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Theory of hydrodynamic transport in fluctuating electronic charge density wave states
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We describe the collective hydrodynamic motion of an incommensurate charge density wave state in a
clean electronic system. Our description simultaneously incorporates the effects of both pinning due to weak
disorder and also phase relaxation due to proliferating dislocations. We show that the interplay between these
two phenomena has important consequences for charge and momentum transport. For instance, it can lead to
metal-insulator transitions. We furthermore identify signatures of fluctuating density waves in frequency and
spatially resolved conductivities. Phase disordering is well known to lead to a large viscosity. We derive a precise
formula for the phase relaxation rate in terms of the viscosity in the dislocation cores. We thereby determine the
viscosity of the superconducting state of BSCCO from the observed melting dynamics of Abrikosov lattices and
show that the result is consistent with dissipation into Bogoliubov quasiparticles.

DOI: 10.1103/PhysRevB.96.195128

I. INTRODUCTION

A. Hydrodynamics for metals

Recent theoretical and experimental work has characterized
anomalous hydrodynamic transport regimes in metals. These
can arise due to the total momentum being long lived, leading
to a velocity field in the long wavelength hydrodynamic
description. There are two key consequences of a long-lived
velocity field for transport. The first are viscous effects,
developed theoretically from various angles in works including
Refs. [1–9]. Signatures of viscous electron flow have been
observed in recent experiments [10–12]. The second are
anomalous relations between dc transport observables that
are controlled by the long momentum relaxation timescale,
discussed in works such as Refs. [13–19] and recently observed
in Ref. [20].

A second source of long-lived hydrodynamic modes are
spontaneously broken symmetries. Our work will be con-
cerned with hydrodynamic phenomena due to spontaneously
broken translational symmetries in metals. These are closely
intertwined with the velocity field effects mentioned above.
In a clean system the hydrodynamics of translationally
ordered states can be found in textbooks [21]. The textbook
hydrodynamics can be ‘broken’ in two different ways. Firstly,
it has been understood for a long time that the incommensurate
charge density wave Goldstone mode (the ‘sliding mode’ or
‘phason’) is both gapped and broadened by broken translation
invariance [22–26]. Secondly, it has also been understood for
some time that mobile dislocations lead to phase fluctuations
that can ultimately melt the ordered state [27,28] and have
important effects on transport including a large viscosity
[27,29]. Our work will show that the combination of both
pinning and phase fluctuations leads to novel hydrodynamic
transport phenomena. In order for the (gapped, broadened,
and phase-fluctuating) Goldstone mode to make interesting
contributions to transport it will be necessary to work in a
clean limit where the effects of disorder are weak.

Unlike most previous analyses of density wave hydrody-
namics, our discussion will not assume Galilean invariance.
Galilean invariance is important (as we shall recall) for features

such as a vanishing dc conductivity in pinned Wigner crystals
[26] and the absence of ‘climb’ motion of dislocations [29,30].
However, various non-Fermi liquid regimes that are likely
unstable to translational order do not have Galilean-invariant
effective low energy descriptions, for example many metallic
quantum critical systems [31].

B. Summary of results and their application

There are several well-studied instances of spontaneous
translational order in conventional electronic fluids. These
include charge density waves due to the Peierls instability of
a nested Fermi surface, Wigner crystals arising from potential
energy dominance in dilute electron gases, and Abrikosov
lattices in superconductors. Translational order is also found
to be ubiquitous in strongly correlated systems such as doped
Mott insulators. Our hydrodynamic theory of transport is
independent of the mechanism that leads to translational
order. We describe the ‘universal’ (in the sense of low en-
ergy dynamics) consequences of simultaneously incorporating
weak momentum relaxation and weak phase relaxation of
translational order. After developing the formalism, three
diverse applications are considered in this paper.

1. Viscosity

Dislocations in charge density waves are vortices in the
order parameter. The proliferation of dislocations melts the
charge density wave and restores the broken symmetry [27,28].
In terms of transport, the flow of dislocations render finite
the otherwise infinite viscosities (bulk and shear) of a charge
density wave state [27,29]. We obtain a precise formula for
the large finite viscosities of phase-disordered charge density
wave states in terms of an effective shear viscosity ηeff

n of the
normal state in the dislocation core. For the simplest case of
phase-disordered triangular biaxial charge density wave order
the shear viscosity

η = 2

xv

ηeff
n . (1.1)
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Here xv < 1 is the fraction of the area occupied by dislocation
cores, see Sec. III below. Large viscosities should lead to
significant hydrodynamic effects in electron flow of the kind
measured in Refs. [10–12]. In Sec. IV A below we use
(1.1) to extract and understand the normal state viscosity
from transport measurements of a phase-disordered Abrikosov
lattice in optimally doped Bi2Sr2CaCu2O8 (BSCCO) [32].

2. Metal-insulator transitions and resistivity upturns

Another of our results will be a formula for the conductivity
that incorporates the interplay between phase and momentum
relaxation. This interplay is nontrivial: Phase relaxation
restores the spontaneously broken translational symmetry, but
momentum relaxation implies that this symmetry was never
unbroken to begin with. For triangular biaxial charge density
wave order, and further working with a nearly Galilean-
invariant system to simplify the expression, we obtain the dc
conductivity

σ = n2

χππ

�

�� + ω2
o

. (1.2)

See Sec. II E below. Here � is the phase relaxation rate, � is the
momentum relaxation rate, and ωo is the pinning frequency.
The overall n2/χππ is the usual Drude weight. In the formula
(1.2) both relaxation rates � and � tend to increase with
temperature. We show in Sec. IV B that this naturally leads
to metal-insulator transitions by varying parameters that move
the system closer to or further away from a charge density wave
or crystalline state. We argue that (1.2) may give a framework
for understanding density-tuned metal-insulator transitions
widely observed in large rs two-dimensional devices [33]
and the resistivity upturns widely seen at low temperatures
in slightly underdoped cuprates, e.g., Refs. [34–39].

3. Wave-vector-dependent conductivity

The previous two paragraphs have discussed dc transport
(i.e., with ω = k = 0). Hydrodynamics furthermore fixes
the inhomogeneous and time-dependent response at long
wavelengths and low frequencies. In Sec. IV C below we
give the full frequency and wave-vector dependence of the
conductivity. In a certain limit this can be written as

σ (ω,k) = n2

χππ

ω(�− iω)

ω
(
(� − iω)(�− iω) + ω2

o

)+ ωc2k2 + i�c2
0k

2
.

(1.3)

Here c and c0 are certain sound speeds. We will highlight var-
ious essential features of the k dependence of this expression.
These may be accessible to future experiments, giving a way to
diagnose the presence of phase-disordered, fluctuating charge
density wave dynamics.

II. DENSITY WAVE HYDRODYNAMICS WITH
MOMENTUM AND PHASE RELAXATION

In a phase with incommensurate translational order, spon-
taneous breaking of continuous translation symmetries leads
to Goldstone modes in the low energy hydrodynamics [21].
In two space dimensions there are several possible symmetry

breaking patterns. Either one or both generators of translations
can be spontaneously broken. In a smectic, striped, or charge
density wave (CDW) phase, translations in a direction n̂ are
broken down to discrete translations, and a Goldstone phase φn

parametrizes the quotient space R/Z � U (1). In the Wigner
crystal (WC) phase, all translations are broken down to discrete
translations generating a lattice 
, and the quotient space
R2/
 � U (1)2 is parametrized by two Goldstone phases φi .
In the WC case there are different possible residual discrete
symmetries of the lattice 
, which constrain the form of the
hydrodynamic constitutive relations. We focus on triangular
WC (with sixfold residual symmetry) and CDW phases.

The equations of hydrodynamics have four inputs that
we will discuss in turn. Firstly, the free energy for the
hydrodynamic degrees of freedom. Secondly, the conservation
laws for conserved or approximately conserved densities.
Thirdly, the ‘Josephson relations’ for the time derivative of
Goldstone modes. Finally, the constitutive relations for current
densities.

A. The free energy

The fundamental hydrodynamic degrees of freedom are
fluctuations ϕA about thermal equilibrium. These are given by
derivatives of the free energy f with respect to their conjugate
sources sA. For density wave hydrodynamics these can be
taken to be

WC : ϕA = ∂f

∂sA

= {δn, δs, π‖, π⊥, λ‖, λ⊥},
sA = {δμe, δT , v‖, v⊥, s‖, s⊥}, (2.1)

CDW : ϕA = ∂f

∂sA

= {δn, δs, πx, πy, ∂nφn},
sA = {δμe, δT , vx, vy, sn}, (2.2)

where n, s, πi are the charge, entropy, and momentum densi-
ties, with sources given by the chemical potential, temperature,
and velocity δμe, δT , vi . For the WC it is convenient to
separate momentum density into its longitudinal and transverse
components satisfying ∇ × π‖ = ∇ · π⊥ = 0. Also for the
WC case the longitudinal and transverse parts of the Goldstone
modes φi have been parametrized by λ‖ = ∇ · φ and λ⊥ =
∇ × φ. Note that s⊥, s‖, and sn are sources and should not be
confused with the entropy s.

