matrix” B must
vanish, which happens if the condition ei2k(N+1) = 1 is sat-
isfied, that is, when k = πq/(N + 1), q = 1, . . . ,N . For each
of these values of k, α = −β = 1/

√
2 provides the required

kernel vector of the boundary matrix, with the resulting N

eigenvectors

|εk〉 ≡ |k〉 − |−k〉√
2

= i

√
2

N

N∑
j=1

sin(kj )|j 〉,

of energy εk = −2t cos k. Notice that the allowed values of k

differ from the case of periodic BCs [36].
Encouraged by these results, let us change the Hamiltonian

by adding an on-site potential at the edges,

W = w(|1〉〈1| + |N〉〈N |), w ∈ R,

so that the total single-particle Hamiltonian becomes H =
HN + W . The boundary matrix B changes to

B ≡
[

t + weik t + we−ik

teik(N+1) + weikN te−ik(N+1) + we−ikN

]
.

While it is harder to predict analytically the values of k for
which it has a nontrivial kernel, it is interesting to examine
the limit w � t . Then, we can approximate the relevant kernel
condition as

B

[
α

β

]
≈ w

[
eik e−ik

eikN e−ikN

][
α

β

]
= 0,

showing nontrivial solutions if ei2k(N−1) = 1. There are now
(N − 2) k values yielding stationary eigenstates as before. The
two missing eigenstates are localized at the edges and can be
taken to be |1〉 and |N〉, to leading order in t/w � 1. These
localized states are reminiscent of Tamm-Shockley modes
[4,5].

In hindsight, it is natural to ask whether this approach
to diagonalization may be improved and extended to more
general Hamiltonians. The answer is “Yes” and this paper
provides the appropriate tools.

R = 2

1 2 3 4

R = 2

5 6 7 8 9 10

m = 1

m = 2

j =

b = 1 2 9 10

FIG. 2. Bulk-boundary separation for a system with two
fermionic modes per unit cell, d = 2, and next-nearest-neighbor
hopping, R = 2. Each (blue) circle stands for a fermionic mode.
Thick and thin solid lines indicate two different hopping strengths
in the bulk. Since the size of the boundary depends on the range R,
the boundary comprises the first and last two unit cells of the chain.
Dotted lines stand for arbitrary hopping strengths at the boundary.

B. The bulk-boundary system of equations

The above motivating example suggests that it may be
possible to isolate the extent to which boundary effects prevent
bulk eigenstates from becoming eigenstates of the actual
Hamiltonian. Consider Eqs. (5) and (6) in particular. We may
condense them into a single relative eigenvalue equation,
PBHN |±k〉 = (−2t cos k)PB |±k〉, in terms of the projector
PB ≡ ∑N−1

j=2 |j 〉〈j |. The extension of this observation to the
general class of Hamiltonians H = HN + W requires only
knowledge of the range R in Eq. (3). The block-structure of
HN defines a subsystem decomposition of the single-particle
state space [19],

H ∼= CN ⊗ Cd ≡ HL ⊗ HI ,

where HL and HI are lattice and internal state spaces of
dimensions N and d, respectively. Let {|j 〉, j = 1, . . . ,N}
and {|m〉,m = 1, . . . ,d} be their respective orthonormal bases.
Define bulk and boundary projectors,

PB ≡
N−R∑

j=R+1

|j 〉〈j | ⊗ 1d , P∂ ≡ 1 − PB,

with 1 ≡ 1N ⊗ 1d the identity matrix on H, and 1N , 1d the
identity matrices on HL and HI , respectively (see Fig. 2). The
defining property of the bulk projector is that it annihilates any
boundary contribution W , that is, PBW = 0. Because PB +
P∂ = 1, the bulk-boundary system of equations,

PBHN |ε〉 = εPB |ε〉, (P∂HN + W )|ε〉 = εP∂ |ε〉, (8)

may be seen to be completely equivalent to the standard
eigenvalue equation, H |ε〉 = ε|ε〉 [20].

This bulk-boundary separation of the eigensystem problem
is advantageous because the bulk equation is, in a well-
defined sense, translation-invariant. Let us define a left-shift
operator T ≡ ∑N−1

j=1 |j 〉〈j + 1| on the lattice space HL (see
Appendix B). Then, one may verify that

HN = 1N ⊗ h0 +
R∑

r=1

(T r ⊗ hr + T †r ⊗ h†
r ). (9)

By extending T infinitely on both directions, we obtain a
translation-invariant auxiliary Hamiltonian,

H ≡ 1 ⊗ h0 +
R∑

r=1

(T r ⊗ hr + T−r ⊗ h†
r ), (10)
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where T ≡ ∑
j∈Z |j 〉〈j + 1| now denotes the generator of

discrete translations on the (infinite-dimensional) vector space
spanned by {|j 〉}j∈Z, and 1 the corresponding identity operator.
The subtle difference between Hamiltonians HN and H is that
while T is not invertible, T is, and in fact T−1 = T †. This
difference is decisive in solving the corresponding eigenvalue
problems. On the one hand, the eigenvalue equation H|�ε〉 =
ε|�ε〉 is equivalent to the infinite system of linear equations

h0|ψj 〉 +
R∑

r=1

(hr |ψj+r〉 + h†
r |ψj−r〉) = ε|ψj 〉, j ∈ Z,

(11)
where |�ε〉 ≡ ∑

j∈Z |j 〉 ⊗ |ψj 〉. On the other, the bulk

equation PBHN |ε〉 = εPB |ε〉, with |ε〉 ≡ ∑N
j=1 |j 〉 ⊗ |ψj 〉 is

equivalent to Eq. (11) but restricted to the finite domain
R < j � N − R. Hence the bulk equation is underdetermined
(there are 2R more vector variables than constraints). In
particular, if |�ε〉 is an eigenstate of the infinite Hamiltonian
as above, then

|ε〉 ≡
N∑

j=1

|j 〉〈j |�ε〉 ≡ P1,N |�ε〉

is a solution of the bulk equation. It is in this sense of shared
solutions with H that the bulk equation is, as anticipated,
translation-invariant.

C. Exact solution of the bulk equation

Let us revisit the energy eigenvalue equation, Eq. (11). If
the goal were to diagonalize the infinite-system Hamiltonian
H , then one should focus on finding energy eigenvectors
associated to normalized states in Hilbert space. However,
our model systems are of finite extent, and we are only
interested in using H as an auxiliary operator for finding the
translation-invariant solutions of the bulk equation. Hence we
will allow H to act on arbitrary vector sequences of the form
� = ∑

j∈Z |j 〉|ψj 〉, possibly “well outside” the Hilbert state
space, and so we will drop Dirac’s ket notation. From the
standpoint of solving the bulk equation, every sequence that
satisfies H� = ε� is acceptable, so one must find them all.
In the space of all sequences, the translation symmetry T
remains invertible but is no longer unitary, because the notion
of adjoint operator is not defined. This is important, because
it means that translations need not have their eigenvalues on
the unit circle, or be diagonalizable. Nonetheless, [T ,H] = 0,
and so both features have interesting physical consequences
for finite systems.

We will refer to the space of solutions of the bulk equation
as the bulk solution space and denote it by

M1,N (ε) ≡ Ker PB(HN − ε1),

for any fixed energy ε. LetM−∞,∞(ε) ≡ Ker (H − ε1) denote
the space of eigenvectors of H of energy ε within the space
of all sequences. In terms of these spaces, our arguments in
Sec. III B establish the relation

P1,NM−∞,∞ ⊆ M1,N , (12)

where we dropped the argument ε. Translation invariance
is equivalent to the properties TM−∞,∞ ⊆ M−∞,∞ and

T−1M−∞,∞ ⊆ M−∞,∞ [37]. If the matrix hR is invertible,
Eq. (12) becomes P1,NM−∞,∞ = M1,N [20].

Since T commutes with T−1, the generator of translations
to the right, these two symmetries share eigenvectors of the
form �z,1|u〉 ≡ ∑

j∈Z zj |j 〉|u〉, with z an arbitrary nonzero
complex number and |u〉 any internal state: there are d linearly
independent eigenvectors of translations for each z �= 0. As a
simple but important consequence of the identities

T�z,1|u〉 = z�z,1|u〉, T−1�z,1|u〉 = z−1�z,1|u〉,
one finds that

H�z,1 |u〉 = �z,1H (z)|u〉, (13)

where the linear operator

H (z) = h0 +
R∑

r=1

(zrhr + z−rh†
r ),

acts on the internal space HI only. This H (z) is precisely the
reduced bulk Hamiltonian hB(z) of Ref. [19], obtained here by
way of a slightly different argument. Since Hk = H (z = eik)
is the usual Bloch Hamiltonian of a one-dimensional system
with Born-von-Karman BCs, H (z) is the analytic continuation
of Hk off the Brillouin zone.

One can similarly continue the energy dispersion relation
off the Brillouin zone, by relating ε to z via

det(H (z) − ε1d ) = 0. (14)

In practice, it is advantageous to use the polynomial (in z)

P (ε,z) ≡ zdR det(H (z) − ε1d ). (15)

We will say that ε is regular if P (ε,z) is not the zero
polynomial, and singular otherwise. That is, P (ε,z) = 0
identically for all z if ε is singular. Such a (slight) abuse of
language [20] is permitted since we are interested in varying
ε for a fixed Hamiltonian. For any given Hamiltonian of finite
range R, there are at most a finite number of singular energies.
Physically, singular energies correspond to flat bands, as one
can see by restriction to the Brillouin zone. We can now state a
first useful result, whose formal proof follows from the general
arguments in Ref. [20].

Theorem 1. If ε is regular, the number of independent
solutions of the bulk equation is dimM1,N (ε) = 2Rd, for any
system size N > 2R.

This result ties well with the physical meaning of the
number 2Rd = dim(Range P∂ ) as counting the total number
of degrees of freedom on the boundary, which is equal to the
dimension of the boundary subspace. The condition N > 2R

implies that the system is big enough to contain at least one
site in the bulk.

1. Extended-support bulk solutions at regular energies

The solutions of the bulk equation that are inherited from
H have nonvanishing support on the full lattice space HL,
and are labeled by the eigenvalues of T , possibly together
with a second “quantum number” that appears because T is
not unitary on the space of all sequences. For any z �= 0, if |u〉
satisfies the eigenvalue equation H (z)|u〉 = ε|u〉, then Eq. (13)
implies that �z,1|u〉 is an eigenvector of H with eigenvalue
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ε. In order to be more systematic, let {z�}n�=1 denote the n

distinct nonzero roots of Eq. (15), and {s�}n�=1 their respective
multiplicities. For generic values of ε,H (z�) has exactly s�

eigenvectors {|u�s〉}s�

s=1 in HI , satisfying

H (z�)|u�s〉 = ε|u�s〉, s = 1, . . . ,s�.

Since H�z�,1|u�s〉 = ε�z�,1|u�s〉, the states

P1,N�z�,1|u�s〉 =
N∑

j=1

z
j

� |j 〉|u�s〉 ≡ |z�,1〉|u�s〉 (16)

are solutions of the bulk equation. Intuitively, these states are
“eigenstates of the Hamiltonian up to BCs.”

For a few isolated values of ε, H (z�) can have less than
s� eigenvectors. However, the number of eigenvectors of H
is still s� [20], as we illustrate here by example. Suppose for
concreteness that

H − ε1 = − t

2
(T + T−1) − ε1 = − t

2
T−1

2∏
�=1

(T − z�).

Since R = 1 and d = 1, we expect two eigenvectors for each
value of ε. One concludes that the eigenspace of energy ε is
spanned by the sequences �z�,1, � = 1,2, if z1 �= z2. However,
if ε = ±t , then z1 = z2 = ∓1 and

H ∓ t1 = − t

2
T−1(T − z1)2.

How can one get two independent solutions in this case?
The answer is that, in addition to �z1,1, the factor (T − z1)2

contributes another sequence to the kernel of H − ε1, namely,
�z1,2 = ∑

j∈Z jz
j−1
1 |j 〉. There are two eigenvectors in total,

even though there is only one root.
Returning to the general case, the sequences [20,38]

�z,v = 1

(v − 1)!
∂v−1
z �z,1 =

∑
j∈Z

j (v−1)

(v − 1)!
zj−v+1|j 〉,

j (v) ≡ j (j − 1) . . . (j − v + 1), j (0) ≡ 1, (17)

span the kernel of (T − z)s for v = 1, . . . ,s. In other words,
�z,v is a generalized eigenvector of the translational symmetry
T of rank v with eigenvalue z. We refer to eigenvectors
with v > 1 as the power-law solutions of the bulk equation
(solutions with a power-law prefactor). They exist because
translations are not diagonalizable in the full space of se-
quences (as opposed to the Hilbert space of square-summable
sequences), leading to the new quantum number v.

The power-law solutions of the bulk equation may be found
from the action of H on the generalized eigenvectors of T . For
arbitrary internal state |ux〉, we have

H�z,x |ux〉 = 1

(x − 1)!
∂x−1
z �z,1H (z)|ux〉. (18)

Then one can show from Eqs. (17) and (18) that the action of
H on the vector sequence � = ∑v

x=1 �z,x |ux〉, where {|ux〉}
are arbitrary internal states, is given by

H� =
v∑

x=1

v∑
x ′=1

�z,x[Hv(z)]xx ′ |ux ′ 〉. (19)

Here, Hv(z) is an upper triangular block-Toeplitz matrix with
nontrivial blocks

[Hv(z)]xx ′ ≡ 1

(x ′ − x)!
∂x ′−x
z H (z), 1 � x � x ′ � v. (20)

In matrix form, by letting H (x) ≡ ∂x
z H (z), we have

Hv(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H (0) H (1) 1
2H (2) · · · 1

(v−1)!H
(v−1)

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
2H (2)

...
. . .

. . . H (1)

0 · · · · · · 0 H (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We refer to Hv(z) as the generalized reduced bulk Hamiltonian
of order v. Notice that H1(z) = H (z). In the partial basis

�z = [�z,1 . . . �z,v], (21)

organized as a row vector, the entries of |u〉 = [|u1〉 . . . |uv〉]T

are the vector-valued coordinates of �, � = �z|u〉 =∑v
x=1 �z,x |ux〉. Then, Eq. (19) can be rewritten as

H�z|u〉 = �zHv(z)|u〉.
Now it becomes clear that for � to be an eigenvector of H ,
the required condition is Hv(z)|u〉 = ε|u〉, which is analogous
to the condition derived for the generic case v = 1. If a root z�

of Eq. (14) has multiplicity s�, then H has precisely s� linearly
independent eigenvectors corresponding to z�. This provides
a characterization of the eigenstates of H , which may be
regarded as extending Bloch’s theorem to H viewed as a linear
transformation on the space of all vector-valued sequences, and
whose rigorous justification follows from Ref. [20].

Theorem 2. For fixed, regular ε, let {z�}n�=1 denote the
distinct nonzero roots of Eq. (14), with respective multiplicities
{s�}n�=1. Then, the eigenspace of H of energy ε is a direct sum
of n vector spaces spanned by generalized eigenstates of T of
the form

��s = �z�
|u�s〉 =

s�∑
v=1

�z�,v|u�sv〉, s = 1, . . . ,s�,

where the linearly independent vectors {|u�s〉}s�

s=1 are cho-
sen in such a way that Hs�

(z�)|u�s〉 = ε|u�s〉, and |u�s〉 =
[|u�s1〉 . . . |u�ss�

〉]T.
Once the eigenvectors of H are calculated, the bulk solu-

tions of extended support are readily obtained by projection.
Let, for v � 1,

|z,v〉 ≡ P1,N�z,v =
N∑

j=1

j (v−1)

(v − 1)!
zj−v+1|j 〉

be the projections of generalized eigenvectors of T . Then

Bext ≡ {|ψ�s〉, s = 1, . . . ,s�, � = 1, . . . ,n}
describes a basis of the translation-invariant solutions of the
bulk equation, where

|ψ�s〉 =
s�∑

v=1

|z�,v〉|u�sv〉 ∀�,s. (22)
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It is worth noting that an energy value ε lies inside an
energy band if and only if at least one of the roots {z�}n�=1
is of unit norm (|z�| = 1). If none of the roots lie on the
unit circle, then ε necessarily lies in a band gap (or above or
below all energy bands). However, it may happen that some,
though not all, of the roots {z�} lie on the unit circle, as also
evidenced by use of the transfer matrix method [33]. Such
energy values, in fact, describe the observed phenomenon of
surface resonance [6]. The bulk eigenstates at such energies
can have contributions from exponentially decaying states
(corresponding to |z�| �= 1) with large amplitude near the
surface, and Bloch-wave like states (corresponding to |z�| = 1)
that penetrate deep into the bulk. Whether such states are
physical depends on compatibility with the BCs.