In Appendix A we review the well-known description of the
free energy for translational Goldstone bosons. Weak explicit
breaking of translations gaps these fields, which become
pseudo-Goldstone bosons. The free energy at wave vector k is
then

WC : f = 1
2κ|k · φk|2 + 1

2μ
(
k2 + k2

o

)|φk|2 + . . . , (2.3)

CDW : f = κn

2

[
k2
n + k2

o

]
φ2

n + . . . . (2.4)

Here κ and μ are the bulk and shear moduli and κn is the CDW
modulus. kn = n̂ · k and ko is the inverse correlation length of
the phase at long distances: 〈φ(x)φ(0)〉 ∼ e−ko·x . The phase
can be retained as a hydrodynamic variable so long as the
correlation length is long compared to the electron mean free
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path. The weakly gapped Goldstone mode will be seen to have
important consequences.

The free energies in the previous paragraph show how the
sources s⊥, s‖, and sn are related to the linearized displace-
ments (the Goldstone modes). At linear order, the remaining
sources and conserved densities (charge, entropy, momen-
tum) are likewise related by thermodynamic susceptibilities
so that

ϕA = χABsB . (2.5)

B. The (relaxed) conservation laws

The charge and entropy conservation equations are:

ṅ + ∇ · j = 0, ṡ + ∇ · (jQ/T ) = 0 . (2.6)

Entropy is conserved at the level of linear perturbations and is
more convenient to work with than the energy, as it is directly
conjugate to the temperature. Indeed jQ is the heat current.

Weak breaking of translation invariance means that momen-
tum is not exactly conserved. The ‘conservation law’ becomes

WC : π̇ i + ∇j τ
ji = −�πi − μk2

oφ
i + . . . , (2.7)

CDW : π̇ i + ∇j τ
ji = −�ijπj − κnk

2
on

iφn + . . . . (2.8)

Here � is the momentum relaxation rate, the . . . contains
higher derivative corrections,1 and the φi term on the right hand
side is imposed by Onsager relations (this is seen a posteriori
once the full hydrodynamic equations are assembled). The
only difference for the CDW relative to the WC case is that
the reduced symmetry allows for a more general momentum
relaxing term: �ij = �nn

inj + �⊥n(δij − ninj ). Recall that n̂

is the direction of the CDW.
As with the pseudo-Goldstone bosons, the momenta can be

retained as hydrodynamic variables so long as the momentum
relaxation rate is small compared to the local thermalization
rate.

C. The (relaxed) Josephson relations

In analogy to the case of superfluids, we will refer to
equations for the time derivatives of φi (or φn) as ‘Josephson
relations.’ These equations follow directly from the fact
that translations generate shifts in the Goldstone boson—see
the commutation relation (A1)—together with the fact that
the Hamiltonian can be written H = πivi + . . . , where the
. . . only contain derivatives of the momentum. That is, in
thermodynamic equilibrium φ̇i = vi . This mirrors the case of
superfluids, where the phase is conjugate to the charge density
n, so that H = μen + . . . leads to the usual Josephson relation
φ̇ = −μe in equilibrium.

Phase relaxation rates �‖ and �⊥ can be introduced
independently of momentum relaxation and appear in the
Josephson relations. In order for the pseudo-Goldstone modes
to survive as hydrodynamic modes, the phase relaxation rates

1Such as a term proportional to ∂iμe. Such terms can be seen to
have no other effect than redefining thermodynamic quantities such
as n or s.

must be small compared to the local equilibration rate. These
Josephson relations become, for the WC

(∂t + �‖)λ‖ = ∇ · v + . . . , (2.9a)

(∂t + �⊥)λ⊥ = ∇ × v + . . . , (2.9b)

and for the CDW

(∂t + �)∂nφn = ∂nvn + . . . . (2.10)

Here the . . . again refer to higher derivative corrections. The
higher derivative corrections to the Josephson relations above
will play no significant role in our main discussion, they are
given in (D1) of Appendix D. It is the gradients λ‖ and λ⊥
of the Goldstone modes that are physical and hence phase
relaxation is introduced after taking a gradient of the Josephson
relations. It is well understood that phase relaxation arises due
to the motion of dislocations, that act as vortices in the phases.
We review this physics in Appendix B. In general the phase
relaxation rates �‖ and �⊥ are distinct. In Sec. III B we see that
when translations are explicitly broken these phase relaxation
rates acquire a mild k dependence and become equal on the
very longest wavelengths with k 	 ko.

D. The constitutive relations

The constitutive relations express the currents of the
conserved densities j,jQ, and τ as a gradient expansion in
terms of the conserved densities themselves [or their conjugate
sources, which are linearly related to the densities according
to (2.5) and the discussion directly above, and in some places
turn out to be more convenient]. To first order in derivatives
for the WC we can write

j = nv − σ0∇μe − α0∇T − γ1∇s‖ + . . . , (2.11a)

jQ/T = sv − α0∇μe − (κ̄0/T )∇T − γ2∇s‖ + . . . , (2.11b)

τ ij = δij (p − (κ + μ)λ‖) − εijμλ⊥ − σ ij + . . . . (2.11c)

The nondissipative (or ‘reactive’) 0-derivative terms in the
above are fixed by the absence of entropy production and do
not presuppose Galilean invariance or other such symmetries,
see Ref. [40] and Appendix D. The 1-derivative terms appear
with transport coefficients {σ0,α0,κ̄0,γ1,γ2}. The 1-derivative
corrections σ ij to the stress tensor are given by

σ ij = ζ δij (∇ · v) + η[∇ ivj + ∇j vi − δij (∇ · v)], (2.12)

where ζ and η are the bulk and shear viscosities, respectively.
The above expressions are constrained by Onsager rela-

tions, which fix for example the 0-derivative contribution of
λ‖ and λ⊥ to the stress tensor and relate the γi to coefficients
that appear as higher derivative corrections to the Josephson
relation (given in Appendix D). The stress tensor τ ij above is
not symmetric, which it should be due to rotation invariance
of the underlying symmetric state. However, it can be made
symmetric by adding a transverse term which does not
contribute to the conservation equation (2.6) and thus does not
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affect our computation of hydrodynamic modes and Green’s
functions below.2

For a CDW the constitutive relations are

j = nv − σ0∇μe − α0∇T − γ1n̂∂nsn + . . . , (2.13a)

jQ/T = sv − α0∇μe − (κ̄0/T )∇T − γ2n̂∂nsn + . . . ,

(2.13b)

τ ij = δijp − ninjκn∂nφn − σ ij + . . . , (2.13c)

where the transport coefficients or ‘incoherent conductivities’
are now matrices, e.g.,

(σ0)ij = σn
0 ninj + σ⊥n

0 (δij − ninj ). (2.14)

Because rotations are spontaneously broken, constitutive
relations, which are really expectation values of operators,
need not respect them. The 1-derivative corrections to the stress
tensor now have the general form

σ ij = ηijkl∂kvl. (2.15)

A CDW in an isotropic system has residual twofold and
reversal symmetries, which allow for five independent terms
in ηijkl [41].

No Galilean invariance

As mentioned in the introduction, throughout we purposely
do not impose Galilean invariance, which would require
j ∝ π as an operator relation and thus set σ0 = α0 = γ1 = 0.
Unlike conventional fluids, electron fluids live in a system
with a preferred frame, and a priori have no reason to be
Galilean invariant. Galilean invariance can be strongly broken
by interactions even in a translationally invariant low energy
effective theory. Examples are close to quantum critical points
in metals, where the fermions couple strongly to gapless
bosons [31]. The Galilean limit will be discussed in various
places throughout, including in the context of relaxation due
to dislocations (Sec. III), where it qualitatively affects certain
observables.

E. Conductivities

The free energy, conservation laws, Josephson relations,
and constitutive relations given above lead to a closed set
of equations for the hydrodynamic variables ϕA. Solving
these equations in the absence of external sources gives the
hydrodynamics modes of the system. The modes themselves
are not our primary interest, although of course they physically
underly all our results for transport. We review the well-known
modes of the clean system in Appendix C.

The conductivities that describe heat and charge transport
are defined by Kubo formulas, in terms of the retarded Green’s
functions for the conserved densities. These Green’s functions
are computed from the hydrodynamic equations of motion
using the method of Kadanoff and Martin [42]. According to

2Specifically,

τ ij = δijp + (κ + μ)δij (∂ · φ) + 2μ
[
∂(iφj ) − δij (∂ · φ)

] − σ ij

is symmetric and ∂i(τ
′ij − τ ij ) = 0.

FIG. 1. Real part of the optical conductivity perpendicular (blue)
and parallel (yellow) to the CDW. The yellow curve also illustrates
the isotropic conductivity of a triangular WC. The peak occurs at
nonzero frequency as long as ω2

o > �3/(� + 2�).

this method, one first puts the hydrodynamic equations into
the form

ϕ̇A + MAB(k)sB = 0. (2.16)

The matrix M is straightforwardly obtained by combining
the free energy, conservation laws, Josephson relations, and
constitutive relations. With this matrix at hand, the matrix of
retarded Green’s functions for the ϕA variables is given by

GR(ω,k) = M(k)
1

iωχ − M(k)
χ. (2.17)

Here the static susceptibilities ϕA = χABsB . These Green’s
functions manifestly have poles on the hydrodynamic modes
where the equations (2.16) are satisfied.

The electrical conductivity is given by σ (ω) =
limk→0 iω/k2 × GR

nn(ω,k). Using the Kadanoff-Martin
Green’s functions for a triangular WC, the conductivity is
isotropic and given by3

WC : σ (ω) = σ0 + n2

χππ

�‖ − iω

(�‖ − iω)(� − iω) + ω2
o

, (2.18)

where we defined the ‘pinning frequency’

ω2
o ≡ μk2

o

χππ

. (2.19)

In (2.18) we dropped frequency-independent terms that appear
in the numerator but are subleading in the regime where

3The Kadanoff-Martin procedure gives the longitudinal conductiv-
ity. It is also possible to compute the transverse conductivity (defined
as a two-point function of transverse currents),

σ⊥(ω,k → 0) = σ0 + n2

χππ

�⊥ − iω

(�⊥ − iω)(� − iω) + ω2
o

.

Locality requires this transverse response to equal the longitudinal
response (2.18) when k → 0, which implies �⊥(k 	 ko) = �‖(k 	
ko). That is, we can write �⊥ = �‖ ≡ � when discussing k = 0
conductivities. The k dependence of the relaxation rates is further
discussed in Sec. III B.
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ω,ωo,�, and � are small.4 The pole structure in the conduc-
tivity is richer than a simpler Drude peak and arises because
translations are spontaneously broken by the WC in addition
to having weak explicit breaking. The frequency-dependent
conductivity (2.18) is sketched in Fig. 1. A sufficiently
large gap ωo ‘pins’ the collective mode, requiring a nonzero
excitation energy, while � and � determine the lifetime.

For a CDW, the conductivity along the CDW wave vector
has the same form as the WC conductivity. In the direction
perpendicular to the CDW, however, translations are not
spontaneously broken and the effect of momentum relaxation
is as in regular hydrodynamics, leading to a Drude-like
conductivity:

CDW :

⎧⎨
⎩

σn(ω) = σn
0 + n2

χππ

�−iω
(�−iω)(�n−iω)+ω2

o
,

σ⊥n(ω) = σ⊥n
0 + n2

χππ

1
�⊥n−iω

.

(2.20a)

(2.20b)

The CDW pinning frequency is defined as ω2
o ≡ κnk

2
o/χππ .

We again dropped a term in the numerator of σn, subleading
when ω,ωo,�, and �n are small.

The pole structure of the conductivities without phase
relaxation has been known for a long time (see, e.g., Ref. [26]),
but restricted to � = σo = 0. Our expressions are derived from
a fully consistent hydrodynamics and incorporate the interplay
of momentum and phase relaxation. Some phenomenological
consequences of these formulas for the conductivity are
discussed in Ref. [43]. In particular, it is noted in Ref. [43]
that peaks similar to those in Fig. 1 are widely observed in bad
metals. In Sec. IV B below we will show that the dc limit of
these formulas give a simple mechanism for metal-insulator
transitions.

The other thermoelectric conductivities have similar ex-
pressions to those above, with the same pole structure. For the
WC, they can be expressed as

�(ω) = �0 + (� − iω)(A�/χππ ) + ω2
oB�

(� − iω)(� − iω) + ω2
o

, (2.21)

with � = σ, α, (κ̄/T )—the electric, thermoelectric, and ther-
mal conductivities—and

Aσ = n2, Aα = ns, Aκ̄/T = s2,

Bσ = 2nγ1, Bα = nγ2 + sγ1, Bκ̄/T = 2sγ2. (2.22)

In (2.21) we kept the (subleading) terms proportional to the
coefficients γ1,γ2 for completeness.

It is important to note that in the absence of any explicit
translation symmetry breaking, so that � = ω0 = 0, the
conductivities are not affected at all by phase relaxation. In
particular, the dc conductivities are divergent due to translation
invariance.

F. Viscosities

Viscosities characterize momentum transport. It is sensible
to talk about viscosities at timescales over which the Gold-
stone modes have decayed but momentum is still effectively

4In particular (D9) implies that a certain coefficient γ1 → 0 as
� → 0, making a term proportional to γ1 manifestly subleading.

conserved. In this regime one can simply put the momentum
relaxation rate � = 0.

The frequency-dependent viscosities are given by the
Kubo relations ζ (ω) + η(ω) = limk→0 iω/k2 × GR

π‖π‖(ω,k)

and η(ω) = limk→0 iω/k2 × GR
π⊥π⊥ (ω,k). Therefore, again

using the Kadanoff-Martin method summarized in the previous
section, we find

WC :

{
ζ (ω) + η(ω) = ih

ω
+ μ+κ

�‖−iω
+ ζ + η,

η(ω) = μ

�⊥−iω
+ η.

(2.23a)

(2.23b)

Here the inverse ‘internal compressibility’
h = (

ρ

s

)i
(χ−1)ij

(
ρ

s

)j
, where χ is the matrix of thermoelectric

susceptibilities in (2.5). These then lead to the viscosities in
the fluctuating WC phase

ζ WC + ηWC = lim
ω→0

Re(ζ (ω) + η(ω)) = μ + κ

�‖
+ ζ + η,

(2.24)

ηWC = lim
ω→0

Re η(ω) = μ

�⊥
+ η . (2.25)

The shear and bulk viscosities are now finite but large, μ/�⊥
and (μ + κ)/�‖, respectively. For a CDW, the Kubo formula
for the various viscosities can be written

ηCDW
ijkl = lim

ω→0
lim
k→0

1

ω
Im GR

Tij Tkl
(ω,k) = κn

�
ninjnknl + ηijkl .

(2.26)

Recall that n̂ is a unit vector in the direction of the CDW. The
reduced symmetry requires the use of the Green’s function of
the stress tensor rather than momentum in this case.

The proliferation of dislocations has melted the lattice. In
the limit that the phase relaxation rates vanish, the viscosities
diverge, due to the rigidity of the translational order. The
emergence of large viscosities from proliferating dislocations
has been understood for some time [27,29]. However, in the
following Sec. III we proceed to obtain precise microscopic
formulas for the �’s in terms of the state in the dislocation
cores. That result will underpin our understanding of vortex
melting in Sec. IV A.

III. PHASE RELAXATION FROM DISLOCATION FLOW

So far, all of our results have followed from universal hy-
drodynamic equations. In particular, the relaxation parameters
�,ωo,�‖,�⊥ are phenomenological coefficients. However,
when relaxation is slow—which is when hydrodynamics is
valid—it is possible to express these quantities in terms of
microscopic correlation functions. This is achieved using the
memory matrix—closely following [44], as we now describe.

A. Phase relaxation with translation invariance

In a translation invariant system, conservation of momen-
tum

Pi =
∫

d2x πi , (3.1)
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leads to a divergent conductivity. This divergence is removed
when translations are broken, as seen in (2.21). The memory
matrix derivation of a formula for momentum relaxation �

has been reviewed in detail in Ref. [40]. We shall not discuss
a microscopic perspective on � here, as it is not affected by
spontaneous breaking of translations.

In a WC (or a CDW, see below) where translations are
spontaneously broken, additional conserved operators appear:
the winding of the phases across the sample

Wij ≡
∫

d2x ∂iφj . (3.2)

Expectation values of the winding measure the deformation
of the WC and hence conservation of these operators leads
to divergent viscosities. If conservation of these operators
is weakly broken, so that Ẇij = i[H,Wij ] �= 0, then the
viscosities are rendered finite by the decay rates �‖ and �⊥,
see (2.24). These phase relaxation rates can now be obtained
using the memory matrix method. The arguments below follow
Ref. [44] closely and are only outlined here. In particular,
because conservation of the operators in (3.2) is a topological
effect (the winding of a phase), the operators can only be
relaxed by a topological defect: dislocations. The topology of
dislocations is described in Appendix B.

To compute �‖ and �⊥ it is sufficient to consider the
memory matrix for the Wij operators in (3.2). For the
computation of leading order relaxation, the memory matrix
can be taken to be [44]

Mij,kl ≡ lim
ω→0

1

ω
Im GR

Ẇij Ẇkl
(ω). (3.3)

Note the time derivatives on W . This quantity can be
decomposed into irreducible tensors

Mij,kl =
2∑

s=0

M(s)P
(s)
ij,kl, (3.4)

where the angular momentum projectors are given by

P
(0)
ij,kl = 1

2δij δkl, P
(1)
ij,kl = δi[kδl]j , P

(2)
ij,kl = δi(kδl)j − P

(0)
ij,kl .