Remark. The bulk equation bears power-law solutions only
at a few isolated values of ε [39]. However, linear combi-
nations of v = 1 solutions show power-law-like behavior, as
soon as two or more of the roots of Eq. (14) are sufficiently
close to each other. Suppose, for instance, that for some value
of energy ε, two of the roots of Eq. (14) coincide at z∗. For
energy differing from ε by a small amount δε, the double root
z∗ bifurcates into two roots slightly away from each other, with
values z∗ ± δz. The relevant bulk solution space is spanned by

|z∗ + δz,1〉 + |z∗ + δz,1〉 ≈ 2|z∗,1〉,
|z∗ + δz,1〉 − |z∗ + δz,1〉 ≈ 2(δz/z∗)|z∗,2〉,

showing that the second vector has indeed a close resemblance
to the power-law solution |z∗,2〉. Similar considerations apply
if d > 1, as it is typically the case in physical applications.
Assuming that the relevant bulk solutions at energy ε + δε

are described by analytic vector functions |ψ(z∗ + δz)〉 and
|ψ(z∗ − δz)〉, then, from the above analysis, it is clear that for
energy ε, the power-law bulk solution will be proportional to

lim
δz→0

(|ψ(z∗ + δz)〉 − |ψ(z∗ − δz)〉) ∝ ∂z|ψ(z∗)〉. (23)

We will make use of this observation for the calculation of
power-law solutions in Sec. V B.

2. Emergent solutions at regular energies

While the extended solutions of the bulk equation corre-
spond to the nonzero roots of Eq. (14), the polynomial P (ε,z)
defined in Eq. (15) may also include z0 = 0 as a root of
multiplicity s0, that is, we may generally write

P (ε,z) = zdR det(H (z) − ε1d ) ≡ c

n∏
�=0

(z − z�)s� , c �= 0.

However, |z = 0〉|u〉 = 0 does not describe any state of the
system. This observation suggests that the extended solutions
of the bulk equation may fail to account for all 2Rd solutions
we expect for regular ε. That this is indeed the case follows
from a known result in the theory of matrix polynomials [40],
implying that 2Rd = 2s0 + ∑n

�=1 s� for matrix polynomials
associated to Hermitian block-Toeplitz matrices [20]. Hence
the number of solutions of the bulk equation of the form given
in Eq. (22) is

n∑
�=1

s� = 2Rd − 2s0. (24)

We call the missing 2s0 solutions of the bulk equation
emergent, because they are no longer controlled by H and
(nonunitary) translation symmetry, but rather they appear only
because of the truncation of the infinite lattice down to a
finite one, and only if det hR = 0 [20]. Emergent solutions
are a direct, albeit nongeneric, manifestation of translation-
symmetry-breaking; nonetheless, remarkably, they can also
be determined by the analytic continuation of the Bloch
Hamiltonian, in a precise sense.

While full technical detail is provided in Appendix C,
the key to computing the emergent solutions is to relate
the problem of solving the bulk equation to a half-infinite
Hamiltonian, rather than the doubly infinite H we have
exploited thus far. Let us define the unilateral shifts

T− =
∞∑

j=1

|j 〉〈j + 1|, T �
− =

∞∑
j=1

|j + 1〉〈j |.

The Hamiltonian

H− ≡ 1− ⊗ h0 +
R∑

r=1

(T r
− ⊗ hr + T � r

− ⊗ h†
r ) (25)

is then the half-infinite counterpart of H . The corresponding
half-infinite bulk projector is

P−
B ≡

∞∑
j=R+1

|j 〉〈j | = T � R
− TR

−.

Suppose there is a state ϒ− that solves the equation P−
B (H− −

ε1−)ϒ− = 0. Then one can check that |ψ〉 = P1,Nϒ− is a
solution of the bulk equation, Eq. (8). Clearly, some of the
bulk solutions we arrive at in this way using H− will coincide
with those obtained from H . These are precisely the extended
solutions we already computed in Sec. III C 1. In contrast, the
emergent solutions are obtained only from H−.

Since T−T �
− = 1−, we may write P−

B (H− − ε1−) =
T �R

− K−(ε,T−), in terms of the matrix polynomial

K−(ε,z) ≡ zR(H (z) − ε1d ). (26)

Half of the emergent solutions, namely, the ones localized
on the left edge, are determined by the kernel of K−

s0
(ε,z0 =

0) ≡ K−(ε), with [K−
v (ε,z)]xx ′ constructed as in Eq. (20).

Explicitly, such a matrix, which was obtained by different
means in Ref. [20], takes the form

K−(ε)

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
†
R · · · h0 − ε1d · · · hR 0 · · · 0

. . .
. . .

. . .
. . .

...
. . . 0

. . .
. . .

. . .
hR

. . .
. . .

...
h0 − ε1d

0
. . .

...
...

. . .

0 · · · 0 h
†
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)
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for systems with fairly large s0 > 2R + 1. Let {|u−
s 〉}s0

s=1 denote
a basis of the kernel of K−(ε), with

|u−
s 〉 = [|u−

s1〉|u−
s2〉 . . .

∣∣u−
ss0

〉]T
.

Then

|ψ−
s 〉 =

s0∑
j=1

|j 〉|u−
sj 〉, s = 1, . . . ,s0 (28)

are the emergent solutions with support on the first s0 lattice
sites, with s0 obeying Eq. (24).

We are still missing s0 emergent solutions for the right
edge. They may be constructed from the kernel of the lower-
triangular block matrix K+(ε) ≡ [K−(ε)]† = [K−

s0
(ε,z0 =

0)]†. Let {|u+
s 〉}s0

s=1 denote a basis of the kernel of K+(ε),
with

|u+
s 〉 = [|u+

s1〉|u+
s2〉 . . .

∣∣u+
ss0

〉]T
.

Then,

|ψ+
s 〉 =

s0∑
j=1

|N − s0 + j 〉|u+
sj 〉 s = 1, . . . ,s0, (29)

are the emergent bulk solutions associated to the right edge,
supported on the lattice sites N − s0 + 1, . . . ,N . In what
follows, we shall denote the spaces spanned by left- and right-
localized emergent bulk solutions by F−

1 and F+
N , and their

bases by B− ≡ {|ψ−
s 〉}s0

s=1 and B+ ≡ {|ψ+
s 〉}s0

s=1, respectively.

3. Bulk-localized states at singular energies

If hR is not invertible, there can be at most a finite number
of singular energy values (usually referred to as flat bands),
leading to bulk-localized solutions: these solutions are finitely
supported and appear everywhere in the bulk. Hence a singular
energy cannot be excluded from the physical spectrum of a
finite system by way of BCs. In contrast, emergent solutions
are also finitely supported but necessarily “anchored” to the
edges (and only appearing for regular values of ε).

Recall that if ε is singular, then det(H (z) − ε1) = 0 for any
z. Thus there exists an analytic vector function,

|v(z)〉 ≡
δ0∑

δ=0

z−δ|vδ〉, δ0 = (d − 1)2Rd, (30)

satisfying H (z)|v(z)〉 = ε|v(z)〉 for all z. To obtain |v(z)〉, one
can construct the adjugate matrix of (H (z) − ε1d ). [Recall
that the adjugate matrix adj(M) associated to a square matrix
M is constructed out of the signed minors of M and satisfies
adj(M)M = det(M)1.] Hence

(H (z) − ε1d )adj(H (z) − ε1d ) = det(H (z) − ε1d )1d = 0,

and so one can use any of the nonzero columns of adj(H (z) −
ε1d ), suitably premultiplied by a power of z, for the vector
polynomial |v(z)〉. By matching powers of z, this equation

becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hR 0 · · · 0

hR−1 hR

. . .
...

...
. . .

. . . 0
...

. . .
. . .

. . .

h
†
R

. . .
. . .

. . . hR

. . .
. . .

. . .
...

0
. . .

. . .
...

...
. . .

. . . h
†
R−1

0 · · · 0 h
†
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
|v0〉
|v1〉

...∣∣vδ0

〉
⎤⎥⎥⎥⎦ = 0. (31)

The idea now is to use the linearly independent solu-
tions of Eq. (31) to construct finite-support solutions of
the bulk equation. Let us denote such solutions by |vμ〉 ≡
[|vμ0〉|vμ1〉 . . . |vμδ0〉]T, for μ = 1, . . . ,μ0. One can check
directly that the finitely supported sequences

�jμ ≡
δ0∑

δ=0

|j + δ〉|vμδ〉, j ∈ Z, μ = 1, . . . ,μ0,

all satisfy (H − ε1)�js = 0 because |vμ〉 obeys Eq. (31).
Hence the states P1,N�jμ provide finitely supported solutions
of the bulk equation. In addition, as long as 2R < j <

N − 2R − δ0, the boundary equation is also satisfied trivially,
and so all such states become eigenvectors of HN + W with the
singular energy ε. This is why singular energies, if present for
the infinite system, are necessarily also part of the spectrum of
the finite system and display macroscopic degeneracy of order
O(N ).

Let us further remark that the sequences �jμ and associated
solutions of the bulk equation need not be linearly independent.
To obtain a complete (rather than overcomplete) set of
solutions for flat bands, one would require a technical tool,
the Smith normal form [41], which is beyond the scope of this
paper. We refer the reader to Ref. [20] for more details, and to
Ref. [42] for additional related discussion on flat bands.

D. The boundary matrix

For regular energies, the bulk solutions determine a
subspace of the full Hilbert space (Theorem 1), whose
dimension 2Rd � dN for typical applications. While not
all bulk solutions are eigenstates of the Hamiltonian H =
HN + W , the actual eigenstates must necessarily appear as
bulk solutions. Hence the bulk-boundary separation in Eq. (8)
and, in particular, the bulk equation, identifies by way of
a translational symmetry analysis a small search subspace.
In order to find the energy eigenstates efficiently, one must
solve the boundary equation on this search subspace. Since
the boundary equation is linear, its restriction to the space of
bulk solutions can be represented by a matrix, the boundary
matrix [19]. The latter is a square matrix that combines our
basis of bulk solutions with the relevant BCs.
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Let B ≡ Bext ∪ B− ∪ B+ be a basis for M1,N . Then, building on the previous section, the ansatz state

|ε,α〉 ≡ |�B〉α =
n∑

�=1

s�∑
s=1

α�s |ψ�s〉 +
s0∑

s=1

α+
s |ψ+

s 〉 +
s0∑

s=1

α−
s |ψ−

s 〉, (32)

represents the solutions of the bulk equation parametrized by the 2Rd amplitudes α, where

α ≡ [
α11 · · · αnsn

α+
1 · · ·α+

s0
α−

1 · · · α−
s0

]T
, |�B〉 ≡ [|ψ11〉 · · · ∣∣ψnsn

〉|ψ+
1 〉 · · · ∣∣ψ+

s0

〉|ψ−
1 〉 · · · ∣∣ψ−

s0

〉]
. (33)

Moreover, let as before b = 1, . . . ,R,N − R + 1, . . . ,N label the boundary sites. Then,

PB(H − ε1)|ε,α〉 = 0 and P∂ (H − ε1)|ε,α〉 =
∑

b

|b〉〈b|(HN + W − ε1)|�B〉α. (34)

In particular, the boundary equation is equivalent to the requirement that 〈b|(HN + W − ε1)|�B〉α = 0 for all boundary sites.
Since 〈b|(HN + W − ε1)|�B〉 ≡ 〈b|Hε |�B〉 denotes a row array of internal states, it is possible to organize these arrays into the
boundary matrix

B(ε) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1|Hε |ψ11〉 · · · 〈1|Hε

∣∣ψnsn

〉 〈1|Hε |ψ+
1 〉 · · · 〈1|Hε

∣∣ψ−
s0

〉
...

...
...

...
〈R|Hε |ψ11〉 · · · 〈R|Hε

∣∣ψnsn

〉 〈R|Hε |ψ+
1 〉 · · · 〈R|Hε

∣∣ψ−
s0

〉
〈N − R + 1|Hε |ψ11〉 · · · 〈N − R + 1|Hε

∣∣ψnsn

〉 〈N − R + 1|Hε |ψ+
1 〉 · · · 〈N − R + 1|Hε

∣∣ψ−
s0

〉
...

...
...

...
〈N |Hε |ψ11〉 · · · 〈N |Hε

∣∣ψnsn

〉 〈N |Hε |ψ+
1 〉 · · · 〈N |Hε

∣∣ψ−
s0

〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

By construction, the boundary matrix B is a block matrix of
block-size d × 1. In terms of this matrix, Eq. (34) provides the
useful identity

H |ε,α〉 = ε|ε,α〉 +
∑
b,s

|b〉Bbs(ε)αs , ε ∈ R. (36)

One may write an analogous equation in Fock space by
defining an array

η†
ε,α ≡

N∑
j=1

〈j |ε,α〉�̂†
j .

Then Eq. (36) translates into

[Ĥ ,η†
ε,α] = ε η†

ε,α +
∑
b,s

�̂
†
bBbs(ε)αs . (37)

It is interesting to notice that this (many-body) relation remains
true even if ε is allowed to be a complex number.

E. The generalized Bloch theorem

The bulk-boundary separation of the energy eigenvalue
equation shows that actual energy eigenstates are necessarily
linear combinations of solutions of the bulk equation. This
observation leads to a generalization of Bloch’s theorem for
independent fermions under arbitrary BCs:

Theorem 3 (Generalized Bloch theorem). Let H = HN +
W denote the single-particle Hamiltonian of a clean system
subject to BCs described by W = P∂W . If ε is a regular energy
eigenvalue of H of degeneracy K, the associated eigenstates
can be taken to be of the form

|ε,ακ〉 = |�B〉ακ , κ = 1, . . . ,K,

where {ακ , κ = 1, . . . ,K} is a basis of the kernel of the
boundary matrix B(ε) at energy ε.

In short, (HN + W )|ε,α〉 = ε|ε,α〉 if and only if Bα = 0,
in which case it also follows from Eq. (37) that η

†
ε,α is a

normal fermionic mode of the many-body Hamiltonian Ĥ .
From now on, we will refer to energy eigenstates of the form
|�B〉ακ as generalized Bloch states. Recall that H acts on
H = CN ⊗ Cd , with couplings of finite range R. A lower
bound on N should be obeyed, in order for the above theorem
to apply. If det hR �= 0, since there are no emergent solutions
nor flat bands, generalized Bloch states describe the allowed
energy eigenstates as soon as N > 2R, independently of d.
If hR fails to be invertible, we should require that N >

2 max(s0,R) to ensure that emergent solutions on opposite
edges do not overlap, and are thus independent. Since s0 � Rd,
this condition is satisfied for any N > 2Rd. In general,
N > 2R(d + 1) always suffices for generalized Bloch states
to describe generic energy eigenstates [20].

We further note that if ε is not an energy eigenvalue, the
kernel of B(ε) is trivial. Thus the degeneracy of a single-
particle energy level coincides with the dimension of the kernel
of B(ε). Let ρ(ω) denote the single-particle density of states.
Combining its definition with the generalized Bloch theorem,
we then see that

ρ(ω) =
∑

det B(ε)=0

[dim Ker B(ε)] δ(h̄ω − ε),

an alternative formula to the usual

ρ(ω) = − 1

π
Im Tr (HN + W − h̄ω + i0+)−1,

from the theory of Green’s functions [43]. Another interesting
and closely related formula is

ZW = Tr e−β(HN +W ) =
∑

det B(ε)=0

dim Ker B(ε) e−βε,
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for the partition function of the single-particle Hamiltonian,
with the dependence on BCs highlighted [16].

We conclude this section by showing how, for periodic
BCs, one consistently recovers the conventional Bloch’s
theorem. In the notation introduced in Sec. II, we consider
the setting in which the stacking vector is one of the
primitive vectors, say, s = aD without loss of generality, and
the hypersurface is spanned by the remaining D − 1 primitive
vectors, mμ = aμ, μ = 1, . . . ,D − 1. The system extends
from j = 1, . . . ,N ≡ MD along s, and jμ = 1, . . . ,Nμ ≡ Mμ

along the remaining directions. In this case, the appropriate
matrix W reads

W ≡ Wp =
R∑

r=1

(T N−r ⊗ h†
r + H.c.),

since then one can check that

Hp = HN + Wp = 1N ⊗ h0 +
R∑

r=1

(V r ⊗ hr + H.c.),

in terms of the fundamental circulant matrix

V ≡ T + (T †)N−1 =
N−1∑
j=1

|j 〉〈j + 1| + |N〉〈1|.