(3.5)

To leading order in slow relaxation, the memory matrix
formalism then gives the relaxation rates in (2.9) as

�‖ � M (0)

χλ‖λ‖
= (μ + κ)M (0), �⊥ � M (1)

χλ⊥λ⊥
= μM (1). (3.6)

The remaining component M (2) is not independent of M (0) and
M (1) and does not carry any new information. One can indeed
show from (3.3) that M (2) = M (0) + M (1).

As is easily seen [44], any Hamiltonian that is a local
functional of π and other operators will commute with (3.2),
so that the winding is conserved: Ẇ and hence the �’s are zero.
This is because the commutator ends up being a total derivative
of a single-valued operator. However, dislocation cores are in
the normal phase, where the Goldstone field is undefined. In
the presence of dislocations, the winding operator should be
defined as

Wij =
∫
R2\cores

d2x ∂iφj , (3.7)

so that the integral only runs over the area where the system
is in the symmetry broken phase. Any term containing πj in
the Hamiltonian will now contribute to Ẇij . This follows from
the nonzero commutator (A1) between the momentum and the
phase as well as the presence of boundaries in the domain of
integration. A term that is universally expected to be present
in the effective low energy Hamiltonian is

�H = χ−1
ππ

2

∫
d2x π2 . (3.8)

This interaction leads to the relaxation

Ẇij = −χ−1
ππ

∫
cores

d2x ∂iπj . (3.9)

Terms arising in (3.9) due to the second term in the commuta-
tion relation (A1) have been neglected. These are subleading
both in derivatives and because they involve a higher number
of operators that each have Gaussian correlations in the
hydrodynamic limit.

Using the relaxation (3.9), equations (3.3) and (3.6) lead
to a formula for the phase relaxation rate in the presence of
mobile dislocations. Assuming rotational symmetry and the
dislocations to be approximately circular for simplicity, and
neglecting πi(x)πj (y) correlators when x and y are in different
dislocation cores, one gets

Mij,kl = nd

χ2
ππ

∫
d2k

(2π )2

∫
core

d2x

∫
core

d2y eik·(x−y) kikk

×
[

lim
ω→0

Im GR
πj πl

(k,ω)

ω

]
, (3.10)

where nd is the density of free dislocations (counted without
signs). Evaluation of the quantity in square brackets requires
knowledge of the normal state. This quantity is a momentum
density correlation function. If the dislocation cores are
sufficiently large, the Green’s function can be computed
using normal state hydrodynamics inside the cores. Depending
on the phase structure of the material, the dislocation core
could either be described by a fully symmetry phase or have
orientational quasi-long-range hexatic order [27,29]. We can
easily consider both cases.

Using normal state hydrodynamics in the core, one finds

lim
ω→0

Im GR
πiπj

(ω,k)

ω

= χ2
ππ

ηeff
n

[εii ′εjj ′ + δii ′δjj ′(�k)2 + O(�k)4]
ki ′kj ′

k4
, (3.11)

where ηeff
n is an effective shear viscosity of the normal state. If

the normal state were described by isotropic hydrodynamics,
ηeff

n = ηn would simply be the shear viscosity of the normal
state. For a hexatic normal phase, ηeff

n = ηn − 1
γ

where γ is
a dissipative coefficient in the hexatic hydrodynamics which
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characterizes diffusion of the hexatic phase5 [21,29]. The
length scale appearing in (3.11) is

�2 ∼ (ζ + η)eff
n · σ0(κ̄0/T ) − α2

0

n2(κ̄0/T ) − 2snα0 + s2σ 2
0

. (3.12)

Notice that this vanishes in the Galilean limit where σ0, α0 →
0. In general, the length scale � is intrinsic to the hydrodynam-
ics of the normal state and should therefore be of the order of
the mean free path (the short distance cutoff)

� � �mfp . (3.13)

The irreducible components (3.4) of M can be obtained
by contracting (3.10) with the projectors (3.5). Cutting off
the momentum integral at kmax = 1/�mfp, one finds that the
relaxation rates (3.6) are given by

�‖ ∼ nd (μ + κ)
rd�

2

ηeff
n �mfp

, �⊥ � nd μ
πr2

d

2ηeff
n

. (3.14)

Here rd is the radius of the core. Note that the longitudinal
relaxation rate �‖, which controls the relaxation of crystal
compressions λ‖ = ∇ · φ caused by the ‘climb’ motion of
dislocations (see Appendices B and C), vanishes in the
Galilean limit. This recovers the well-known result that climb
is forbidden in Galilean systems in the absence of crystal
impurities [27,29,30]. In systems without Galilean invariance
longitudinal relaxation is allowed, but suppressed for large
vortices by a factor of ∼ �mfp/rd with respect to shear
relaxation �⊥.

It was shown in the hydrodynamic treatment of the WC
above that a small relaxation rate �⊥ leads to an anomalously
large shear viscosity, see (2.25):

ηWC � μ

�⊥
+ η = 2

xd

ηeff
n + η , (3.15)

where xd = πr2
dnd is the fraction of the area occupied by

dislocation cores. The fact that there is a large contribution
to the shear viscosity proportional to 1/xd in the presence
of mobile dislocations has been known for a long time [27];
equation (3.15) relates this term to a transport coefficient in
the hexatic (or symmetric) state.

The longitudinal relaxation similarly leads to large viscosi-
ties. Using (2.24), we have

(ζ + η)WC � μ + κ

�‖
+ ζ + η ∼ ηeff

n

�mfprd

xd�2
∼ 1

xd

ηeff
n · rd

�mfp
,

(3.16)

where terms subleading in the limit of small relaxation have
been dropped. Although the exact expressions for �‖ and
ζ WC depend on the microscopics through �mfp, (3.16) shows
that if there are no other effects contributing to longitudinal
phase relaxation, the anomalous bulk viscosity will generically

5More specifically, it appears in the Josephson relation for the
Goldstone field � of rotations (in the hexatic phase) as

�̇ = ∇ × v + γ∇s∇� + . . . ,

where s∇� = ∂f/∂(∇�) is the thermodynamic source for ∇�.

be much larger than the anomalous shear viscosity in the
fluctuating state

ζ WC ∼ ηWC · rd

�mfp
� ηWC . (3.17)

Finally, having now obtained � we can turn to the ‘pinning
frequency’ ωo. This frequency is not a relaxation rate but rather
appears directly as a k = 0 susceptibility for the Goldstone
mode in (2.3). Recall that ωo is given in terms of ko by
(2.19). The memory matrix does not offer any advantage in
the computation of this quantity. The usual field theoretic
computations or energetic estimates can be applied [22,23,26].
Appendix E gives a fully memory matrix derivation of the
optical conductivity (2.18), giving a microscopic definition of
all of the parameters that appear, including ωo.

Stripes

For a CDW, a very similar story holds: the operator
protecting zero frequency poles in the viscosity is

Wnn =
∫

d2x ∂nφn . (3.18)

With �H given by (3.8), the memory matrix component again
follows from (3.10):

Mnn,nn = ninjnknlMij,kl = ndπr2
d

8ηeff
n

, (3.19)

where ηeff
n now is an effective viscosity of the nematic (or

symmetric) state inside the dislocation cores. The CDW
relaxation rate is given by

� = Mnn,nn

χ∂nφn∂nφn

= κn

ηeff
n

xd

8
. (3.20)

B. Phase relaxation without translation invariance

When translations are broken it is important to carefully
define what is meant by phase relaxation. Large viscosities are
seen by probes at short enough wavelengths with

k � ko . (3.21)

At these wavelengths momentum is effectively conserved.
When studying ac conductivities, one is instead interested in a
regime

k 	 ko . (3.22)

We show below that in the presence of a pseudo-Goldstone
mass, the phase relaxation rates acquire a scale dependence
� → �(k) and take qualitatively different forms in the
different regimes (3.21) and (3.22). In particular we will see
that in the limit (3.22) that pertains to conductivities, both
relaxation rates are equal

�‖(k 	 ko) = �⊥(k 	 ko) . (3.23)

This was anticipated in Sec. II E by imposing that the
longitudinal and transverse conductivities be equal for local
theories. In the opposite regime (3.21) however, the dynamics
is effectively translation invariant and the analysis of the
previous section holds. In particular, one has generically

�‖(k � ko) �= �⊥(k � ko) , (3.24)
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(in fact, as discussed in the previous section, one expects �‖ 	
�⊥ for Galilean invariant theories, where the ‘climb’ motion
of dislocations is suppressed) so that the large contributions to
the shear and bulk viscosities in (2.24) can be different.

We now prove the statements made above. When trans-
lations are broken, the free energy (2.3) implies that the
susceptibilities are modified, and the relaxation rates in (3.6)
become6

�‖(k) =
[
μ

(
1 + k2

o

k2

)
+ κ

]
M (0)(k) ,

�⊥(k) =
[
μ

(
1 + k2

o

k2

)]
M (1)(k) . (3.27)

In the limit (3.21) that is relevant for viscosities, the terms
containing ko vanish and one recovers (3.6)—the analysis of
Sec. III A then applies. In the opposite limit however one has

�‖(k 	 ko) = μ
k2
o

k2
M (0)(k) = 1

2
μk2

oMφ‖φ‖ (k), (3.28a)

�⊥(k 	 ko) = μ
k2
o

k2
M (1)(k) = 1

2
μk2

oMφ⊥φ⊥ (k) , (3.28b)

where we defined

Mφiφj
(k) = kikj

k2
Mφ‖φ‖ (k) +

[
δij − kikj

k2

]
Mφ⊥φ⊥(k) . (3.29)

Now for any local theory the k → 0 limit of Mφiφj
(k) will be

smooth, which implies that both relaxation rates are equal in
this limit.

As an application of these equations, we compute phase
relaxation in the gapped theory due to dislocations. The same
manipulations as in Sec. III A lead to

Mφiφj
= nd

χ2
ππ

∫
d2k

(2π )2

∫
core

d2x

∫
core

d2y eik·(x−y)

×
[

lim
ω→0

Im GR
πiπj

(k,ω)

ω

]
. (3.30)

Taking the dislocation cores to be described by hydrodynamics
with momentum relaxation (and without translational order),
the leading contribution to the integrand for large cores comes

6In the case of relaxation due to dislocations, the free energy is really
integrated outside of the dislocation cores, so the susceptibilities are
complicated functions of k. However, it is still true that in both limits
(3.21), (3.22) they take the following simple form (focusing on the
shear sector for simplicity)

χλ⊥λ⊥ (k � ko) = 1/μ , χφ⊥φ⊥ (k 	 ko) = 1/(μk2
o) , (3.25)

and the relaxation rates in both limits are given by

�⊥(k � ko) = χλ⊥λ⊥M (0) , �⊥(k 	 ko) = χφ⊥φ⊥Mφ⊥φ⊥ , (3.26)

with similar expressions for the longitudinal relaxation �‖, so that in
either limits one recovers again (3.6) or (3.28). However the crossover
for k ∼ ko in this case will not be described by (3.27).

from transverse momentum

lim
ω→0

Im GR
π⊥π⊥(k,ω)

ω
= χ2

ππ

�nχππ + ηnk2
+ . . . . (3.31)

If momentum in the dislocations diffuses on the scale of
a dislocation core �nχππ 	 ηnk

2
v , where kv ∼ 1/rd , the

relaxation rates are given by

�‖ = �⊥ ∼ nd μ
πr2

d

4ηn

k2
o

k2
v

. (3.32)

If instead momentum is relaxed in dislocation cores �nχππ �
ηnk

2
v , the phase relaxation rates are

�‖ = �⊥ � nd μk2
o

πr2
d

4χππ�n
. (3.33)

The first case (3.32) is qualitatively similar to the result
(3.14) for dislocations in a clean theory, with phase relaxation
determined by the normal state viscosity. In the second case
(3.33) it is the momentum relaxation rate of the normal state
that controls phase relaxation.

IV. APPLICATIONS

A. Melting of flux lattices

Flux (Abrikosov) lattices form in two-dimensional super-
conductors when a perpendicular magnetic field is imposed.
Such lattices spontaneously break translations and are thus
described by the ‘Wigner crystal’ hydrodynamics developed
in the previous sections, albeit with an additional superfluid
velocity mode. The transverse, shear sector of hydrodynamics
is not affected by the longitudinal superfluid velocity; therefore
the connection (2.25) between shear viscosity and phase
relaxation is not modified. Above the flux lattice melting
temperature Tm, dislocations proliferate. This leads to a large
shear viscosity using (3.15)

ηWC � μ

�⊥
� 2

xd

ηs ∼ ηs exp

[
b

(
Tm

T − Tm

)ν]
, (4.1)

with ν = 0.37... for a solid to hexatic transition [27], and where
b is a constant of order one. The temperature dependence is
controlled here by the fraction xd of the sample occupied by
dislocations, which is well understood [27].

As in the previous Sec. III, the viscosity that appears on
the right hand of (4.1) is that of the state in the core of the
dislocations, into which the crystal melts. In the present case
of an Abrikosov lattice this is ηs , the shear viscosity of the
superconducting state present in the dislocation cores. This
viscosity controls the diffusion of transverse momentum in
the superfluid core according to the Green’s function

GR
π⊥π⊥(ω,k) = ηsk

2

iω − (ηs/χππ )k2
. (4.2)

Technically, ηs appears in (4.1) from inserting this Green’s
function into the integral (3.10). This explicit connection
between properties of the core and phase relaxation is our
new contribution to this discussion. As we recall in Fig. 6 in
the Appendix, transverse momentum diffuses in a superfluid,
unlike in a system with spatial order.
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An experimentally measured strongly temperature-
dependent ηWC can be fit to (4.1) to obtain the superconducting
state viscosity ηs . A simple way of measuring a shear viscosity
is by studying the flow through a channel. In the case of a flux
lattice, an experimental setup to achieve this has been described
in Ref. [45]; we will not review the details here. Such resistivity
measurements were performed for flux liquids in NbGe in
Ref. [46] and optimally doped Bi2Sr2CaCu2O8 (BSCCO) in
Ref. [32] (see also Refs. [47,48]). The superconductor shear
viscosity can be extracted from these experiments and in both
cases is of order

ηs ∼ [10−10 − 10−9] kg m−1 s−1 . (4.3)

For NbGe this analysis was done in Ref. [46]. We have carried
out a similar fit for BSCCO using the data in Ref. [32].

For the case of BSCCO, we can use our now cleanly
established connection to the superconducting core state to
give the result (4.3) a simple physical interpretation. The
superconducting state of BSCCO has long-lived Bogoliubov
quasiparticles—we will use the experimental characterization
of these quasiparticles in a related BSCCO compound [49]
to estimate the viscosity. The viscosity of weakly interacting
quasiparticles is estimated by recalling that viscosity describes
transverse momentum diffusion and hence obeys ηs = mnD,
where m is the quasiparticle mass, n the quasiparticle density,
and D the transverse momentum diffusivity. The diffusivity is
estimated as D ∼ v2τ , were v is the quasiparticle velocity and
τ the quasiparticle lifetime. It follows that

ηs ∼ ετ , (4.4)

where ε ∼ nmv2 is the energy density. The energy density
of Bogoliubov quasiparticles in d spatial dimensions, and at
temperatures T 	 �, where � is the superconducting gap, is
of order

ε ∼ (�3T )1/2e−�/T mkd−2
F

h̄2 . (4.5)

For the estimate we simply used a conventional Bogoliubov
quasiparticle dispersion relation from BCS theory to get
the density of states, neglecting nodal points. For a two-
dimensional layered system with interlayer spacing a, one
has ε3d = ε2d/a. Using the values T = 60 K, � ∼ 20 meV,
τ ∼ h̄/(20 meV), and m ∼ 10me from Ref. [49], as well as
a ∼ 2 nm for BSCCO one obtains

ηs ∼ 10−9 kg m−1 s−1 , (4.6)

in good agreement with (4.3). This matching confirms that
the coefficient of the exponential temperature dependence in
(4.1) is indeed determined by precise normal state properties as
discussed around (3.15) above. It explains the physical origin
of the magnitude of the viscosity of the phase-disordered state.

B. Metal-insulator transitions in large rs devices and cuprates

Certain materials can undergo metal-insulator transitions
as a function of, e.g., charge density, disorder, or magnetic
field. There are several classes of metal-insulator transitions.
We will be interested in cases where the transition is plausibly
driven due to entering a fluctuating WC or CDW phase.

T�T0

FIG. 2. Illustration of a metal-insulator transition. In all curves
the momentum relaxation rate has been taken to be proportional to
temperature � ∼ T , while the phase relaxation rate has been modeled
as �(T ) ∼ e−√

To/T . The transition has been achieved by varying ωo in
(4.7), with σ0 = 0. At ωo = 0 the resistivity is metallic (lowest curve).
Increasing ωo leads to an increasingly strong resistivity upturn at
low temperatures. With this choice of �(T ) the resistivity ultimately
diverges as T → 0 for any ωo > 0. In practice this divergence can be
cut off by a nonzero σ0 or a low temperature saturation of � at a small
constant value. The shape of the curves is relatively insensitive to the
precise functional form of �(T ); we have chosen this particular form
for illustrative purposes only.