Physically, V is the generator of translations (to the left) for a
system displaying ring (1-torus) topology.

The Bloch states are the states that diagonalize Hp and V

simultaneously. Theorem 3 guarantees that we can choose the
eigenstates of Hp to be linear combinations of translation-
invariant and emergent solutions. Thus we only need to
check if these linear combinations include eigenstates of
V . There is no hope of retaining the emergent solutions,
because they are localized and too few in number (at most
2Rd) to be rearranged into eigenstates of V . The same
holds for translation-invariant solutions with a power-law
prefactor. Hence the search subspace that is compatible with
the translational symmetry V is described by the simplified
ansatz [19]

|ε,α〉 =
n∑

�=1

α�1|ψ�1〉.

Now, V |ψ�1〉 = z�|ψ�1〉 − z�(1 − zN
� )|N〉|u�s�1〉, and so the

generalized Bloch states can only be eigenstates of V if eik�N =
1 with z� = eik� , and all but one entry in α vanish. That is,
|ε,α〉 ≡ |ε,k�〉 = |z�,1〉|u�1,1〉. As one may verify, Hp|ε,k�〉 =
|z�,1〉H (z�)|u�1,1〉 = ε|ε,k�〉, showing that |ε,k�〉 is indeed
compatible with the boundary matrix. Manifestly, |ε,k�〉 is
an eingenstate of Hp in the standard Bloch form—thereby
recovering the conventional Bloch’s theorem for periodic BCs,
as desired.

IV. THE BULK-BOUNDARY ALGORITHMS

The results of Sec. III can be used to develop diagonal-
ization algorithms for the relevant class of single-particle
Hamiltonians. We will describe two such algorithms. The
first treats ε as a parameter for numerical search. The second
is inspired by the algebraic Bethe ansatz, as suggested by
comparing our Eq. (36) to Eq. (28) of Ref. [44].

A. Numerical “scan-in-energy” diagonalization

The procedure described in this section is a special
instance of the eigensystem algorithm described in Ref. [20],
specialized to Hermitian matrices. It employs a search for
energy eigenvalues along the real line, and takes advantage of
the results of Sec. III to determine whether a given number is
an eigenvalue. The overall procedure is schematically depicted
in Fig. 3.

The first part of the algorithm finds all eigenvectors of H

that correspond to the flat (dispersionless) energy band, if any
exists. Two steps are entailed: (1) find all real values of ε for
which det(H (z) − ε1d ) vanishes for any z. Output these as
singular eigenvalues of H .

(2) For each of the eigenvalues found in step (2), find and
output a basis of the corresponding eigenspace of H using any
conventional algorithm.

In implementing step (2) above, one can leverage the
analysis of Sec. III C 3. The following part of the algorithm,
which repeats until all eigenvectors of H are found, proceeds
according to the following steps.

(3) Choose a seed value of ε, different from those
eigenvalues found already.

(4) Find all n distinct nonzero roots of the equation
det(H (z) − ε1d ) = 0. Let these roots be {z�, � = 1, . . . ,n},
and their respective multiplicities {s�, � = 1, . . . ,n}.

(5) For each such roots, construct the generalized reduced
bulk Hamiltonian Hs�

(z�) [Eq. (20)].
(6) Find a basis of the eigenspace of Hs�

(z�) with eigenvalue
ε. Let the basis vectors be {|u�s〉, s = 1, . . . ,s�}. The bulk
solution corresponding to (�,s) is |ψ�s〉 = ∑s�

v=1 |z�,v〉|u�sv〉,
with �z�

defined in Eq. (21).
(7) If hR is noninvertible, find s0 = Rd − ∑n

�=1 s�/2.
Construct matrices K−(ε) as described in Eq. (27), and
K+(ε) = [K−(ε)]†.

(8) Find bases of the kernels of K−(ε) and K+(ε). Let
the basis vectors be {|u−

s 〉, s = 1, . . . ,s0} and {|u+
s 〉, s =

1, . . . ,s0}, respectively. The emergent bulk solutions corre-
sponding to each s follow from Eqs. (28) and (29).

(9) Construct the boundary matrix B(ε) [Eq. (35)].
(10) If det B(ε) = 0, output ε as an eigenvalue. Find a basis

{ακ , κ = 1, . . . ,K} of the kernel of B(ε). Then a basis of
the eigenspace of H corresponding to energy ε is {|εκ〉 =
|�B〉ακ , κ = 1, . . . ,K}, with |�B〉 being defined in Eqs. (33).
If all 2dN eigenvectors are not yet found, then go back to
step (3).

(11) If det B(ε) �= 0, choose a new value of ε as dic-
tated by the relevant root-finding algorithm [45]. Go back
to step (4).

Some considerations are in order, in regard to the fact that
the determinant of B(ε) plotted as a function of energy ε may
display finite-precision inaccuracies, that appear as fictitious
roots. Such issues arise at those ε where two (or more) of
the roots of Eq. (14) cross as a function of ε, due to the
nonorthogonality of the basisB that results from the procedure
described in Sec. III C. Let ε∗ be a value of energy for which
this happens, so that the bulk equation bears a power-law
solution. For ε ≈ ε∗ (except ε∗ itself), Eq. (14) has two roots
that are very close in value, so that the corresponding bulk
solutions overlap almost completely. This results in a boundary
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start
Construct reduced
bulk Hamiltonian

H(z)
Input H = HN + W

Find values of
ε for which

H(z) − ε d is singular

Find basis of corre-
sponding eigenspaces

Choose a new
value for ε

Find a basis of the
bulk solution space

Construct bound-
ary matrix B Is det B = 0?

Construct and output
all eigenvectors
corresponding
to eigenvalue ε
from Kernel(B)

All eigenvectors
found?

stop

yes

no

no

yes

FIG. 3. Flowchart of the numerical diagonalization algorithm. The steps inside the dashed rectangle form the loop for scanning over ε. The
crucial step is solving the bulk equation, which encompasses steps (4)–(8) as described in the text.

matrix having two nearly identical columns, with determinant
vanishing in the limit ε → ε∗, irrespective of ε∗ being an
eigenvalue of H (hence, a physical solution). However, if
we calculate B(ε) exactly at ε∗, then the basis B contains
power-law solutions, and accurately indicates whether ε∗ is an
eigenvalue. This also means that the function det B(ε) has a
discontinuity at ε = ε∗.

A simple way to identify those fictitious roots is as follows.
Rewrite the polynomial in Eq. (15) as

P (ε,z) =
2Rd−s0∑

r=s0

pr (ε)zr , (38)

which is treated as a polynomial in z with coefficients
depending on ε [if s0 changes with ε, we use the smallest
possible value of s0 in Eq. (38)]. P (ε,z) has double roots at
ε∗ if and only if the discriminant D(P (ε∗,z)) = 0 [46]. The
latter gives a polynomial expression in ε, of degree O(dR).
By finding the roots of this equation, one can obtain all the
values of ε for which fictitious roots of det B(ε) may appear.
To check whether these roots are true eigenvalues, one then
needs to construct B(ε) by including the power-law solutions
in the ansatz.

We further note that, while the ansatz is not continuous at
such values of ε, the fact that the bulk solution space is the
kernel of the linear operator PB(HN + W − ε) implies that it
must change smoothly with ε. A way to improve numerical
accuracy would be to construct an orthonormal basis (e.g., via
Gram-Schmidt orthogonalization) of M1,N (ε) at each ε, and
use this basis to construct a modified boundary matrix B̃(ε).
In practice, one may directly compute the new determinant by

using

det B̃(ε) = det B(ε)√
detG(ε)

,

where G ≡ 〈�B|�B〉 is the Gramian matrix [47] of the basis
of bulk solutions obtained in steps (4) to (8) of the algorithm,
with entries Gss ′ ≡ 〈ψs |ψs ′ 〉, s,s ′ = 1, . . . ,2Rd. In fact, it can
be checked that the bulk solutions{

|φs〉 ≡
2Rd∑
s ′=1

[G−1/2]s ′s |ψs ′ 〉, s = 1, . . . ,2Rd

}

form an orthonormal basis of the bulk solution space M1,N .
The calculation of the entries of the Gramian is straightforward
thanks to the analytic result

〈z,1|z′,1〉 =
{

z∗z′−(z∗z′)N+1

1−z∗z′ if z′ �= 1/z∗

N if z′ = 1/z∗ .

In regard to the time and space complexity of the algorithm,
the required resources depend entirely on those needed to
compute the boundary matrix. For generic ε, regardless of
the invertibility of hR , the size of B(ε) is 2Rd × 2Rd,
independently of N . Calculation of each of its entries is also
simple from the point of view of complexity, thanks to the
fact that H = HN + W is symmetrical [20,35]. Accordingly,
both the number of steps and the memory space used by this
algorithm do not scale with the system size N , making this
approach computationally more efficient than conventional
methods of diagonalization of generic Hermitian matrices [48].
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B. Algebraic diagonalization

The scan-in-energy algorithm can be further developed into
an algorithm that yields an analytic solution (often closed-
form), in the same sense as the Bethe ansatz method does for
a different class of (interacting) quantum integrable systems.
The idea is to obtain, for generic values of ε, an analytic
expression for B(ε), since its determinant will then provide
a condition for ε to be an eigenvalue, and the corresponding
eigenvectors can be obtained from its kernel. As mentioned,
for generic ε, the extended bulk solutions do not include any
power-law solutions. This property can be exploited to derive
an analytic expression for B(ε) in such a generic setting.
The values of ε for which power-law solutions appear, or the
analytic expression fails for other reasons, can be dealt with
on a case-by-case basis.

By the Abel-Ruffini theorem, a completely closed-form
solution by radicals in terms of ε can be achieved if the
degree in z of the characteristic polynomial of the reduced
bulk Hamiltonian is at most four. If this is not the case, the
roots {z�} do not possess an algebraic expression in terms of ε

and entries of H . The workaround is then to consider {z�} as
free variables, with the constraint that each of them satisfy the
characteristic equation of H (z). With these tools in hand, the
following procedure can be used to find an analytical solution
for generic values of ε.

(1) Construct the polynomial P (ε,z) in Eq. (38), which is
a bivariate polynomial in ε and z. Determine s0 using s0 =
2Rd − deg(P (ε,z)), where deg(.) denotes the degree of the
polynomial in z.

(2) Assuming that ε and z satisfy P (ε,z) = 0, find an ex-
pression for the eigenvector |u(ε,z)〉 of H (z) with eigenvalue ε.

(3) Consider variables {z�, � = 1, . . . ,2Rd − 2s0}, each
satisfying P (ε,z�) = 0. Each of these corresponds to a bulk
solution |z�,1〉|u(ε,z�)〉.

(4) If hR is not invertible, construct matrices K−(ε) and
K+(ε) = [K−(ε)†] [Eq. (27)].

(5) Find bases for their kernels, each of which contains s0

vectors. Let these be {|u−
s (ε)〉, s = 1, . . . ,s0} and {|u+

s (ε)〉, s =
1, . . . ,s0}. These correspond to finite-support solutions of the
bulk equation.

(6) Construct the boundary matrix B(ε) ≡ B(ε,{z�})
[Eq. (35)].

(7) The condition for ε being an eigenvalue of H is
det B(ε,{z�}) = 0. Therefore, a complete characterization of
eigenvalues is

{P (ε,z�) = 0, � = 1, . . . ,n}, det B(ε,{z�}) = 0.

(8) If deg(P (ε,z)) � 4, substitute for each z� the closed-
form expression of the corresponding root z�(ε). The eigen-
value condition in step (IV B) simplifies to a single equation,
det B(ε,{z�(ε)}) = 0.

(9) For every eigenvalue ε, the kernel vector α(ε,{z�}) of
B(ε,{z�}) provides the corresponding eigenvector of H .

In steps (2), (5), and (9), we need to obtain an analytic
expression for the basis of the kernel of a square symbolic
matrix of fixed kernel dimension in terms of its entries. This
can be done in many different ways, and often is possible by
inspection. One possible way was described in Sec. III C 3 in
connection to evaluating Ker(H (z) − ε1d ) for singular values

of ε. The above analysis does not hold when ε satisfies any of
the following conditions.

(i) det(H (z) − ε1) = 0 has one or more double roots. This
is equivalent to D(P (ε,z)) = 0, as discussed in Sec. IV A. This
is a polynomial equation in terms of ε, the roots of which yield
all required values of ε.

(ii) The coefficient ps0 (ε) of zs0 in P (ε,z) vanishes, or
equivalently, ε is a root of ps0 (ε) = 0.

(iii) Each entry of |u(ε,z)〉 vanishes. Such points are iden-
tified by solving simultaneously the equations 〈m|u(ε,z)〉 =
0, m = 1, . . . ,d and P (ε,z) = 0, Since a necessary and
sufficient condition for these polynomials (in z) to have a
common root is that their resultant vanishes [46], we find the
relevant values of ε by equating the pairwise resultants to zero.

(iv) {|u−
s (ε)〉, s = 1, . . . ,s0} or {|u+

s (ε)〉, s = 1, . . . ,s0} are
linearly dependent. To find such values of ε, one may form the
corresponding Gramian matrix and equate its determinant to
zero.

For all the values of ε thus identified, B(ε) is calculated by
following steps (4)–(10) in the scan-in-energy algorithm. To
summarize, this algebraic procedure achieves diagonalization
in analytic form: the upshot is a system of polynomial
equations, whose simultaneous roots are the eigenvalues, and
an analytic expression for the eigenvectors, with parametric
dependence on the eigenvalue.

V. ILLUSTRATIVE EXAMPLES

This section contains three paradigmatic examples illustrat-
ing the use of our generalized Bloch theorem, along with the
resulting algebraic procedure of diagonalization.

A. The impurity model revisited

Let us first reconsider the impurity model of Sec. III A. The
single-particle Hamiltonian is the corner-modified, banded
block-Toeplitz matrix H = HN + W , with

HN = −t(T + T †), and W = wP∂.

The boundary consists of two sites, so that P∂ = |1〉〈1| +
|N〉〈N |, for any N > 2. Likewise, R = 1 = d. The first step
in diagonalizing H is solving the bulk equation. Since the
reduced bulk Hamiltonian H (z) = −t(z + z−1),

P (ε,z) = z (H (z) − ε) = −t
(
z2 + ε

t
z + 1

)
. (39)

Thus every value of ε is regular and yields two (= the
number of boundary degrees of freedom) solutions of the bulk
equation. If ε �= ±2t , the solutions are |z�,1〉, with

z� = − ε

2t
+ (−1)�

√
ε2

4t2
− 1, � = 1,2,

with z1z2 = 1 and ε = −t(z1 + z2). The special values ε =
±2t for which HN yields only one of the two bulk solution have
an interpretation as the edges of the energy band. If ε = 2t ,
then H (z) yields only |z1 = −1,1〉, whereas if ε = −2t , it
yields only |z1 = 1,1〉. In order to obtain the missing bulk
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solution in each case, one must consider the effective Hamiltonian [Eq. (20)]

H2(z) = −t

[
z + z−1 1 − z−2

0 z + z−1

]
.

One may check that H2(z1) − ε1 ≡ 0 if ε = ±2t, z1 = ∓1. Thus the two linearly independent solutions of the bulk equation at
these energies are |z1 = 1,v〉, v = 1,2, if ε = −2t , and |z1 = −1,v〉, v = 1,2, if ε = 2t .

For the purpose of solving the boundary equation, and hence the full diagonalization problem, it is convenient to organize the
solutions of the bulk equation as

|ε〉 =

⎧⎪⎨⎪⎩
α1|z1,1〉 + α2|z2,1〉 if ε �= ±2t

α1|z1 = −1,1〉 + α2|z1 = −1,2〉 if ε = 2t

α1|z1 = 1,1〉 + α2|z1 = 1,2〉 if ε = −2t

.

For comparison with Sec. III A, one should think of z1 = eik and z2 = e−ik . Because the ansatz is naturally broken into three
pieces, so is the boundary matrix. For instance, when ε �= ±2t , direct calculation yields

B(ε) =
[

−tz2
1 + (w − ε)z1 −tz2

2 + (w − ε)z2

−tzN−1
1 + (w − ε)zN

1 −tzN−1
2 + (w − ε)zN

2

]
.

However, from Eq. (39), it follows that

− t
(
z� + z−1

�

) − ε = 0, � = 1,2. (40)

This allows a simpler form to be obtained, by effectively changing the argument of the boundary matrix from ε to z� (or k). The
complete final expression reads

B(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
t + wz1 t + wz2

(z1t + w)zN
1 (z2t + w)zN

2

]
if ε �= ±2t

[
t − w w

(−1)N−1(t − w) (−1)N (N (t − w) + t)

]
if ε = 2t

[
w + t w

w + t (w + t)N + t

]
if ε �= −2t

(41)

Notice that if ε approaches ±2t , the two distinct roots collide at
z1 = z2 = ∓1, and B(ε) becomes, trivially, a rank-one matrix,
signaling the discontinuous behavior anticipated in Sec. IV A.
Furthermore, it follows from Eq. (23) that the power-law
solution at ε = ±2t may be written as ∂z(|z1,1〉) = |z1,2〉. The
entries of the second column of the corresponding boundary
matrices satisfy 〈b|Hε |z1,2〉 = ∂z2〈b|Hε |z2,1〉|z2=z1 , where z1

is the double root. Thus the entries in the second column of
B(ε) for ε = ±2t may be obtained by differentiating with
respect to z2 the second column of B(ε) for other (generic)
values of ε, an observation we will use in other examples
as well (see, e.g., Sec. V B 2). We now analyze separately
different regimes (see also Fig. 4 for illustration).

1. Vanishing impurity potential

If w = 0, then B(ε = 2t) and B(ε = −2t) have a trivial
kernel; the exotic states |ε = ±2t〉 cannot possibly arise as
physical eigenvectors. For other energies, we find that the
kernel of the boundary matrix

B(ε) = t

[
1 1

zN+1
1 zN+1

2

]
,

is nontrivial only if zN+1
1 = zN+1

2 , in which case we can take
α1 = 1 and α2 = −1. From Eq. (39), it also follows that

z1z2 = 1. Hence there are 2N + 2 solutions:

z1 = z−1
2 = ei

πq

N+1 , q = −N − 1, − N, . . . ,N.

Of the associated 2N + 2 (un-normalized) ansatz
vectors

|εq〉 = |z1,1〉 − |z2,1〉 = 2i

N∑
j=1

sin

(
πq

N + 1
j

)
|j 〉,

two vanish identically (q = −N − 1 and q = 0). For q =
±1, . . . , ± N , it is immediate to check that |ε−q〉 = −|εq〉.
This means that the ansatz yields exactly N linearly indepen-
dent energy eigenvectors, of energy

εq = −t(z1 + z2) = −2t cos

(
πq

N + 1

)
, q = 1, . . . ,N.

This is precisely the result of Sec. III A, where the solutions
were labeled in terms of allowed quantum numbers k =
πq/(N + 1), q = 1, . . . ,N .

According to our general theory, the eigenspaces of H are in
one-to-one correspondence with the zeros of det B(ε). For this
system then, there should be at most N zeros. The reason we
find 2N + 2 zeros is due to the above-mentioned (quadratic)
change of argument in the boundary matrix from ε to k. Such
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FIG. 4. Imaginary part of det B(ε) for N = 10 as a function of the
dimensionless parameter ε/2t . Here, B(ε) is numerically evaluated
from the top expression in Eq. (41), ε �= ±2t . Its real part vanishes
identically in this range of energies. The impurity potential is w =
0.7 > |wN | for the solid blue curve, and w = 0.3 < |wN | for the
dashed red curve. In the regime w < wN (w > wN ), the system hosts
zero (two) edge modes, which is reflected in the number of zeros (N
and N − 2) of the respective curves, in the energy range −1 < ε < 1.
In both cases, the crossings through zero at ε = ±1 do not have
associated eigenstates of the Hamiltonian. The origin of such fictitious
zeros was discussed in Sec. IV A.

a change of variables is advantageous for analytic work, and
the associated redundancy is always rectified at the level of the
ansatz.

2. Power-law solutions

What would it take for |ε = ±2t〉 to become eigenvectors?
The kernel of B(ε = 2t) is nontrivial only if

w = t or w = t
N + 1

N − 1
.

These two values coincide up to corrections of order 1/N , but
remember that our analysis is exact for any N > 2. Similarly,
the kernel of B(ε = −2t) is nontrivial only if

w = −t or w = −t
N + 1

N − 1
.

Only one of these conditions can be met: for fixed w, either
|ε = 2t〉 is an energy eigenstate or |ε = −2t〉 is, but not both.
Let us look more closely at the state at the bottom of the
energy band. As we just noticed, this state will be a valid
eigenstate for either of the two values of w. Let us pick w ≡
wN = −t(N + 1)/(N − 1), since it yields the most interesting
ground state. Then,

B(ε = −2t) =
[
wN + t wN

wN + t wN

]
,

so that one can set α1 = 1/(wN + t), α2 = −1/wN , and

|ε = −2t〉 =
N∑

j=1

(
1

wN + t
− j

wN

)
|j 〉.

Notice that 〈j |ε = −2t〉 = −〈N − j + 1|ε = −2t〉; that is,
the power-law eigenvector of the impurity problem is an
eigenstate of inversion symmetry.

3. Strong impurity potential

Lastly, consider the regime where t � |w|, for large N .
Then, the values ε = ±2t are excluded from the physical
spectrum, and the eigenstates of the system can be determined
from det B(ε) = 0. We expect bound states of energy w

to leading order and well-localized at the edges, so that
0 < |z1| < 1 < |z2|, say, with z1 (z2) associated to the left
(right) edge. It is convenient to take advantage of this feature
and modify the original ansatz to

|ε〉 = α1|z1,1〉 + α2z
−N
2 |z2,1〉,

so that |z1,1〉 (z−N
2 |z2,1〉) peaks at the left (right) edge,

respectively. The boundary matrix becomes

B̃(ε) =
[

t + z1w (t + wz2)z−N
2

(z1t + w)zN
1 z2t + w

]
≈
[
t + wz1 0

0 z2t + w

]
,

since |z1|N ≈ 0 ≈ |z2|−N . Keeping in mind that z1z2 = 1, we
see that the kernel of B̃(ε) is two-dimensional for

z1 = − t

w
= z−1

2 , εb = −t(z1 + z2) = w − t2

w2
,

and otherwise trivial. The corresponding energy eigenstates
can be chosen to be

|εb,1〉 =
N∑

j=1

(
− t

w

)j

|j 〉, |εb,2〉 =
N∑

j=1

(
−w

t

)j−N

|j 〉.

Notice that |εb,2〉 is the mirror image of |εb,1〉, up to normal-
ization. The large-N approach to boundary modes exemplified
by the preceding calculation can be made systematic, as we
will further explain in Sec. VI A.

The remaining (N − 2) eigenstates consist of standing
waves. They can be computed from the original boundary
matrix, approximated for t � |w| as

B(ε �= εb) ≈ w

[
z1 z2

zN
1 zN

2

]
.

This boundary matrix has a nontrivial kernel only if

z1 = z−1
2 = ei πs

N−1 , s = 0, . . . ,2(N − 1) − 1,

in which case one may choose α1 = z2, α2 = −z1. Then,

|εs〉 =
N∑

j=1

(
z
j−1
1 − z

j−1
2

)|j 〉 = 2i

N−1∑
j=2

sin

(
πs(j − 1)

N − 1

)
|j 〉.

Moreover, |εs〉 = −|εN−1+s〉, s = 1, . . . ,N − 2. Hence, as
needed, we have obtained (N − 2) linearly independent
eigenvectors of energy εs = −2t cos[πs/(N − 1)]. The above
discussion is further illustrated in Fig. 4, where the determinant
of the exact boundary matrix is displayed as a function of
energy.
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FIG. 5. Two variants of the topological comb model. In (a),
thin (thick) black lines indicate intra-ladder (diagonal) hopping
with strength t0 (t1). Red ovals or circles show the support of the
zero-energy edge modes. In (b), upon shifting the lower chain by one
site to the right, t1 can be interpreted as direct inter-ladder hopping
strength. (c) Band structure for the parameter regime t1/t0 = 0.7. The
(black) dashed line represents zero energy, which lies in the band gap.

B. Engineering perfectly localized zero-energy modes:
a periodic Anderson model

Having illustrated the algebraic diagonalization method on
a simple impurity model, we illustrate next its usefulness
toward Hamiltonian engineering. In this section, we will
design from basic principles a “comb” model, see Fig. 5, with
the peculiar property of exhibiting a perfectly localized mode
at zero energy while all other modes are dispersive. The zero
mode is distributed over two sites on the same end of the comb,
with weights determined by a ratio of hopping amplitudes.

The starting point is the single-particle Hamiltonian H =
HN = T ⊗ h1 + T † ⊗ h

†
1. In order to have perfectly localized

eigenvectors at zero energy, the bulk equation must bear emer-
gent solutions. Therefore, we assume that h1 is noninvertible.
Let |u−〉 be in the kernel of h

†
1. Since T annihilates |j = 1〉,

H (|j = 1〉|u−〉) = (T ⊗ h1 + T † ⊗ h
†
1)(|j = 1〉|u−〉)

= T |j = 1〉h1|u−〉 + T †|j = 1〉h†
1|u−〉

= 0.

Similarly, if |u+〉 is in the kernel of h1, then |j = N〉|u+〉 is also
in the kernel of H . Therefore, |j = 1〉|u−〉 and |j = N〉|u+〉
are perfectly localized zero-energy modes.

A concrete example may be obtained by choosing

h1 = −
[
t0 0
t1 0

]
and h

†
1 = −

[
t0 t1
0 0

]
,

whose kernel is, respectively, spanned by

|u+〉 =
[

0
1

]
and |u−〉 =

[−t1
t0

]
.

This example corresponds to a many-body Hamiltonian of two
coupled fermionic chains, as illustrated in Fig. 5:

Ĥ = −
N−1∑
j=1

(t0c
†
j cj+1 + t1c

†
j+1fj + H.c.), (42)

where cj and fj denote the j th fermions in the upper and
lower chain, t0 denotes intra-ladder hopping in one of the
chains, and t1 is the diagonal hopping strength between the two

chains of the ladder, respectively. Physically, this “topological
comb model” is closely related to the one-dimensional periodic
Anderson model in its noninteracting (spinless) limit, see
Ref. [49].

1. Zero-energy modes

The perfectly localized zero-energy modes in this case are
|j = 1〉|u−〉 and |j = N〉|u+〉, that translate, after normaliza-
tion, into the fermionic operators

η
†
1 = 1√

t2
0 + t2

1

(t1c
†
1 − t0f

†
1 ), η

†
2 = f

†
N . (43)

The operator η
†
2 trivially describes a zero-energy mode, since

it corresponds to the last fermion on the lower chain, that
is decoupled from the rest. However, η

†
1 corresponds to a

nontrivial zero-energy mode, localized over the first sites of the
two chains. For large values of |t0/t1|, η

†
1 is localized mostly

on the f chain, whereas for small values it is localized mostly
on the c-chain.

Remarkably, such a nontrivial zero-energy mode is robust
against arbitrary fluctuations in hopping strengths, despite
the absence of a protecting chiral symmetry. Imagine that
in Eq. (42) the hopping strengths t0,j and t1,j are position-
dependent. Then, Ĥ may be written as Ĥ = −(t0,1c

†
1c2 +

t1,1c
†
2f1 + H.c.) + Ĝ, where Ĝ does not contain terms involv-

ing c1 and f1, so that [Ĝ,c1] = 0 = [Ĝ,f1]. Then it is easy to
verify that the expression for the zero-energy mode is obtained
from η

†
1 in Eq. (43) after substituting t0 
→ t0,1 and t1 
→ t1,1.

We conclude that the zero-energy edge mode is protected
by an “emergent symmetry,” which has a nontrivial action
only on the sites corresponding to j = 1. Likewise, assume
for concreteness that t0 = ±t1, and consider the interchain
perturbation described by

Ĥ1 ≡ μ

N∑
j=1

(c†j ± f
†
j )(cj ± fj ), μ ∈ R.

In this case, the corresponding single-particle Hamiltonian
becomes H = 1N ⊗ h0 + T ⊗ h1 + T † ⊗ h

†
1 with

h0 = μ

[
1 ±1

±1 1

]
.

Nevertheless, the zero-energy mode corresponding to |1〉|u−〉
is still an emergent solution for ε = 0, and can be verified to
satisfy the boundary equation as well. The topological nature
of this zero-energy mode is confirmed by its nontrivial Berry
phase [8] at half-filling. Under periodic BCs, the Hamiltonian
in momentum space is

Hk = −
[

2t0 cos k t1e
−ik

t1e
ik 0

]
,

leading to the following eigenvectors for the two bands:

|umk〉 =
⎡⎣−t0 cos k + (−1)m

√
t2
0 cos2 k + t2

1

−t1e
ik

⎤⎦, m = 1,2.
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Direct calculation shows that the Berry phase has the nontrivial
value π (mod 2π ), as long as t1 �= 0.

2. Complete closed-form solution

We now obtain a complete closed-form solution of the
eigenvalue problem corresponding to Eq. (42) (open BCs).
The reduced bulk Hamiltonian is

H (z) = −
[
t0(z + z−1) t1z

−1

t1z 0

]
,

with the associated polynomial (R = 1,d = 2)

P (ε,z) = z2[ε2 + εt0(z + z−1) − t2
1

]
. (44)

The model has two energy bands with a gap containing ε = 0,
and no chiral symmetry. Because H is real, this enforces
the symmetry z ↔ z−1 of the nonzero roots of P (ε,z) that
satisfy z1z2 = 1. For generic ε �= 0, there are two distinct
nonzero roots and, therefore, two extended bulk solutions.
The eigenvector of H (z) may be generically expressed as

|u(ε,z)〉 =
[

ε

−t1z

]
.

Using Eq. (24), the number of emergent bulk solutions is
2Rd − 2 = 2 = 2s0, one localized on each edge. As K−(ε) =
h
†
1 and K+(ε) = h1, such solutions are found from their

kernels, spanned by |u−〉 and |u+〉, independently of ε.

The boundary matrix

B(ε) =

⎡⎢⎢⎢⎣
t0ε − t2

1 z1 t0ε − t2
1 z2 0 εt1

0 0 0 −εt0

zN+1
1 t0ε zN+1

2 t0ε 0 0

zN+1
1 t1ε zN+1

2 t1ε −ε 0

⎤⎥⎥⎥⎦,

whose kernel is nontrivial only if

εt0
(
zN+1

1 − zN+1
2

) − t2
1 z1z2

(
zN

1 − zN
2

) = 0.

In this case, since z1z2 = 1, we may reduce this system to
one variable by substituting z2 = z−1

1 , which then yields the
polynomial equation

εt0z
2N+2
1 − t2

1 z2N+1
1 + t2

1 z1 − εt0 = 0. (45)

The algebraic system of equations (44) and (45) determine
the “dispersing” extended-support bulk modes of the system.
When these equations are both satisfied, the kernel of the
boundary matrix is spanned by

α = i

2

[
z
−(N+1)
1 − zN+1

1 00
]T

,

and the corresponding eigenvectors of H are given by

|ε〉 = iz
−(N+1)
1

2
|z1,1〉

[
ε

−t1z1

]
− izN+1

1

2

∣∣z−1
1 ,1

〉[ ε

−t1z
−1
1

]
,

which, upon substituting z1 = eik , can be recast as [50]

|ε〉 =
N∑

j=1

|j 〉
[
ε sin k(N + 1 − j )

−t1 sin k(N − j )

]
. (46)

To check whether |ε〉 in Eq. (46) indeed satisfies the
eigenvalue equation, notice that

〈j |H − ε1|ε〉 =

⎧⎪⎨⎪⎩
−ε〈1|ε〉 + h1〈2|ε〉 if j = 1

h
†
1〈j − 1|ε〉 + h1〈j + 1|ε〉 − ε〈j |ε〉 if 2 � j � N − 1

h
†
1〈N − 1|ε〉 − ε〈N |ε〉 if j = N

.

Using the expression for |ε〉, 〈N |H − ε1|ε〉 vanishes trivially,
while, for j = 1,

〈1|H − ε1|ε〉 = −
[
εt0 sin k(N − 1) + ε2 sin kN

0

]
,

which is seen to vanish from the relation

εt0 sin k(N − 1) + ε2 sin kN

= sin kN [ε2 − t2
1 + 2εt0 cos k]

+ [−εt0 sin k(N + 1) + t2
1 sin kN ].