From (2.18), the dc conductivity for a fluctuating WC is
obtained to be

σ = σ0 + n2

χππ

�

�� + ω2
o

. (4.7)

As discussed in Sec. III B, �⊥ = �‖ ≡ � in k = 0 conductiv-
ities. The important point for the following discussion is that
the two relaxation rates � and � enter into this expression in
quite different ways. In the following we will mostly assume
that the dominant temperature dependence of the conductivity
originates from the interplay of � and �, and hence we set
the overall constant shift σ0 ≈ 0. A temperature-dependent σ0

may however be important for some of the experimentally
observed ‘insulating’ phases discussed below.

At low temperatures, the relaxation rates � and � in (4.7)
will increase with temperature, while n,χππ and ωo have
only a weak temperature dependence. These assumptions can
be relaxed; our immediate objective is to demonstrate the
workings of a scenario for metal-insulator transitions. Far
away from a WC phase, � will be large and temperature
independent. In this limit a conventional Drude-like formula
is recovered so that the resistivity ρ = 1/σ ∼ � increases
with temperature and the system is metallic. Very close
to an ordered WC, � will instead be strongly temperature
dependent. Phase relaxation will be slow at low temperatures,
before increasing rapidly with temperature and saturating at
higher temperatures where the WC is fully melted. In the
regime where � is increasing from a small value, the resistivity
ρ = 1/σ ∼ 1/� decreases with temperature and the system is
insulating. The limiting case � → 0, with σ0 = 0, corresponds
to a conventional Wigner crystal insulator. These different
behaviors are illustrated in Fig. 2.
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A prediction of this scenario for insulating regimes where �

is small is that there should be a peak in the optical conductivity
at a nonzero frequency ωo, with width determined by �. This
follows from the formulas in Sec. II E above.

1. Underdoped cuprates

The temperature-dependent resistivities shown in Fig. 2
are reminiscent of the resistivity upturns widely observed
at low temperatures in slightly underdoped cuprates. The
resistivity upturn in those materials can be followed down
to low temperatures upon application of a magnetic field to
suppress superconductivity, e.g., Refs. [34–36,38,39]. Without
a magnetic field, the start of the upturn is visible above the
superconducting temperature in some slightly underdoped
samples (e.g., Ref. [37]) and can furthermore be extended
to low temperatures by Zn substitution or irradiation, e.g.,
Refs. [50–52].

Undoped cuprates are Mott insulators and so of course
exhibit increasing resistivity with low temperatures. The
concomitant absence of a Drude peak and spectral weight
transfer to higher energies in low doping, insulating cuprates is
also well documented [53,54]. However, the upturns described
in the previous paragraph first appear close to optimal doping
and extend into the pseudogap. This regime is now well
understood to display various forms of charge density wave
order (as reviewed in, e.g., Ref. [55]). The possible connection
between resistivity upturns and charge density waves in
cuprates has been noted in Refs. [37,56,57]. Equation (4.7)
allows this scenario to be quantified in terms of observables
that are in principle independently measurable.

We noted above that a characteristic signature of pinned,
fluctuating charge density waves are peaks at nonzero fre-
quency in σ (ω), illustrated in Fig. 1. Indeed in a Zn substituted
cuprate, the low temperature Drude peak was observed to move
away from ω = 0 when the Zn concentration was large enough
to likely lead to a resistivity upturn [56]. Further, optical
conductivity data across the phase diagram of LSCO shows
that when the start of an upturn is visible above Tc, significant
spectral weight transfer out of the Drude peak occurs [53].

Similar upturns are also visible in organic and pnictide
superconductors, in those cases closely tied to the presence of
spin density wave (SDW) order, e.g., Ref. [57]. Many features
of our hydrodynamic analysis of incommensurate CDWs are
expected to also apply to fluctuating incommensurate SDW
states. SDW hydrodynamics may be a useful framework for
understanding those upturns.

2. Large rs devices

Metal-insulator transitions occur in devices such as Si-
MOSFETs and GaAs heterostructures upon tuning the electron
density. Controlling the density allows these two-dimensional
systems to be tuned to large rs and hence close to WC phases
[33]. Indeed, metal-insulator transitions in these systems
precisely occur as the electronic concentration is decreased
(i.e., as rs is increased): The insulating regime exists in closer
proximity to the WC state. Phase-fluctuating WC order may
play a role over some region of the phase diagram and may
be responsible for the insulating behavior. Formulae such as

(4.7) allow quantitative consequences to be derived from this
statement.

Previous work has suggested that the nearby WC phase is
responsible for transport anomalies in these devices through
the formation of a microemulsion of the liquid and crystalline
phases [3]. That proposal may be adiabatically connected to the
one we are describing (of a phase-disordered crystal), although
the experimental consequences for transport are somewhat
different. In particular, we have emphasized the signatures of
a fluctuating WC on optical conductivity. Such data for these
devices would help corroborate the relevance of the density
wave scenario.

C. σ (ω,k)

The shift of the Drude peak to a nonzero frequency, shown
in Fig. 1, is a hallmark of translational order—it occurs
whenever7

ω2
o >

�3

� + 2�
. (4.8)

This phenomenon is discussed in some detail in Ref. [43].
Here we discuss a characteristic feature due to fluctuating
density waves in the spatially resolved conductivity σ (ω,k).
This is visible even if the pinning frequency ωo is too small to
produce a nonzero frequency peak at k = 0.

In the scaling limit ω ∼ k ∼ ωo ∼ � ∼ � the wave-vector-
dependent conductivity is

σ (ω,k)

= n2

χππ

ω(� − iω)

ω
[
(� − iω)(� − iω) + ω2

o

] + ωc2k2 + i�c2
0k

2

+ . . . , (4.9)

where c2 = (h + μ + κ)/χππ is the longitudinal speed of
sound and c2

0 = h/χππ is the speed of sound in the absence
of a condensate (notice that setting � = � = ωo = 0 one
recovers the sound poles ω = ±ck + . . .). The poles of σ (ω,k)
interpolate between those in the optical conductivity (2.18) at
k = 0 to the sound poles ω = ±ck at ck � ωo,�,�. This
expression and the position of the maximum as a function of
k are illustrated in Fig. 3.

Equation (4.9) also offers a way to detect fluctuating density
wave order when ωo is small. When (4.8) is not satisfied, the
conductivity peaks at ω = 0. If in addition ω2

o � ��, this dc
conductivity is

σdc � n2

χππ

1

�
. (4.10)

However, the presence of fluctuating spatial order (�) lowers
and broadens the peak at nonzero wave vectors. Indeed, for
wave vectors ck � �,�, the conductivity peaks around ω ∼
ck and the conductivity there is

σ � � σ (ck,k) � n2

χππ

1

� + α�
, (4.11)

7In this section, we focus on the longitudinal sector of a WC and
thus write �‖ = � for simplicity. All of these results also apply to a
CDW for transport in the direction of broken translations.
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FIG. 3. Reσ (ω,k) in a system where σ (ω,0) peaks at a nonzero
frequency. The dashed line shows ω = ck, the solid line is the position
of the maximum of the conductivity.

where α = (μ + κ)/(h + μ + κ). This broadening of the peak
with increasing k does not occur without fluctuating density
waves and is illustrated in Fig. 4. At higher k, sound attenuation
also broadens the peak.

The pole structure of σ (ω,k) in (4.9) is also present in the
retarded Green’s functions for the Goldstone modes GR

λλ(ω,k)
with λ = λ⊥ or λ‖. There are minor differences between the
longitudinal and transverse channels such as different speeds of
sound and phase relaxation rates. The Goldstone mode Green’s
functions control direct detection of translational order: They
determine the singular response of the charge density structure
factor Snn(ω,Q + k). Here Q is an ordering wave vector of
the charge density waves. However, the total singular spectral
weight in Snn(ω,Q + k) is proportional to the density wave
condensate and so is difficult to detect in fluctuating regimes.
In contrast, the spectral weight of (4.9) is determined by the
‘Drude weight’ n2/χππ .
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APPENDIX A: FREE ENERGY OF THE GOLDSTONE
BOSONS

This appendix is a summary of known results concerning
the free energy of translationally ordered phases. When both
translations are broken, there exist two Goldstone modes φi

that satisfy

[φi(x),πj (y)] = iδ2(x − y)[δij + ∂jφi] . (A1)

Here πi is the momentum density. For a CDW, only a linear
combination of these fields exists. We now build the free energy
for the φi , which will determine how these Goldstone fields
appear in the hydrodynamic equations.

1. Crystal

The free energy for the Goldstone modes must be invariant
under all symmetries, both (nonlinearly realized) spatial and
(linearly realized) residual crystalline symmetries, which is a
strong constraint. We discuss the spatial symmetry first. In the
WC phase there are three scalar structures, which to leading
order in fields8 are given by the components of the symmetric
tensor Uij ≡ ∂(iφj ), or

Uxx = ∂xφx , Uyy = ∂yφy , and

Uxy = 1
2 (∂xφy + ∂yφx) . (A2)

Each of these terms are scalars under spatial rotations, under
which the fields transform as

xi → x ′i = xi − εεij x
j , φi → φ′

i(x
′) = φi(x) + εεij x

j .