The first term on the right-hand side is equal to P (ε,eik) = 0,
whereas the second term vanishes due to Eq. (45). Finally, for
2 � j � N − 1, we get

〈j |H − ε1|ε〉 = −
[

sin k(N + 1 − j )
[
ε2 − t2

1 + 2εt0 cos k
]

0

]
,

which equals zero, completing the argument.

Next, we find the values of ε for which Eq. (44) has
a double root. The discriminant of P (ε,z) is D(P (ε,z)) =
(ε2 − t2

1 )2 − 4ε2t2
0 , and vanishes for ε = −t0 ±

√
t2
0 + t2

1 and

ε = t0 ±
√

t2
0 + t2

1 , for which the corresponding double roots
are z1 = +1 and z1 = −1, respectively. In these cases, the
bulk equation may have power-law solutions. While one could
construct the reduced bulk Hamiltonian H2(z) to identify
these solutions, another quick way to proceed is suggested
by Eq. (23), as already remarked in Sec. V A. A power-law
solution may now be written as

∂z1 (|z1,1〉|u(ε,z1)〉)=|z1,2〉|u(ε,z1)〉+|z1,1〉∂z1 |u(ε,z1)〉,

where z1 is the double root corresponding to ε. The first column
of the new boundary matrix remains the same as the original
one, while its second column is determined from the derivative
of the second column of the original boundary matrix with
respect to z2, computed at z2 = z1. For ε = −t0 ±

√
t2
0 + t2

1 ,
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we have z1 = 1 and

B(ε) =

⎡⎢⎣t0ε − t2
1 −t2

1 0 εt1
0 0 0 −εt0

t0ε (N + 1)t0ε 0 0
t1ε (N + 1)t1ε −ε 0

⎤⎥⎦.

Some algebra reveals that det B(ε) �= 0, so that these values
of ε do not appear in the spectrum of H for any values
of parameters t0,t1. Similar analysis for ε = t0 ±

√
t2
0 + t2

1
yields the same conclusion. Therefore there are no power-law
solutions compatible with open BCs.

We now derive the perfectly localized zero-energy modes
described in Sec. V B 1. Notice that for ε = 0, the only possible
roots of P (ε,z) are z0 = 0, and from its degree it follows that
there are s0 = 2 emergent solutions on each edge. In this case,

K−(0) =
[
h
†
1 0

0 h
†
1

]
,

with its kernel spanned by

|u−
1 〉 = [|u−〉 0]T and |u−

2 〉 = [0 |u−〉]T
.

Similarly, the kernel of K+(0) is spanned by

|u+
1 〉 = [|u+〉 0]T and |u+

2 〉 = [0 |u+〉]T
.

Thus the ansatz for ε = 0 consists of all four perfectly localized
solutions [see Eqs. (28) and (29)]. The boundary matrix in this
case is

B(ε = 0) =

⎡⎢⎣ 0 0 0 t1t0
0 0 0 t2

1−t1 0 0 0
0 0 0 0

⎤⎥⎦,

which has a two-dimensional kernel, spanned by

α1 = [0 0 1 0]T, α2 = [0 1; 0 0]T.

The corresponding two zero-energy edge modes are then

|ε = 0,α1〉 = |1〉|u−〉, |ε = 0,α2〉 = |N〉|u+〉,
consistent with the results of Sec. V B 1. The eigenvector
|ε = 0,α1〉 has support only on the first site of the two
band chain. Since |N〉|u+〉 = |N〉[0 1]T, the eigenvector
|ε = 0,α2〉 represents the decoupled degree of freedom at the
right end of the chain, as shown in Figs. 5(a) and 5(b).

C. The Majorana chain

Kitaev’s Majorana chain [29] is a prototypical model of
p-wave topological superconductivity [51,52]. In terms of
spinless fermions, the relevant many-body Hamiltonian in the
absence of disorder and under open BCs reads

ĤK = −
N∑

j=1

μc
†
j cj −

N−1∑
j=1

(t c
†
j cj+1 − �c

†
j c

†
j+1 + H.c.),

where μ,t,� ∈ R denote the chemical potential, hopping
amplitude, and pairing strengths, respectively. This Hamil-
tonian, expressed in spin language via a Jordan-Wigner
transformation, describes the well-known anisotropic XY spin
chain, which has a long history in quantum magnetism,

including analysis of boundary effects for both open and
periodic BCs [36,53–55].

Expressed in the form of Eq. (9), the corresponding single-
particle Hamiltonian is

HN = 1N ⊗ h0 + (T ⊗ h1 + T † ⊗ h
†
1),

h0 =
[−μ 0

0 μ

]
, h1 =

[−t �

−� t

]
. (47)

Thus R = 1, d = 2dint = 2, and hR = h1 (hence the model)
is invertible in the generic parameter regime |t | �= |�|, for
arbitrary μ. We have already characterized in detail both the
invertible [19] and the noninvertible [20] regimes for generic,
regular energy values. While, given the importance of the
model, we will summarize some of these results in what
follows, our emphasis here will be on (i) addressing singular
energy values, in particular, by directly computing compactly
supported eigenstates of flat-band eigenvectors directly in real
space; (ii) uncovering the existence of zero-energy Majorana
modes with a power-law prefactor, emerging in an invertible
but nongeneric parameter regime recently discussed in the
context of transfer-matrix analysis [56].

1. The parameter regime |t| = |�|, μ �= 0

We briefly recall some key steps and results presented in
Sec. 5.2 of Ref. [20]. For concreteness, we assume t = �, but
a similar analysis may be repeated for the case t = −�. The
reduced bulk Hamiltonian in this case is

H (z) =
[−μ − t(z + z−1) t(z − z−1)

−t(z − z−1) μ + t(z + z−1)

]
,

with associated polynomial

P (ε,z) = −z2[2μt(z + z−1) + (μ2 + 4t2 − ε2)]. (48)

As in the topological comb example, for generic values of
ε, the above has two distinct nonzero roots z1 and z2, which
implies a two-dimensional space of extended bulk solutions
and one emergent solution on each edge. Let the two extended
solutions be labeled by z1 and z2 = z−1

1 , with |z1| � 1. Then,
we get

|u(ε,z�)〉 =
[

t
(
z� − z−1

�

)
ε + μ + t

(
z� + z−1

�

)], � = 1,2.

The two emergent solutions are obtained from the one-
dimensional kernels of the matrices K−(ε) = h

†
1 and K+(ε) =

h1, which are spanned by

|u−
1 〉 =

[
1

−1

]
and |u+

1 〉 =
[

1
1

]
,
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respectively. Following Eq. (35), the boundary matrix is

B(ε) =

⎡⎢⎢⎢⎢⎣
2t2z1 + t(ε + μ) 2t2z−1

1 + t(ε + μ) 0 −μ − ε

−2t2z1 + t(ε + μ) −2t2z−1
1 + t(ε + μ) 0 −μ + ε

zN+1
1

[ − 2t2z−1
1 − t(ε − μ)

]
z
−(N+1)
1 [−2t2z1 − t(ε − μ)] −μ − ε 0

zN+1
1

[ − 2t2z−1
1 − t(ε − μ)

]
z
−(N+1)
1 [−2t2z1 − t(ε − μ)] μ − ε 0

⎤⎥⎥⎥⎥⎦.

Our analysis in Ref. [20] shows that open BCs do not allow
any contributions from the emergent solutions in the energy
eigenstates, which are linear combinations of the two extended
solutions. The condition for ε to be an energy eigenvalue is
det B(ε) = 0, which simplifies to

2tz1 + ε + μ = ± z
(N+1)
1

(
2tz−1

1 + ε + μ
)
. (49)

Explicitly, as long as ε /∈ S ≡ {μ ± 2t, − μ ± 2t}, the corre-
sponding eigenstate is

|ε〉 = |z1,1〉|u(ε,z1)〉 ∓ zN+1
1

∣∣z−1
1 ,1

〉∣∣u(ε,z−1
1

)〉
.

The above equation is particularly interesting for zero
energy, since it dictates the necessary and sufficient conditions
for the existence of Majorana modes. For ε = 0, the root z1

takes values

z1 =
{−μ/2t if |μ| < 2|t |
−2t/μ if |μ| > 2|t | .

In the large-N limit, the factor zN+1
1 in the right hand-side of

Eq. (49) vanishes thanks to our choice of |z1| < 1. However,
the left hand-side vanishes only in the topologically nontrivial
regime characterized by |μ| < 2|t |, giving rise to a localized
Majorana excitation. The unnormalized Majorana wavefunc-
tion in this limit is characterized by an exact exponential decay
(see also Fig. 6), namely,

|ε = 0〉 =
(

4t2 − μ2

2μ

) ∞∑
j=1

z
j

1 |j 〉
[

1
−1

]
.

For the analysis of the nongeneric energy values in S, we
return to the finite system size N . For such ε, P (ε,z) has double
roots at z1 = 1 and z1 = −1, so that the bulk equation has
one power-law solution in each case [20]. These solutions are
compatible with the BCs for certain points in the parameter
space, determined by the condition 2tN + μ(N + 1) = 0.
Explicitly, the eigenstates corresponding to eigenvalues ε =
±(μ + 2t) are then

|ε = μ + 2t〉 =
N∑

j=1

|j 〉
[

1
−1 + 2j

N+1

]
,

|ε = −μ − 2t〉 =
N∑

j=1

|j 〉
[−1 + 2j

N+1
1

]
.

2. The parameter regime |t| = |�|, μ = 0

This regime, sometimes affectionately called the “sweet
spot,” is remarkable. Since the analytic continuation of the

Bloch Hamiltonian is

H (z) = t

[−(z + z−1) z − z−1

−(z − z−1) z + z−1

]
,

one finds that det(H (z) − ε12) = ε2 − 4t2. Thus the energies
ε = ±2t realize a flat band and its charge conjugate. From
the point of view of the generalized Bloch theorem, these
two energies are singular. According to Sec. III C 3, they
necessarily belong to the physical spectrum of the Kitaev
chain regardless of BCs, each yielding O(N ) corresponding
bulk-localized eigenvectors.

In order to construct such eigenvectors, note that for ε =
±2t , the adjugate of H (z) − ε1d is the matrix

adj(H (z) ∓ 2t1d ) = t

[
z + z−1 ∓ 2 −z + z−1

z − z−1 −z − z−1 ∓ 2

]
,

FIG. 6. Spatial behavior of Majorana wave functions for various
parameter regimes of the Kitaev chain under open BCs in the large-N
limit. The origin (blue diamond), μ = 0,� = 0, corresponds to a
metal at half-filling. The region shaded in black pattern is the trivial
regime, which does not host Majoranas, and is separated from the
nontrivial phase by solid black lines indicating the critical points.
The interior of the circle of oscillations [Eq. (50)] (shaded in light
blue) hosts Majoranas whose wave function decays with oscillations,
whereas the region outside show a behavior similar to overdamped
decay of a classical harmonic oscillator. On the circle, the wave
function decays exponentially with a power-law prefactor. The “sweet
spots” (red dots) host perfectly localized Majorana modes on the edge.
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which immediately provides two kernel vectors

|v1,±(z)〉 =
[

1 + z−2 ± 2z−1

1 − z−2

]
,

|v2,±(z)〉 =
[ −1 + z−2

−1 − z−2 ± 2z−1

]
.

In this case, we see that the kernel vectors contain polynomials
in z−1 of degree 2 < δ0 = (d − 1)2Rd = 4 [recall Eq. (30)].
For a suitable range of lattice coordinates js, the compactly
supported sequences

�j1,± = |j 〉
[

1
1

]
± 2|j + 1〉

[
1
0

]
+ |j + 2〉

[
1

−1

]
,

�j2,± = −|j 〉
[

1
1

]
± 2|j + 1〉

[
0
1

]
+ |j + 2〉

[
1

−1

]
,

yield nonzero solutions |�jμ,±〉 = P1,N�jμ,±, μ = 1,2, of
the bulk equation. However, it is not a priori clear how many
of these are linearly independent. For example, it is immediate
to check that

�j1,± + �j2,± = ∓(�j+1,2,± − �j+1,1,±).

In this case, a basis of compactly supported solutions can be
chosen from the states

|�̃0〉 = |1〉
[−1

1

]
if j = 0,

|�̃j,±〉 = |j 〉
[

1
1

]
± |j + 1〉

[
1

−1

]
if 1 � j � N − 1,

|�̃N 〉 = |N〉
[

1
1

]
if j = N,

Out of these N + 1 states, the ones corresponding to j =
1, . . . ,N − 1 can be immediately checked to be eigenstates
of energy ε ± 2t [57]. In contrast, |�̃0〉 and |�̃N 〉 are not
eigenstates: they do not satisfy the boundary equation trivially
like other states localized in the bulk. We have thus found
2N − 2 eigenstates of the Hamiltonian, N − 1 for each band
ε = ±2t .

The two missing eigenstates appear at ε = 0, which is a
regular value of energy and so it is controlled by the generalized
Bloch theorem. For ε = 0, there are four emergent solutions
(two on each edge), out of which only

|ψ−〉 = |1〉
[

1
−1

]
= −|�̃0〉 and |ψ+〉 = |N〉

[
1
1

]
= |�̃N 〉

are compatible with the BCs. Since these solutions are
perfectly localized on the two edges, they exist for any N > 2
(see also Fig. 6). Interestingly, the above states also appeared as
solutions of the bulk equation at the singular energies ε = ±2t ,
and failed to satisfy the BCs at those values of energy. We do
not know whether this fact is just a coincidence or has some
deeper significance.

3. Majorana wave-function oscillations in the regime t �= �

Recently, it was shown [56] that, inside the so-called “circle
of oscillations,” namely, the parameter regime(

μ

2t

)2

+
(

�

t

)2

= 1, (50)

the Majorana wave-function oscillates while decaying in
space. Such oscillations in Majorana wave function are not
observed outside this circle. This observation has conse-
quences on the fermionic parity of the ground state [25].
Because of duality, spin excitations in the XY chain show
a similar behavior in the corresponding parameter regime [55]
B2

z = t2 − �2 = JxJy. We now analyze this phenomenon by
leveraging the analysis of Sec. III. For simplicity, we address
directly the large-N limit.

Clearly, whether a wave function oscillates in space depends
on the nature of the extended bulk solutions that contribute
to the wave function. In particular, let |ψ〉 = |z,1〉|u〉 be
one such bulk solution. For a wave function to be decaying
asymptotically, we must have |z| < 1. Further, if z ∈ R, then
|ψj 〉 = z|ψj−1〉 implies that the part of the wave function
associated to this bulk solution simply decays exponentially
without any oscillations. On the other hand, if z ≡ |z|eiφ with
nonzero phase, then a linear combination of vectors

|z,1〉 + |z∗,1〉 =
N∑

j=1

2|z|j cos(φj )|j 〉,

can show oscillatory behavior while decaying. This is precisely
the phenomenon observed in this case. When t �= �, the
reduced bulk Hamiltonian is

H (z) =
[−μ − t(z + z−1) �(z − z−1)

−�(z − z−1) μ + t(z + z−1)

]
,

with associated characteristic equation

(z + z−1)2(t2 − �2) + (z + z−1)(2μt) + (μ2 + 4�2 − ε2) = 0.

(51)

For ε = 0, the above admits four distinct roots in general,
out of which two lie inside the unit circle and contribute
to the Majorana mode on the left edge. Whether any of
these two roots is complex decides if the Majorana wave
function oscillates for those parameter values. Notice that
the characteristic equation is quadratic in the variable ω =
z + z−1. We get the two values of ω to be

ω± = −μt ± �
√

μ2 − 4(t2 − �2)

(t2 − �2)
.

Likewise, notice that for μ2 < 4(t2 − �2), we get both ω+ and
ω− to be complex, which necessarily means that both z1,z2

inside the unit circle are also necessarily complex. Further,
the symmetry of Eq. (51) forces that z2 = z∗

1. This leads
to the oscillatory behavior of the Majorana wave function
in the regime μ2 < 4(t2 − �2), that is, inside the circle
defined by Eq. (50). Thus the spatial behavior of Majorana
excitations in this regime is formally similar to the solution
of an underdamped classical harmonic oscillator (see Fig. 6).
Outside the circle, the roots ω± are real. With some algebra, it
can be shown that |ω±| > 2 in this regime, which also means
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that both z1,z2 are real roots. This is why oscillations are
not observed in this parameter regime, in agreement with the
results of Ref. [56]. The Majorana wave function in this case
resembles qualitatively the solution of a overdamped harmonic
oscillator.

The situation when the parameters lie precisely on the circle
is particularly interesting. In this case, we find that ω+ = ω− ≡
ω0 = −4t/μ. Let us assume t/� > 0 for simplicity. It then
follows that z1 = z2 = −2(t − �)/μ, which rightly indicates
appearance of a power-law solution. Let us specifically analyze
the case of open BCs on one end (for N � 1 as stated). One
of the two decaying bulk solutions is |ψ1,1〉 = |z1,1〉|u(z1)〉,
where

|u(z)〉 =
[

�(z − z−1)
μ + t(z + z−1)

]
.

The other bulk solution is obtained from

|ψ1,2〉 = ∂z1 |ψ11〉

= z−1
1 |z1,1〉

[
�
(
z1 + z−1

1

)
t
(
z1 − z−1

1

) ] + |z1,2〉
[

�
(
z1 − z−1

1

)
μ + t

(
z1 + z−1

1

)].
The relevant boundary matrix,

B(ε = 0) ≡
[
B11(z1) B12(z1)
B21(z1) B22(z1)

]
,

may be computed by relating its second column to the partial
derivative of the first column at z = z1 as also done previously.
Explicitly,[

B11(z1)
B21(z1)

]
=
[

(2tz1 + μ)�
−μt − z1(t2 + �2) − z−1

1 (t2 − �2)

]
,[

B12(z1)
B22(z1)

]
=
[

2t�

−(t2 + �2) + z−2
1 (t2 − �2)

]
,

where we also used Eq. (51) for simplification. Some algebra
reveals that B(0) has a one-dimensional kernel, spanned by
the vector

α = [−μt2�(t − �)]T.

This leads to the power-law Majorana wave function

|ε = 0〉 = −μt |ψ1,1〉 + 2�(t − �) |ψ1,2〉

= 8�2(t − �)

μ

∞∑
j=1

jz
j−1
1 |j 〉

[
1

−1

]
, (52)

which decays exponentially with a linear prefactor (see Fig. 6).
In principle, the existence of such exotic Majorana modes
could be probed in proposed Kitaev-chain realizations based
on linear quantum dot arrays [58], which are expected to afford
tunable control on all parameters.

VI. AN INDICATOR OF THE BULK-BOUNDARY
CORRESPONDENCE

As stated in Introduction, a main motivation behind the
development of the generalized Bloch theorem is to achieve
a more rigorous understanding of the bulk-boundary corre-
spondence. In this section, we take a first step by presenting
an indicator of bulk-boundary correspondence based on the

FIG. 7. Ring (a) vs bridge (b) configurations of a chain Hamilto-
nian, d = 1 = R. The solid (black) lines denote nearest-neighbor bulk
hopping, whereas the thick (red) line indicates hopping between the
left (j = N ) and the right (j = 1) boundary (shaded gray rectangle).
The bound states of (a) converge to the ones of (b) in the large-N
limit.

results from Sec. III, generalizing the original definition in
Ref. [19]. The indicator is built out of the boundary matrix
and, therefore, encodes information from the bulk and the BCs.
We will then consider an application of the indicator to study
the Josephson response of an s-wave two-band topological
superconductor [30,31]. Interestingly, and to the best of our
knowledge, this system provides the first example of an
unconventional (fractional) Josephson effect not accompanied
by a fermionic parity switch. We explain the physical reasons
behind such a result.

A. Derivation of the indicator

For a system of size N , the existence of localized modes at
energy ε reflects into a nontrivial kernel of the corresponding
boundary matrix, which we now denote by BN (ε) in order
to emphasize the dependence on N and ε. As we increase
N without changing the BCs, the energy ε of the bound
modes (that is, modes that remain asymptotically normaliz-
able) attains a limiting value. For instance, in topologically
nontrivial, particle-hole or chiral- symmetric systems under
hard-wall BCs, the mid-gap bound modes attain zero energy
in the large-N limit. This convergence of bound modes and
their energies is nicely captured by a modified version of the
boundary matrix in the limit N � 1, which we now construct.

Consider a system of N sites in a ring topology, as shown
in Fig. 7(a), so as to allow nonzero contribution from the
matrix wbb′ in the BCs described by W [see Eq. (4)]. Let
us assume that the system hosts one or more bound modes
near the junction formed by the two ends, which converge in
the large-N limit to energy ε. The resulting modes are the
bound modes of a bridge configuration that extends to infinity
on both sides, and where the boundary region is shown in
Fig. 7(b). For each N , we may express the bound eigenstate
as in Eq. (32). Such bound states have contributions only from
those bulk solutions that are normalizable for N � 1. The
extended-support solutions corresponding to |z�| = 1 are not
normalizable, and therefore must drop out from the ansatz.
Further, while the amplitude of those corresponding to |z�| > 1
blows up near j = N , they remain normalizable in the limit.
This becomes apparent once we rescale such solutions by z−N

� .
These rescaled solutions almost vanish at j = 1 for large N .
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Based on these considerations, we propose a modified ansatz
for finite N ,

|ε,α〉N ≡
∑

|z�|<1

s�∑
s=1

α�s |ψ�s〉 +
s−∑

s=1

α−
s |ψ−

s 〉

+
∑

|z�|>1

s�∑
s=1

α�sz�
−N |ψ�s〉 +

s+∑
s=1

α+
s |ψ+

s 〉 (53)

expressed in terms of up most 2Rd amplitudes.
The above ansatz may be used to compute a corresponding

boundary matrix BN (ε) in the same way as described in
Sec. III D. Note that BN (ε) may not capture the bound
modes appearing at finite N since, by construction, it does
not incorporate contributions from extended support solutions
corresponding to |z�| = 1. However, B∞(ε) ≡ limN→∞ BN (ε)
is now well-defined, and describes accurately the presence and
exact form of bound modes in the limit. The condition for a
nontrivial kernel becomes det[B†

N (ε)BN (ε)] = 0. Based on this
condition, we define the quantity

Dε ≡ log10{det[B∞(ε)†B∞(ε)]}, (54)

as an indicator of bulk-boundary correspondence. This cap-
tures precisely the interplay between the bulk properties and
the BCs that may lead to the emergence of bound modes,
in the sense that, as we parametrically change either or both
of the reduced bulk Hamiltonian and the BCs, Dε shows a
singularity at (and only at) the parameter value for which the
system hosts bound modes at energy ε. Unlike most other
topological indicators that are derived from bulk properties
(i.e., in a torus topology), our indicator is constructed from
a boundary matrix, that incorporates the relevant properties
of the bulk. In cases where the bound modes are protected
by a symmetry, this allows for the indicator to be computed
for arbitrary BCs that respect the symmetry, paving the way
to characterizing the robustness of the bound modes against
classes of boundary perturbations.

An interesting situation is that of wbb′ = 0, in which case
the large-N limit consists of two disjoint semi-infinite chains.
Then B∞(ε) is block diagonal,

B∞(ε) =
[
B−

∞(ε) 0
0 B+

∞(ε)

]
,

where B−
∞ (B+

∞) may be interpreted as the boundary matrix
of a semi-infinite chain, describing the edge modes at the left
(right) edge, respectively.

While the indicator Dε of Eq. (54) signals the presence of
bound states, it does not convey information about the degen-
eracy of that energy level, which is nevertheless contained in
the boundary matrix. Therefore it is often useful to also study
the behavior of the degeneracy indicator as a function of ε:

Kε ≡ dim Ker[B∞(ε)].

In practice, the dimension of the kernel is obtained by counting
the number of zero singular values of B∞(ε).

Remark. With reference to the discussion in Sec. IV A,
recall that in numerical computations, B∞(ε) signals fictitious
roots whenever the bulk equation has a power-law solution. In
such cases, we once again remedy the issue by resorting to the

Gramian. Then the corrected value of the indicator is given by

Dε = ln

{
det[B∞(ε)†B∞(ε)]

detG(ε)

}
.

Thus the correct degeneracy of the energy is obtained by
counting zero (within numerical accuracy) singular values of
the matrix B̃∞(ε) = B∞(ε)G(ε)−1/2.

B. Application: an s-wave topological superconducting wire

The usefulness of the proposed indicator of bulk-boundary
correspondence was demonstrated in the context of character-
izing the Josephson response of a two-band time-reversal in-
variant s-wave topological superconducting wire in Ref. [19].
While the calculations reported there employed a simplified
ansatz, including only extended-support solutions of the bulk
equation, we now validate the analysis by using the complete
ansatz given in Eqs. (32) and (53), and further analyze and
interpret our results in terms of fermionic parity switches.

The relevant s-wave, spin-singlet, two-band supercon-
ductor model [30,31] derives its topological nature from
the interplay between a Dimmock-type intraband spin-orbit
coupling and interband hybridization terms. Due to the spin
degree of freedom in each of the two relevant orbitals, say, c

and d, the Nambu basis corresponding to an atom at position
j consists of eight fermionic operators, that we write as the
vector

�̂
†
j = [c†j,↑c

†
j,↓d

†
j,↑d

†
j,↓cj,↑cj,↓dj,↑dj,↓].

In this basis, the single-particle Hamiltonian under open BCs
is given by

HN = 1N ⊗ h0 + (T ⊗ h1 + T † ⊗ h
†
1),

h0 =

⎡⎢⎢⎣
−μ ucd −i�σy 0
ucd −μ 0 i�σy

i�σy 0 μ −ucd

0 −i�σy −ucd μ

⎤⎥⎥⎦
= −μτz + ucdτzνx + �τyνzσy,

h1 =

⎡⎢⎢⎣
iλσx −t 0 0
−t −iλσx 0 0
0 0 iλσx t

0 0 t −iλσx

⎤⎥⎥⎦
= −tτzνx + iλνzσx,

where the real parameters μ,ucd,t,λ,� denote the chemical
potential, the interband hybridization, hopping, spin-orbit
coupling and pairing potential strengths, respectively, and
τα,να,σα , α = {x,y,z}, are Pauli matrices in Nambu, orbital
and spin spaces.

The topological properties of the above Hamiltonian were
analyzed in Ref. [31]. The BdG Hamiltonian is time-reversal
invariant, which places it in the symmetry class DIII. The
topological phases may thus be distinguished by aZ2 invariant,
given by the parity of the sum of the Berry phases for the
two occupied negative bands in one of the Kramers’ sectors
only [31]. For open BCs and for nonvanishing pairing, the
system in its trivial phases was found to host zero or two pairs
of Majoranas on each edge, in contrast to the topologically
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nontrivial phase supporting one pair of Majoranas per edge.
Similar to the two-dimensional version of the model, one may
see that the existence of such Majorana modes is protected
by a nontrivial chiral symmetry, of the form τyσz. The
single-particle Hamiltonian HN for open BCs can be exactly
diagonalized as described in Sec. IV. In the large-N limit, the
boundary matrix B∞(ε = 0) calculated by using the ansatz
in Eq. (53) yields degeneracy K0 = 0,4,8 in the no-pair,
one-pair, and two-pair phases, respectively, verifying the
bulk-boundary correspondence previously established through
numerical diagonalization.

1. Josephson response

In the Josephson ring configuration considered in Ref. [19],
the first and last sites of the open chain are coupled by the same
hopping and spin-orbit terms as in the rest of the chain, only
weaker by a factor of 1/w. A flux φ is introduced between
the two ends via this weak link. In the large-N limit, this link
acts as a junction, with the corresponding tunneling term in
the many-body Hamiltonian being given by

ĤT (φ) = �̂
†
N (wh1Uφ)�̂1 + H.c., Uφ =

[
eiφ/214 0

0 e−iφ/214

]
.

The total Hamiltonian is then Ĥ (φ) = ĤN + ĤT (φ). It was
demonstrated [19] that the Hamiltonian displays fractional
Josephson effect in the topologically nontrivial phase, as
inferred from its 4π -periodic many-body ground state energy
[Fig. 8(a)], with the phenomenon being observed only if
the open-chain Hamiltonian correspondingly hosts an odd
number of Majorana pairs per edge. The physics behind the
4π -periodicity was explained in terms of the crossing of a
positive and a negative single-particle energy level happening
at precisely zero energy as a function of flux φ.

The singular behavior, at φ = π,3π , of the indicator
Dε=0(φ) computed using both the simplified ansatz as in
Ref. [19] and the complete ansatz of Eq. (53) is shown in
Fig. 8(c). The qualitative features are unchanged, indicating
that in the large-N limit the bound modes formed near the
junction are linear combinations only of extended-support
solutions, with no contributions from emergent ones. As seen
in Fig. 8(d), at both φ = π and φ = 3π , the junction hosts a
total of four Majoranas.

2. Parity switch and decoupling transformation

Despite the 4π -periodic Josephson response witnessed
in the topologically nontrivial phase, it turns out that the
ground state fermionic parity remains unchanged for all
flux values. In the nontrivial regime of interest, we may
focus on the three low-lying energy levels. Specifically, for
values of φ < π , let |�(φ)〉 denote the many-body ground
state, with energy E0(φ), as in Fig. 8(a). As we will
show, there are two degenerate quasiparticle excitations, say,
η1(φ),η2(φ), with small positive energy ε0(φ). This results in a
twofold degenerate first excited many-body state, with energy
E1(φ) = E0(φ) + ε0(φ), and a corresponding eigenspace is
spanned by {η†

1(φ)|�(φ)〉,η†
2(φ)|�(φ)〉}. The second excited

state, η
†
1(φ)η†

2(φ)|�(φ)〉, is not degenerate and has energy
E2(φ) = E0(φ) + 2ε0(φ). Note that this state has the same

FIG. 8. (a) Low-lying many-body energy eigenvalues in the
Josephson ring configuration, as a function of flux φ. The energy level
E1(φ) is doubly degenerate. (b) Energy of the bound mode and its
antiparticle excitation. The shaded (blue) area denotes the continuum
of energy states in the bulk. (c) Comparison of the indicator defined
in Ref. [19] (dashed red line) and the generalized indicator of Eq. (54)
(solid red line) in the topologically nontrivial phase. (d) Degeneracy
of the zero-energy level inferred from the dimension of the kernel of
B∞(ε = 0,φ). The parameters are w = 0.2, μ = 0, ucd = t = λ = 1,
� = 2, and N = 60 in (a) and (b).

(even) fermionic parity as the ground state. At φ = π , the
quasiparticle excitation has exactly zero energy, ε0(π ) = 0,
causing all three energy levels to become degenerate. As φ

crosses π, ε0(φ) becomes negative. Therefore, for π < φ <

3π , we find that E2(φ) < E1(φ) < E0(φ). The continuation of
the state η

†
1(φ)η†

2(φ)|�(φ)〉 with energy E2(φ) thus becomes
the new ground state, whereas the continuation of the original
ground state |�(φ)〉 now attains the maximum energy among
these three levels. Since the new ground state has the same
parity as the original one, the system shows no parity switch,
with a similar analysis holding for the crossover at φ = 3π .
We conclude that the absence of a fermionic parity switch
originates from the twofold degeneracy of the single-particle
energy levels.

While the system under open BCs is time-reversal invariant,
away from φ = 0,2π this symmetry is broken by the tunneling
term ĤT (φ). Therefore Kramer’s theorem is not responsible in
general for the degeneracy in the single-particle levels. Instead,
we now explain the physical origin of this degeneracy in terms
of a “decoupling transformation” in real space, thanks to which
the system in the Josephson bridge configuration is mapped
into two decoupled systems in the same configuration, each
with half the number of internal degrees of freedom as the
original one. Although each of these smaller systems does
undergo a parity switch, the total parity being the sum of
individual parities remains unchanged.
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Observe that the Hamiltonian Ĥ (φ) is invariant under the
unitary symmetries Ŝ1 and Ŝ2, defined by the action

Ŝ1 : c↑(d↑) 
→ d↑(c↑), c↓(d↓) 
→ −d↓(−c↓),

Ŝ2 : c↑(d↑) 
→ ic↓(id↓), c↓(d↓) 
→ ic↑(id↑).

We can use the eigenbasis of Ŝ1 to decouple Ĥ (φ) into
two independent Hamiltonians. Consider, for each site j =
1, . . . ,N , the canonical transformation

ajσ ≡ cjσ + djσ√
2

, bjσ ≡ cjσ − djσ√
2

, σ = ↑,↓, (55)

and let Û1 be the unitary change of basis defined by Û1 : �̂
†
j 
→

[ �̂
†
+,j �̂

†
−,j ], where

�̂
†
+,j ≡ [a†

j,↑ b
†
j,↓ aj,↑ bj,↓],

�̂
†
−,j ≡ [a†

j,↓ − b
†
j,↑ aj,↓ − bj,↑].