(A3)

For a general solid, the free energy contains six terms at the
quadratic level, built out of the scalar objects in (A2), and can
be written in the form

f = 1
2∂(iφa)C

ijab∂(jφb) + . . . , (A4)

with Cijab symmetric under i ↔ a, j ↔ b and (i,a) ↔ (j,b).
For a system with residual lattice symmetries, Cijab is

further constrained. Extra crystalline symmetries ⊂ O(2)
act linearly on the Goldstones: φi → Ri

jφ
j , unlike spatial

rotations in (A3). For example, for an ‘isotropic solid’ Cijab

8It is possible to obtain these expressions to all order in fields using
the CWZ construction [58] for spatial symmetries [59,60]. Defining
R to be a rotation matrix of angle θ = atan[∇ × φ/∇ · (x + φ)], one
finds

Uij = Ri
k∂kφj + Rij − δij .
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needs to be an invariant O(2) tensor, which leaves only two
terms in the free energy:

f = 1
2κTr[U ]2 + μ

(
Tr[U 2] − 1

2 Tr[U ]2) + . . . , (A5)

where κ and μ are called the bulk (or compression) and shear
modulus, respectively. This form of the free energy also applies
to the triangular lattices of interest, because no other term in
(A4) respects the sixfold symmetry [30]. The free energy can
be written in Fourier space as

f = 1
2κ|k · φk|2 + 1

2μk2|φk|2 + . . .

= 1
2 (κ + μ)|λ‖,k|2 + 1

2μ|λ⊥,k|2 + . . . , (A6)

where λ‖ = ∇ · φ and λ⊥ = ∇ × φ parametrize the longitu-
dinal and transverse parts of φi , respectively. Additionally,
the longitudinal field λ‖ can couple to the charge and entropy
densities [29]

f = . . . + aδnλ‖ + bδsλ‖ . (A7)

These couplings have little effect other than to shift certain
diffusion constants and the speed of sound in the longitudinal
sector, and we will take a = b = 0 throughout.

2. Stripes

In a CDW phase, only translations in the direction n̂ are
broken, and the single Goldstone φn transforms exactly like
the combination n̂ · φ above. The only scalar building block,
to leading order in fields, is

∂nφn ≡ (n̂ · ∂)φn , (A8)

which appears in the free energy as

f = . . . + κn

2
[(∂nφn)2 + α2(∂⊥φn)2] . (A9)

The stiffness κn of the stripe order is an elastic modulus which
determines how compressible the stripes are. In addition,
symmetries allow for a coupling between ∂nφn and the other
scalar hydrodynamic variables as in (A7). In (A9) we have
allowed for a term not invariant under rotations:

∂⊥φn ≡ εijni∂jφn . (A10)

This term is related to an underlying anisotropy as we now
explain. For most of our discussion, it is assumed that the
underlying physical system is isotropic before rotations are
spontaneously broken, so that the free energy must be invariant
under rotations. For a CDW, this means α = 0. Physically, a
small constant gradient ∂⊥φn is just a global rotation of the
CDW, which should not cost energy in an isotropic system.
The case where incommensurate CDWs do not choose their
direction (because rotations are explicitly broken say by a
lattice) is however of experimental interest in, e.g., cuprates
[61], so certain qualitative effects of taking α �= 0 are expected
to be relevant.

3. No Goldstone for broken rotations

Note that neither phase has a Goldstone � for broken
rotations. Although it would be present in a nematic (or
hexatic) phase where translations are unbroken [29], when

FIG. 5. Dislocation in a charge density wave and a Wigner crystal.
The stripes in the charge density wave are lines of constant phase
Q(n̂ · �x + φn), where Qn̂ is the CDW ordering wave vector.

at least one translation is broken it is possible to add a term to
the free energy that gaps out �:

WC : 1
2m2(� − εij ∂iφj /2)2 and

CDW : 1
2m2(� − ∂⊥φn)2 . (A11)

These terms are invariant under rotations to leading order in
fields, and at low energies pin the rotational phase � to the
other light degrees of freedom. It is for this same reason that
there are only d acoustic phonons in a d-dimensional solid.

APPENDIX B: DISLOCATIONS AND THEIR MOTION

Momentum relaxation (�) is tied to symmetry breaking,
whereas phase relaxation (�) is tied to symmetry restoration,
as we now explain. Since the φi are phases, they can have
topological defects called vortices. Vortices for the WC (or
CDW) phases are dislocations, illustrated in Fig. 5. Around
a simple dislocation, the phase has a winding of 2π , so the
gradient of the phase increases as one approaches a dislocation
center, until the energy cost is too high to support such a
gradient and the normal (symmetric) state is recovered.

For stripes, the presence of a gradient ∂nφn across the
sample can only be relaxed by the transverse motion of
dislocations—this is the physical process behind the � term
in (2.10). For a WC the situation is more complicated: There
are now two phases φi that can have any winding numbers
around a dislocation. A dislocation is thus described by two
integers, which specify a ‘Burgers vector,’ see, e.g., [21,30]
(for a CDW, Burgers vectors are always integer multiples
of n̂). These dislocations can either move parallel (‘glide’)
or perpendicular (‘climb’) to their Burgers vector. The glide
motion leads to a breakdown of the shear rigidity of the solid,
a process captured in the shear sector of the hydrodynamics
by the phase relaxation term �⊥ in (2.9b). In Sec. II F we
describe how a small relaxation �⊥ leads to a large shear
viscosity. The climb motion changes the density of the crystal
lattice λ‖ = ∇ · φ, and thus leads to phase relaxation in the
longitudinal sector (2.9a). In a Galilean system, and if all the
charge is carried by the condensate, this would violate charge
conservation [29,30]. The climb motion is therefore allowed
only if the diffusive mode described in (C2) is unfrozen—it is
this mode that can carry the compensating charge so that λ‖
can relax without violating the continuity equation. This result
will be recovered with the memory matrix computation of �‖
in Sec. III.
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FIG. 6. Hydrodynamic modes in the complex ω plane. (a) Regular 2D hydrodynamics has longitudinal sound (in blue) carried by energy
density and longitudinal momentum, and two diffusive modes carried by the transverse momentum and a combination of charge and entropy
δ(n/s). (b) In the presence of a superfluid, the superfluid phase couples to the charge and lifts the corresponding diffusive mode to form second
sound. (c) The transverse WC phase δλ⊥ instead couples to the diffusive mode carried by transverse momentum to produce shear sound, and
the longitudinal phase δλ‖ forms its own diffusive mode. For CDW, the phase ∂nφn similarly couples to transverse momentum to form shear
sound with a highly anisotropic speed of sound.

An appealing feature of the equations (2.9) describing phase
relaxed WC hydrodynamics is that they require no reference to
the properties of individual dislocations—such as position or
Burgers vector—or their dynamics. The dislocations have al-
ready been ‘integrated out,’ and the most general phase relaxed
Josephson relations consistent with the spatial symmetries are
directly written as (2.9) or (2.10).

APPENDIX C: HYDRODYNAMIC MODES

In the absence of momentum or phase relaxation the
hydrodynamic modes solving the hydrodynamic equations
of motion can be found in textbooks [21]. In Fig. 6 these
modes arising from translational order are compared with those
arising in a superfluid.

The presence of Galilean-symmetry breaking coefficients
σ0,α0,γ1 lead to small changes to the textbook formulas, but the
modes are qualitatively the same. The only exception concerns
the ‘crystal diffusion mode,’ with diffusion constant

Dϕ

∣∣∣
σ0=α0=γ1=0

� (κ + μ)

[
ξ‖ − γ 2

2

κ̄0/T

]
+ O(κ + μ)2 ,

(C1)

where the last expression was simplified by taking the Galilean
limit. In general it is carried by the hydrodynamical variable

ϕ = [n(κ̄0/T ) − sα0 + s(nγ2 − sγ1)]δn

+ [sσ0 − nα0 + n(sγ1 − nγ2)]δs

+ [n2(κ̄0/T ) − 2snα0 + s2σ0]λ‖ + O(κ + μ) + O(k) ,

(C2)

which has a simple diffusive Green’s function

GR
ϕϕ(ω,k) = χϕϕDϕk2

iω − Dϕk2
. (C3)

In the Galilean limit, and taking γ2 → 0, the hydrodynamical
variable ϕ simply becomes

ϕ � δn + nλ‖ = δn + n (∇ · φ) , (C4)

which was interpreted as a defect (or impurity) density in
Ref. [29]. More generally, it corresponds to the charge that is
not transported by compressions of the crystal/charge density
wave. One should read (C4) as the total charge fluctuation δn

minus the charge fluctuation −n (∇ · φ) due to compression
of the density wave. If all charge is carried by the density
wave condensate, so that all the higher derivative terms in
the Josephson relation (D1) are zero, then (C1) shows that
the mode freezes ω(k) = −iDϕk2 = 0. The presence of this
diffusive mode in more general, non-Galilean invariant, cir-
cumstances is what allows the ‘climb’ motion of dislocations
that is discussed in Sec. III A.