By letting �̂
†
± ≡ [�̂†

±,1 . . . �̂
†
±,N ], the action of Û1 then

decouples Ĥ (φ) according to

Ĥ (φ) ≡ Ĥ+(φ) + Ĥ−(φ) = �̂
†
+H+(φ)�̂+ + �̂

†
−H−(φ)�̂−,

where Ĥ±(φ) describes two smaller systems, each in a Joseph-
son ring configuration, with hopping and pairing amplitudes
given by

h±,0 =
[−μ + ucd σ̃z −i�σ̃y

i�σ̃y μ − ucd σ̃z

]
= −μτz + ucdτzσ̃z + �τyσ̃y,

h±,1 =
[±iλσ̃x − t σ̃z 0

0 ±iλσ̃x + t σ̃z

]
= ±iλσ̃x − tτzσ̃z,

with σ̃α denoting Pauli matrices in the modified spin basis. The
decoupling transformation in Eq. (55) is close in spirit to the
one already employed under periodic BCs [30,31]. Indeed, it
is worth remarking that �̂+,j and �̂−,j are still time-reversals
of each other, in the sense that T �̂

†
+,jT −1 = �̂

†
−,j , with T

being the antiunitary time-reversal operator for the system.
Because of the tunneling term, however, the two decoupled
(commuting) Hamiltonians Ĥ±(φ) are related by the relation
T Ĥ+(φ)T −1 = Ĥ−(4π − φ).

It now remains to show that Ĥ±(φ) have identical single-
particle energy spectrum, and therefore lead to the desired
degeneracy in the energy levels of Ĥ (φ). This follows
by examining the symmetries of the single-particle BdG
Hamiltonian H (φ). Corresponding to Ŝ1, H (φ) has a unitary
symmetry S1 = 1N ⊗ νxσz, and thus gets block-diagonalized
into two blocks, H±(φ), upon the action of U1. Similarly,
corresponding to Ŝ2,H (φ) has another unitary symmetry S2 =
i1N ⊗ τzσx . Further, S1 and S2 satisfy the anticommutation
relation {S1,S2} = 0, which is responsible for the doubly
degenerate eigenvalue spectrum [59]. In fact, one can also
verify directly that Ĥ+(φ) and Ĥ−(φ) satisfy Ŝ2Ĥ+(φ)Ŝ†

2 =
Ĥ−(φ). This explains the origin of the double degeneracy of
each single-particle energy level, and hence of the absence of
fermionic parity switch.

VII. TRANSFER MATRIX IN THE LIGHT OF THE
GENERALIZED BLOCH THEOREM

Starting with the work in Refs. [60,61], the transfer matrix
has remained the tool of choice for analytical investigations
of the bulk-boundary correspondence [33,62–64] including,
as mentioned, recent studies of Majorana wave functions in
both clean and disordered Kitaev wires [56]. In this section,
we revisit the transfer matrix approach to band-structure
determination in the light of our generalized Bloch theorem. In
particular, we show how, in situations where the transfer matrix
fails to be diagonalizable, our analysis makes it possible to give
physical meaning to the generalized eigenvectors by relating
them to the power-law solutions discussed in Sec. III C.

A. Basics of the standard transfer matrix method

While our conclusions apply more generally to arbitrary
finite-range clean models, for concreteness we refer in our
discussion to the simplest setting where both approaches are
applicable, namely, a one-dimensional chain with nearest-
neighbor hopping. We further focus on open (hard-wall) BCs,
as most commonly employed in transfer-matrix studies. The
relevant single-particle Hamiltonian HN is then a tridiagonal
block-Toeplitz matrix, with entries h

†
1, h0, and h1 along the

three diagonals. Generically, h1 is assumed to be invertible.
The starting point of the method entails obtaining the recur-
rence relation between eigenvector components. Specifically,
if |ε〉 = ∑N

j=1 |j 〉|ψj 〉 is an eigenvector of H with energy
eigenvalue ε relative to the usual Hilbert-space factorization
H = HL ⊗ HI , the components |ψj 〉 satisfy the recurrence
relation

h
†
1|ψj−1〉+ (h0 − ε1)|ψj 〉+ h1|ψj+1〉 = 0, 2 � j � N −1.

(56)

In terms of the 2d × 2d transfer matrix

t(ε) ≡
[

0 1d

−h−1
1 h

†
1 −h−1

1 (h0 − ε1)

]
, (57)

the above recurrence relation may be reformulated as

Pj,j+1|ε〉 = t(ε)Pj−1,j |ε〉, 2 � j � N − 1, (58)

where we have written P j,j+1|ε〉 ≡ [|ψj 〉|ψj+1〉]T. Thus

Pj+1,j+2|ε〉 = t(ε)j P1,2|ε〉, 0 � j � N − 2, (59)

which can be leveraged for obtaining the complete set of
eigenvectors of HN . We can define |ψ0〉,|ψN+1〉 by using the
relations

P1,2|ε〉 = t(ε)P0,1|ε〉, PN,N+1|ε〉 = t(ε)PN−1,N |ε〉,
so that PN,N+1|ε〉 = T (ε)P0,1|ε〉 in terms of the matrix
T (ε) ≡ t(ε)N . Hard-wall BCs enforce |ψ0〉 = 0 = |ψN+1〉.
Substituting these boundary values leads to[|ψN 〉

0

]
=
[
T11(ε) T12(ε)
T21(ε) T22(ε)

][
0

|ψ1〉
]
,

which has a nontrivial solution if and only if

det T22(ε) = 0. (60)
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Therefore all values of ε that obey the above condition are
eigenvalues of HN . For each eigenvalue, the corresponding
|ψ1〉 is obtained as the kernel of T22(ε). In practice, T (ε)
is calculated by first diagonalizing t(ε) by a similarity
transformation, and then exponentiating the eigenvalues along
its diagonal [32].

As can be appreciated from this example, the standard
version of the transfer matrix method relies on invertibility of
certain matrices, although “inversion-free” [65,66] or partially
inversion-free [33] modifications have also been suggested.
In the standard case, the only prerequisite for constructing
t(ε) at each step is the banded structure of the single-particle
Hamiltonian and, most importantly, the resulting matrix T (ε)
is assumed to be diagonalizable.

B. Connections to the generalized Bloch theorem

In order to relate the above analysis to the generalized
Bloch formalism, the key observation is to note that the set of
equations in Eq. (56) constitute the complete bulk equation, as
described in Sec. III B. Consequently, Eq. (58) is satisfied by
any bulk solution |ψ〉 ∈ M1,N , where M1,N denotes the bulk
solution space as usual. It is insightful to recast Eq. (59) in the
form

t(ε)j P1,2|ψ〉 = P1,2 (T )j |ψ〉, 0 � j � N − 2,

suggesting that the action of the transfer matrix in the bulk
solution space is closely related to the one of the left shift
T . When restricted to M1,N , the above yields the following
operator identity:

(t(ε) − z1d )j P1,2|M1,N
= P1,2(T − z1N )j |M1,N

, (61)

with z ∈ C. This relation may be used to establish a direct
connection between the basis of the bulk solution space
described in the generalized Bloch theorem, and the Jordan
structure of the transfer matrix. In the absence of power-law
solutions, each bulk solution |ψ�s〉 is annihilated by

P1,2(T − z�1N ) = P1,2[PB(T − z�1N )].

In such cases, Eq. (61) reads

(t(ε) − z�1d )P1,2|ψ�s〉 = P1,2(T − z�1N )|ψ�s〉 = 0,

implying that P1,2|ψ�s〉 is an eigenvector of t(ε) with
eigenvalue z�. Naturally, a Bloch wave-like bulk solution
corresponds to an eigenvalue on the unit circle, whereas an
exponential solution corresponds to one inside or outside the
unit circle, in agreement with the literature [32].

While, as remarked, the transfer matrix is typically assumed
to be diagonalizable, we now show that generalized eigenvec-
tors of t(ε) are physically meaningful, and in fact related to
the power-law solutions of the bulk equation. Let ε be a value
of energy for which power-law solutions are present. We can
then generalize our earlier calculation for the eigenvectors of
the transfer matrix by noting that each |ψ�s〉 is annihilated by
P1,2(T − z�1N )s� , where s� is the multiplicity of the root z�

as usual. Then, a similar calculation reveals that P1,2|ψ�s〉 is
a generalized eigenvector of t(ε), satisfying

(t(ε) − z�1d )s� P1,2|ψ�s〉 = 0.

Thus generalized eigenvectors of the transfer matrix are
projections of solutions with a power-law prefactor. In some
nongeneric scenarios, they indeed contribute to the energy
eigenstates, as we discussed [67].

This analysis is vividly exemplified by the parameter
regime corresponding to the circle of oscillations in the
Majorana chain, Eq. (50), which we found to be associated
to a zero-energy power-law Majorana wave function. Ac-
cordingly, we expect the corresponding transfer matrix to
possess generalized eigenvectors of rank two, failing to be
diagonalizable. Let us verify this explicitly. Except for the
points μ = 0,�/t = ±1 in this regime, the matrix h1 in
Eq. (47) is invertible. The transfer matrix is then

t(ε = 0)

= 1

μ2

⎡⎢⎢⎣
0 0 μ2 0
0 0 0 μ2

−4(t2 + �2) −8t� −4tμ −4�μ

−8t� −4(t2 + �2) −4�μ −4tμ

⎤⎥⎥⎦,

where μ, t , and � satisfy Eq. (50). It can be checked
that t(ε = 0) has only two eigenvalues, namely, z� =
−2(t + (−1)��)/μ, � = 1,2, each of algebraic multiplicity
two, and that both of these eigenvalues have only one
eigenvector, given by

P1,2|z�,1〉|u�〉 =

⎡⎢⎢⎢⎣
z�

(−1)�z�

z2
�

(−1)�z2
�

⎤⎥⎥⎥⎦,

hence geometric multiplicity equal to one. Both z1,z2 are then
defective, making t(ε = 0) not diagonalizable. In fact, t(ε = 0)
has one generalized eigenvector of rank two corresponding to
each eigenvalue, given by

P1,2|z�,2〉|u�〉 =

⎡⎢⎢⎢⎣
1

(−1)�

(2z�)

(−1)�(2z�)

⎤⎥⎥⎥⎦.

Returning to the general case, a number of additional
remarks are worth making, in regard to points of contact
and differences between the transfer matrix approach and our
generalized Bloch theorem. First, the eigenstate ansatz ob-
tained from the analytic continuation of the Bloch Hamiltonian
provides a global characterization of energy eigenvectors (and
generalized eigenvectors), as opposed to the local characteri-
zation afforded within the transfer-matrix approach, whereby
each eigenvector is reconstructed “iteratively” for any given
eigenvalue. Further to that, the generalized Bloch theorem
unveils the role of nonunitary representations of translational
symmetry for finite systems. Perhaps most importantly, the
two methods differ in the way BCs are handled. Clearly, in
both approaches it is necessary to match BCs in order to
obtain the physical energy spectrum. While open BCs are most
commonly used in transfer-matrix calculations, the method
has also been applied to relaxed surfaces [32] and generalized
periodic BCs [68], all of which belong to the class of BCs
considered in this paper. In this sense, it is tempting to compare
Eq. (60) with the condition on the determinant of the boundary
matrix, det B(ε) = 0. However, the class of BCs to which the
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transfer matrix approach can be successfully applied is not a
priori clear, thus whether such a condition can be established
for as general a class of BCs as our theorem covers has not
been investigated to the best of our knowledge.

From a numerical standpoint, the computational complexity
of the standard transfer matrix method for clean systems
(when applicable) is independent of the system size N , as
is the case of our scan-in-energy algorithm in Sec. IV A. In
those cases where inversion of certain matrices is a difficulty
and inversion-free approaches are used [65,66], the latter
also have a comparable computational complexity to our
method. Interestingly, all approaches so far that are truly
inversion-free rely at some point or another on the solution
of a nonlinear eigenvalue problem [67]. Thanks to the fact
that, as noted, the construction of t(ε) in the generic case
relies only on the banded structure of HN , bulk disorder can
be handled efficiently within transfer-matrix approaches, albeit
for a limited class of BCs. For general BCs as we consider, it
is thus natural to combine the transfer matrix approach with
the bulk-boundary separation we have introduced, in order
to still find solutions efficiently: the transfer matrix can be
employed to find all possible solutions of the bulk equation in
the presence of bulk disorder, and the latter can then be used
as input for the boundary matrix, that provides a condition for
energy eigenstates.

VIII. DISCUSSION AND OUTLOOK

We have formulated a generalization of Bloch’s theorem
applicable to clean systems of independent fermions on a
lattice, subject to BCs that are arbitrary—other than respecting
the finite-range nature of the overall Hamiltonian. This
generalization, which leverages a reformulation of the problem
in terms of corner-modified block-Toeplitz matrices, affords
exact, analytical expressions for all the energy eigenvalues and
eigenstates of the system—which consistently recovers the
ones derived from the standard Bloch’s theorem for periodic
BCs. As a key component to this theorem, one obtains an exact
structural ansatz, close in spirit to the Bethe ansatz, for all
(regular) energy eigenstates in dispersive bands. This ansatz is
easy to construct since it depends only on the energy eigenvalue
and the bulk properties of the Hamiltonian. The individual
components of this ansatz reflect translation invariance in a
way we have made precise and are, as such, determined by the
analytic continuation of the Bloch Hamiltonian, as shown.

Based on the generalized Bloch theorem, we have provided
both a numerical and an algebraic diagonalization algorithm
for the class of quadratic Hamiltonians under consideration.
For generic energy values, the former is computationally more
efficient than existing ones in that its complexity is independent
upon the system size; the latter is especially well-suited
for symbolic computation or pen-and-paper solutions, as we
explicitly demonstrated by solving in closed form a number
of tight-binding Hamiltonians of interest, under various BCs.
With an eye toward applications in synthetic quantum matter,
we have also used the generalized Bloch theorem to engineer
a quasi one-dimensional Hamiltonian that support a perfectly
localized, robust zero-energy mode, notwithstanding the lack
of chiral and charge-conjugation protecting symmetries.

Our generalized Bloch theorem predicts the existence,
under specific (nongeneric) conditions, of edge states that

decay exponentially in space with a power-law prefactor. Such
exotic states were previously believed to arise only in systems
with long-range couplings. In our framework, their origin may
be traced back to the description of the system’s eigenstates in
terms of nonunitary representations of translation symmetry
“outside Hilbert space”—again capturing the fact that such a
symmetry is only mildly broken by the BCs, in a precise sense.
Notably, we have shown how the emergence of zero-energy
Majorana modes with a linear prefactor is possible in the
paradigmatic Kitaev chain by proper Hamiltonian tuning on
the so-called “circle of oscillations.” Their “critical” spatial
behavior separates the theoretically observed Majorana wave-
function oscillations inside such a circle from the simple
exponential decay outside.

While our generalized Bloch theorem makes no predic-
tion about the (singular) energy values that correspond to
dispersionless (flat) bands of eigenstates, we have provided
a prescription for identifying such energy values without
diagonalizing the full Hamiltonian, and showed how they
necessarily enter the physical energy spectrum irrespective of
the BCs. In such singular cases, we have further provided a pro-
cedure to effectively obtain a (possibly overcomplete) basis of
perfectly localized states using an analytic continuation of the
Bloch Hamiltonian, and explicitly illustrated such a procedure
in the Kitaev’s Majorana chain Hamiltonian at its sweet spot.

Building on our proposal in Ref. [19], we have rigorously
derived and further explored a proposed boundary indicator
for the bulk-boundary correspondence, which diverges if and
only if the system hosts a bound mode. This indicator leverages
the other key component to our generalized Bloch theorem, the
boundary matrix, and is unique in the sense that, unlike most
other indicators in the literature, it combines information from
both the bulk and the boundary. The utility of this indicator is
seen from our analysis of the 4π -periodic Josephson effect
in a model of an s-wave topological superconductor. In
the process, we show how, interestingly, the 4π -periodicity
that distinguishes a topologically nontrivial response is not
accompanied by a fermionic parity switch in this system.
We have provided a physical explanation of this behavior
by exhibiting a decoupling transformation, which maps the
relevant Hamiltonian to two uncoupled “virtual” wires—each
undergoing a parity switch.

Finally, for systems where no bulk disorder is present,
and subject to BCs for which the transfer matrix approach
is also applicable, we have shown how the generalized Bloch
theorem may be used to obtain a physical interpretation of the
transfer matrix’s generalized eigenvectors, in terms of bulk
solutions with a power-law prefactor. An explicit example
is seen, again, in the semi-infinite Kitaev’s chain with open
BCs, precisely in the same circle-of-oscillations parameter
regime that hosts power-law zero-energy Majorana modes.
While, in this way, our method provides yet another inversion-
free alternative to the standard transfer-matrix approach, the
connections we have identified point to further possibilities for
fruitfully combining the two approaches. In particular, since
the bulk-boundary separation we propose remains useful in the
presence of bulk disorder, one may envision a hybrid approach
for solving disordered systems subject to arbitrary BCs, by
employing transfer-matrix techniques to handle the resulting
bulk equation.

195133-27



ALASE, COBANERA, ORTIZ, AND VIOLA PHYSICAL REVIEW B 96, 195133 (2017)

The tools we have developed here may serve as the starting
point for a number of additional studies and applications. As
mentioned, in the companion paper [23], we will provide a
formulation of the bulk-solution ansatz and the generalized
Bloch theorem further accounting for the role played by the
transverse momentum (k‖) in higher-dimensional systems with
nontrivial boundaries—as opposed to the single k‖-analysis
presented here. We will show that topological power-law
modes discussed in this paper are not just a feature of
one-dimensional systems, and indeed are present in higher
dimensions too. Beside exploring the interplay between k‖,
the boundary matrix, and the edge states in a number of
paradigmatic model Hamiltonians, we will also demonstrate
how the treatment of one-dimensional homogeneous systems
can be effectively extended to those of interfaces. From a
computational standpoint, we expect that the diagonalization
algorithms emerging from our approach will be useful for
large-scale electronic calculations in both one and higher
dimensions, possibly in conjunction with perturbative ap-
proaches for incorporating interactions.

Towards a deeper understanding of the bulk-boundary
correspondence in topological insulators and superconductors,
an important next step is to study the robustness of edge states
against boundary perturbations, and more directly connect our
approach to bulk and boundary invariants for systems that are
classified as topologically nontrivial [69]. It is natural to start
by asking how certain symmetries of the system influence
the nature of the proposed indicator, or the boundary matrix
from which the indicator itself is derived. This can possibly
lead to identifying a symmetry principle which dictates the
bulk-boundary correspondence, as well as an interpretation
at the basic dynamical-system level in terms of stability
theory. Likewise, the framework we have developed may also
serve as a concrete starting point for rigorously deriving an
effective boundary theory for lattice systems and for exploring
generalizations of the concept of Wannier function in the
presence of arbitrary BCs.

Lastly, while we have focused on fermions in this paper,
the general foundation of our method laid out in Ref. [20] is
equally valid for bosons and immediately applicable to non-
Hermitian effective Hamiltonians with nontrivial boundaries,
as often arising in semi-classical models of open quantum
systems in various contexts [70–73]. We plan to explore the
corresponding generalized Bloch theorems in forthcoming
publications, and to ultimately provide extensions to Marko-
vian open quantum systems described by quadratic Lindblad
master equations.
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APPENDIX A: FURTHER DISCUSSION
ON ARBITRARY BCs

Section II imposes two restrictions on the allowed form of
BCs, described by Ŵ . The first restricts the nontrivial action

of Ŵ to the boundary hyperplanes. Since the corresponding
single-particle operator W satisfies the relation PBW = 0,
with PB being the bulk projector associated to HN , W

can be thought of as a corner-modification of the banded
block-Toeplitz matrix HN . The operators HN + W represent
boundary value problems in such a way that a change of
BCs is encoded in a change of W . The intuition behind
these ideas comes from finite-difference methods for solving
differential equations. We briefly illuminate this connection
here.

Consider for concreteness the Schrödinger boundary value
problem

ψ(0) = ψ(L) = 0,(
−1

2

d2

dx2
− ε

)
ψ(x) = 0 for x ∈ (0,L),

describing a particle in an infinite one-dimensional po-
tential well. The discretization x 
→ xj = j�x, with j =
0,1, . . . ,N + 1 = L/�x, reduces this problem to the lattice
boundary value problem

ψ(x0) = ψ(xN+1) = 0, (A1)

− 1
2ψ(xj−1) + (1 − ε)ψ(xj ) − 1

2ψ(xj+1) = 0, (A2)

in terms of the centered second difference approximation to
the Laplacian. This set of linear equations is equivalent to the
eigenvalue equation (HN − ε1N )|ψ〉 = 0, with

HN = −1

2
(T + T †) + 1N and |ψ〉 ≡

N∑
j=1

|j 〉ψ(xj ).

By comparison, the more general BCs

α1ψ(0) + β1
dψ

dx
(0+) = 0, α2ψ(L) + β2

dψ

dx
(L−) = 0,

lead to the lattice boundary value problem

α1ψ(x0) + β1
ψ(x1) − ψ(x0)

�x
= 0, (A3)

α2ψ(xN+1) + β2
ψ(xN+1) − ψ(xN )

�x
= 0, (A4)

together with Eq. (A2). The system of linear equations in
Eqs. (A2)–(A4) is equivalent to the eigenvalue problem (HN +
W − ε1N )|ψ〉 = 0, with

W = β1

2(α1�x − β1)
|1〉〈1| − β2

2(α2�x + β2)
|N〉〈N |,

a corner modification of the lattice Laplacian HN . For the
special case α1 = α2, β1 = −β2, we have discussed the exact
diagonalization of HN + W in Sec. V A.

APPENDIX B: ALGEBRAS OF SHIFT OPERATORS

Consider the topologically inequivalent manifolds corre-
sponding to the finite line segment, the circle (of finite or
infinite radius), the semi-infinite line, and the infinite line,
as illustrated in Fig. 9. Given a physical system whose state
space has support on those manifolds, one can define distinct
shift (or translation by a distance a) operators acting on
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compact

boundary

Y

NY

N

circle   line

 line segment semi−line 

FIG. 9. Four topologically inequivalent one-dimensional mani-
folds. The classification (Yes = Y, No = N) encompasses compactness
and whether the boundary is empty.

the physical states. Certainly, those shift operators encode
topological information that depending on the circumstances
may have physical consequences. In the following, we will
study the algebra of those shift operators. The subtle difference
between the various shift (or translation) operators is reflected
in the fundamental discussions that led to the modern theory
of macroscopic electric polarization in many-body systems in
terms of Berry phases [74–76], and the concomitant definition
of the position operator in extended systems [77].

1. The finite line segment

This section is based on Ref. [78], where the matrices
we are about to consider appeared with a different physical
meaning. Consider a line of finite length L = Na, written
in terms of a characteristic length a, typically defined by a
periodic potential or lattice. The left shift operator is given
by T = ∑N−1

j=1 |j 〉〈j + 1|, in terms of the orthonormal lattice
states |j 〉. The lattice state |1〉 is annihilated by T , T |1〉 = 0,
and |N〉 is annihilated by T †, mirroring the fact that the
boundary of a line segment consists of two points. For states
other than |1〉,|N〉, T and T † act as ordinary translations,
to the left or right respectively, i.e., T |j 〉 = |j − 1〉 and
T †|j 〉 = |j + 1〉.

While T can be regarded as the generator of bulk transla-
tions, it is not a unitary transformation. Instead,

T s(T †)s + (T †)N−sT N−s = 1, s = 1, . . . ,N − 1,

and notice also that T N = 0. The commutator [T ,T †] =
|1〉〈1| − |N〉〈N | captures the extent of translation-symmetry
breaking introduced by the BCs. The lattice-regularized
position operator X = ∑N

j=1 j |j 〉〈j | satisfies

[X,T ] = −T . (B1)

While this is formally analogous to [x,eip/h̄] = −eip/h̄, care
must be exercised, because of issues of definition of the
domains of functions where operators act upon.

2. The circle

The other compact one-dimensional manifold is the circle.
The standard (periodic) left shift operator in this case is given
by

V =
N−1∑
j=1

|j 〉〈j + 1| + |N〉〈1| = T + (T †)N−1.

No lattice state |j 〉 is annihilated by either V or V †, because
the circle is a manifold with no boundary. One can further
check that V V † = 1 = V N. The relation between periodic
shifts and the position operator X is better described in
terms of U ≡ ei 2π

N
X, since then we have the Heisenberg-Weyl

relation

V U = ei 2π
N UV. (B2)

This Heisenberg-Weyl algebra is well-known in statistical
mechanics in connection to clock models [79], but its relevance
to tight-binding models appears to have gone unnoticed. The
two generators are related by the discrete Fourier transform F

as FUF † = V † and FV F † = U , see, for example, Ref. [79]
for more details and references.

By comparing Eqs. (B1) to (B2), one sees that the U(1)
symmetry of the shift algebra associated to the line segment
is broken to a ZN symmetry for the circle. In practice,
the full U(1) symmetry is recovered by introducing twisted
generalizations of the Heisenberg-Weyl algebra, VφUφ =
ei 2π

N UφVφ, V N
φ = eiφ1, with Uφ and Vφ unitary. Their meaning

is clear in terms of tight-binding models: twisted Heisenberg-
Weyl algebras describe problems subject to generalized
Born-von-Karman BCs, needed, e.g., for defining topological
invariants. A representation of these algebras is given by

Uφ = U, Vφ =
N∑

j=1

ei
φ

N |j 〉〈j + 1| + ei
φ

N |N〉〈1|.

In statistical mechanics, our twisted Heisenberg-Weyl algebras
are connected to chiral Potts models, but this connection seems
to be unknown in the literature.

3. The semi-infinite line

The left and right unilateral shifts T−, T �
− were introduced

in Sec. III C 2. The commutator [T−,T †
−] = |1〉〈1| captures

in some sense the extent of translation symmetry breaking.
The lattice position operator X− = ∑∞

j=1 j |j 〉〈j | satisfies the
commutation relations [X−,T−] = −T−, [X−,T �

−] = T �
−.

The relation T �
− = T †

− holds if the domain of these linear
transformations is restricted to the Hilbert space of square
summable half-infinite sequences.

4. The real line

The shift operator is T ≡ ∑
j∈Z |j 〉〈j + 1|, and it is unitary

when restricted to the Hilbert space of square-summable
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sequences, that is, T−1 = T †. We carefully refrained from
restricting T so in Sec. III C 1. With X ≡ ∑

j∈Z j |j 〉〈j | (an
unbounded Hermitian operator in Hilbert space), one can
show that [X,T ] = −T , [X,T−1] = T−1 both in and out
of Hilbert space.

In summary, the shift operators associated to the finite
and the semi-infinite line segment do not commute with their
adjoints, reflecting the presence of boundary points for these
topologies. In contrast, the shift operators defined on the circle
and the line V and T do commute with their adjoints (or
inverses) and are unitary (or just invertible)—which is why
they can represent translation symmetry. As a consequence,
V,V † can be diagonalized simultaneously, and the same goes
for T ,T † [80]. Their eigenvalues lay on the unit circle due
to unitarity. The key difference between these two types of
translation symmetry stems from their interplay with lattice
position operators. For all the shift algebras but the one
associated to the circle, the position operators generate U(1)
rotations of the shift operators. For the Heisenberg-Weyl
algebra, this U(1) symmetry appears instead as a family of
inequivalent unitary irreducible representations of the defining
relation Eq. (B2).

APPENDIX C: EMERGENT SOLUTIONS
AT REGULAR ENERGIES

This Appendix provides further mathematical detail on the
procedure for computing emergent bulk solutions outlined in
Sec. III C 2. Specifically, we pick up the discussion where we
left it therein, right after the definition of the matrix polynomial
K−(ε,T−) in Eq. (26).

1. Left-localized emergent bulk solutions

In analogy to the sequences �z,v associated to T in Eq. (17),
let us define states

ϒ−
z,1 ≡

∞∑
j=0

zj |j + 1〉,

ϒ−
z,v ≡ 1

(v − 1)!

dv−1

dzv−1
ϒ−

z,1, v = 2,3, . . . . (C1)

in such a way that ϒ−
0,v = |j = v〉 and, also,

ϒ−
z |u〉 ≡

v∑
x=1

ϒ−
z,x |ux〉 = [ϒ−

z,1 . . . ϒ−
z,v]

⎡⎢⎣|u1〉
...

|uv〉

⎤⎥⎦.

It is then immediate to verify that

K−(ε,T−)ϒ−
z,1|u1〉 = ϒ−

z,1K
−(ε,z)|u1〉.

Moreover, using Eq. (C1), one also obtains

K−(ε,T−)ϒ−
z |u〉 = [ϒ−

z,1 . . . ϒ−
z,v]K−

v (ε,z)

⎡⎢⎣|u1〉
...

|uv〉

⎤⎥⎦, (C2)

in terms of the upper-triangular v × v block matrix

[K−
v (ε,z)]xx ′ = 1

(x ′ − x)!

dx ′−xK−(ε,z)

dzx ′−x
, 1 � x � x ′ � v.

It will be crucial for later use to notice that K−
v (ε,z) is a

block-Toeplitz matrix.
Both K−

v (ε,z) and Hv(z) are defined by the same formula,
recall Eq. (20). The key difference between the two is that
K−

v (ε,z) is well-defined also at z = 0. So suppose that z0 = 0
is a root of P (ε,z) of multiplicity s0 > 0. Then, one can
show using tools from Ref. [20], that there are precisely s0

independent solutions of the equation K−
s0

(ε,z0 = 0)|u−
s 〉 = 0,

s = 1, . . . ,s0. The corresponding emergent bulk solutions are

|ψ−
s 〉 = P1,Nϒ−

0 |u−
s 〉 =

s0∑
j=1

|j 〉|u−
sj 〉.

They are localized on the left edge over the first s0 sites. For
Hermitian Hamiltonians, s0 � dR necessarily.

2. Right-localized emergent bulk solutions

Left-localized emergent bulk solutions cannot appear alone;
they can only appear in conjunction with a set of right-localized
emergent bulk solutions. The reason is as follows. Consider
the unitary, Hermitian operator

U = U † ≡
N∑

j=1

|N − j + 1〉〈j | ⊗ 1d , U 2 = 1dN ,

which implements a mirror transformation of the lattice, by
acting trivially on internal states. The transformed Hamiltonian
is the Hermitian block-Toeplitz matrix

H̃N = UHNU = 1N ⊗ h0 +
R∑

r=1

(T r ⊗ h†
r + T r † ⊗ hr ),

in which the hopping matrices have been exchanged as hr ↔
h
†
r . Therefore the left-localized emergent bulk solutions for

H̃N are dictated by the matrix K̃−(ε) with entries [K̃−(ε)]ij =
[K−(ε)]†ij . If |ψ̃−〉 denotes a left-localized emergent solution
for H̃N , then

0 = PB(H̃N − ε)|ψ̃−
s 〉 = UPB(H − ε)U |ψ̃−

s 〉,
implying that the state U |ψ̃−

s 〉 = ∑s0
j=1 |N − j + 1〉|ũ−

sj 〉 is
an emergent bulk solution for HN , localized on the right
edge. Similarly, the left-localized emergent bulk solutions of
HN are in one-to-one correspondence with the right-localized
emergent solutions of H̃N . This conclusion relies havily
on the commutation relation PBU = UPB , which is always
necessarily true for closed systems (Hermitian Hamiltonians),
as we considered here.

However, how can we compute the right-localized emergent
bulk solutions directly in terms of HN? In Sec. III C 2,
we answered this question with the help of the matrix
K+(ε) ≡ K−(ε)†. We will justify this answer here. Let
|ψ̃−

s 〉 = ∑s0
j=1 |j 〉|ũ−

sj 〉, s = 1, . . . ,s0, denote the left-localized

emergent solutions associated to H̃N , and let

|ψ+
s 〉 ≡

s0∑
j=1

|N − s0 + j 〉|u+
sj 〉 = U |ψ̃−

s 〉, s = 1, . . . ,s0,
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denote the corresponding right-localized emergent solutions
of HN , so that |u+

sj 〉 ≡ |ũ−
s,s0−j+1〉. Our goal is to show

that the arrays |u+
s 〉 = [|u+

s1〉 . . . |u+
ss0

〉]T , s = 1, . . . ,s0, are
annihilated by K+(ε). Because |u+

s 〉 = Ũ |ũ−
s 〉, with Ũ =

Ũ † = ∑s0
j=1 |j 〉〈s0 − j + 1|, we conclude that K+(ε) is re-

lated to K̃−(ε) via K+(ε) = ŨK̃−(ε)Ũ . This leads to the

entries

[K+(ε)]ij = [K̃−(ε)]s0−i+1,s0−j+1 = [K−(ε)]†ji ,

thanks to the fact that K−(ε) is a block-Toeplitz matrix. Hence
K+(ε) = [K−(ε)]†, as desired.
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