The incorporation of slow phase relaxation into hydrody-
namics has several effects. Firstly, the crystal diffusion mode
described above is damped. Secondly, the shear sound mode
becomes one damped mode (for λ⊥) and one diffusive mode
(for transverse momentum π⊥). The diffusive mode has a large
diffusivity D⊥ = μ/(�⊥χππ ), which is responsible for the
large shear viscosity (2.25). Thirdly, longitudinal sounds sur-
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vives but acquires a large attenuation �s = (μ + κ)/(�‖χππ ),
which is responsible for the large bulk viscosity (2.24).
Relaxation of momentum then further damps the transverse
momentum diffusive mode while the longitudinal sound mode
becomes one damped mode (for π‖) and one diffusive mode
(for energy density ε).

These different regimes can be accessed at different wave

vectors, depending on the associated timescale k
2 ≡ Dk2,

where D represents any of the diffusion or sound attenuation
constants in the unrelaxed theory. The regimes are illustrated
in the following table:

Incoherent Hydro Regular Hydro Ordered Hydro

k
2 	 � � 	 k

2 	 � � 	 k
2

Thermoelectric
Diffusion Diffusive Diffusive Diffusive

Longitudinal Sound 1 Diffusive (ε) Sound Sound
1 Damped (π‖)

Shear Sound Damped 1 Diffusive (π⊥) Sound
1 Damped (λ⊥)

Crystal Diffusion Damped Damped Diffusive

APPENDIX D: ENTROPY PRODUCTION

Positivity of entropy production in hydrodynamics leads
to constraints on the dissipative coefficients appearing in
the constitutive and Josephson relations. These constraints
are derived in this section. For completeness we give here
the leading higher derivative corrections to the Josephson
relations. For the WC

λ̇‖ + �‖λ‖ = ∇ · v + γ1∂
2μe + γ2∂

2T

+ ξ‖(κ + μ)∂2λ‖ + . . . , (D1a)

λ̇⊥ + �⊥λ⊥ = ∇ × v + ξ⊥μ∂2λ⊥ + . . . , (D1b)

and for the CDW

φ̇n + �φn = vn + γ1∂nμe + γ2∂nT

+ κn

(
ξ‖∂2

n + ξ⊥∂2
⊥
)
φn + . . . . (D2)

Once translations are broken, and the pseudo-Goldstone modes
are massive, there is a nonlocal relation between the source
and displacement: e.g., ∂2s⊥ = μ(∂2 − k2

o)λ⊥. Thus higher
derivative terms in the source can introduce 0-derivative terms
in the displacement. The phase relaxations �‖,⊥ are defined as
the coefficients of the 0-derivative λ‖,⊥ terms in the Josephson
relation. This has been implemented in the above equations by
writing derivatives of λ‖,⊥ on the right hand side rather than
derivatives of s‖,⊥.

In the remainder of this appendix, for simplicity, we
consider only one-dimensional charge order—generalization
to higher dimensional CDW or WC systems is straightforward.
Indices will be suppressed, so that j = jx, τ = τxx,∇φ =
∂xφx , etc. We will allow for both momentum (�, ko) and phase
(�) relaxation. As usual, we study linearized hydrodynamics
around a background with μ, T �= 0 but v,∇φ = 0. Up to
second order in perturbations around this background, one can

define a heat current as [21]
jQ = jE − μj + (p − τ )v + . . . , (D3)

where the pressure is given by p = −ε + μn + sT . Using the
first law for a relaxed CDW

dε = T ds + μdn + vdπ + κ(∇φd∇φ + k2
oφdφ) , (D4)

the change in entropy density is, up to second order in
perturbations,

ṡ = 1

T

[
ε̇ − μṅ − vπ̇ − κ(∇φ∇φ̇ + k2

oφφ̇)
]

= −∇(jQ/T ) − 1

T
[(jQ/T − sv)∇T + (j − nv)∇μ

+ (τ − p)∇v − �χππv2 − s∇φ∇φ̇], (D5)

where we in the last step used the (relaxed) conservation
equations, and s∇φ = ∂ε/∂(∇φ) is the thermodynamic source
for ∇φ. Using the constitutive relations (2.13) and the
Josephson relation (2.10), one finds that positivity of entropy
production

ṡ + ∇(jQ/T ) � 0 (D6)

requires the following matrix to be positive definite for all
wave vectors k

M(k)

=

⎛
⎜⎜⎜⎜⎝

σ0k
2 α0k

2 γ1k
2 0

α0k
2 κ̄0

T
k2 γ2k

2 0
γ1k

2 γ2k
2

(
�
κ

+ ξk2
)

k2

k2+k2
o

0
0 0 0 �χππ + ζk2

⎞
⎟⎟⎟⎟⎠ .

(D7)

In addition to the constraints σ0, κ̄0, ζ, � � 0, and α2
0 �

σ0κ̄0/T that are standard in hydrodynamics, the CDW pa-
rameters must satisfy fairly nontrivial constraints, e.g.,

γ 2
1 � σ0ξ

k2 + �
κξ

k2 + k2
o

, for all k. (D8)

This leads to three different cases:

γ 2
1 � σ0ξ , if ko = 0 ,

γ1 = 0 , if ko �= 0 and � = 0 ,

γ 2
1 � σ0 min

[
ξ, �

κk2
o

]
, if ko,� �= 0 .

(D9)

Similar constraints must be satisfied by γ2, with σ0 → κ̄0/T .

APPENDIX E: CONDUCTIVITIES FROM
THE MEMORY MATRIX

The relaxed hydrodynamic conductivities (2.18), (2.20a)
can be obtained from the memory matrix. We will give an
outline of the derivation, see Ref. [40] for more details of
the formalism. For simplicity, we will focus on a CDW in
one dimension—the treatment is identical for a triangular
WC in two dimensions and more complicated for a WC of
reduced residual symmetry or a CDW in two dimensions. In
order to obtain the electrical conductivity, it is sufficient to
keep the electric current and the slow operators it overlaps
with: {J, P, φ}. The crucial difference with an ordinary metal
is that in a state with translation order, the Goldstone φ for

195128-14



THEORY OF HYDRODYNAMIC TRANSPORT IN . . . PHYSICAL REVIEW B 96, 195128 (2017)

translations (sliding mode) must be included in the treatment.
In this section, all operators are averaged over all space,
e.g., J = ∫

dx j (x). The memory matrix formalism gives the
following expression for the conductivity:

σ (ω) =
∑
AB

χJA

(
1

iωχ − M(ω) − N

)
AB

χBJ , (E1)

where the sum is chosen to run over A,B ∈ {J, P, φ}. The
matrix of susceptibilities is symmetric and given by

χ =
⎛
⎝χjj χjπ 0

χjπ χππ 0
0 0 χφφ

⎞
⎠ , (E2)

where we noted that χjφ = χπφ = 0 by time-reversal sym-
metry. Comparison with the hydrodynamic expressions gives
χjπ = n. When translations are an exact symmetry the
Goldstone susceptibility diverges at k = 0, but the mass the
Goldstone acquires when translations are broken regularizes
the susceptibility,9 and the free energy (2.4) gives χφφ =
1/(κk2

o). The N matrix is antisymmetric, and NAB vanishes for
operators A,B with the same signature under time reversal.
One is left with

N =
⎛
⎝ 0 0 Njφ

0 0 1
−Njφ −1 0

⎞
⎠ , (E3)

where we used

Nπφ = −i〈[P,φ]〉 = 1 . (E4)

9When ko = 0 one must therefore work with the operators Jk, Pk, φk

at nonzero k—so that the Goldstone susceptibility χφ−kφk
= 1/(κk2)

is finite. One can take k → 0 at the end of the computation.

Finally, all matrix elements of M can be nonzero in general.
We will assume momentum relaxation is weak, so that

Mππ ≡ �χππ (E5)

is small. It is possible to show that MπA = O(�). In the
presence of phase fluctuations, we have

Mφφ ≡ �χφφ = �

κk2
o

. (E6)

In the scaling limit ω ∼ � ∼ ωo ∼ � ∼ ε (where ω2
o =

κk2
o/χππ ), to leading order in ε the memory matrix formula

(E1) gives

σ (ω) = n2

χππ

(� − iω)

(� − iω)(� − iω) + ω2
o

+ . . . , (E7)

in agreement with (2.18). The incoherent term σo in (2.18) is
generically subleading in the scaling limit we have taken here.
Such incoherent terms can be made to appear at leading order
in the memory matrix computation if the incoherent spectral
weight is simultaneously scaled to be large [40].

Finally, note that the conductivity (E7) satisfies the usual
sum rule

∫ ∞

0
dω Re σ (ω) = π

2

n2

χππ

. (E8)
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