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Critical examination of quantum oscillations in SmB6
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We critically review the results of magnetic torque measurements on SmB6 that show quantum oscillations.
Similar studies have been given two different interpretations. One interpretation is based on the existence of
metallic surface states, while the second interpretation is in terms of a three-dimensional Fermi surface involving
neutral fermionic excitations. We suggest that the low-field oscillations that are seen by both groups for B fields
as small as 6 T might be due to metallic surface states. The high-field three-dimensional oscillations are only
seen by one group for fields B > 18 T. The phenomenon of magnetic breakthrough occurs at high fields and
involves the formation of Landau orbits that produces a directional-dependent suppression of Bragg scattering.
We argue that the measurements performed under higher-field conditions are fully consistent with expectations
based on a three-dimensional semiconducting state with magnetic breakthrough.
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I. INTRODUCTION

SmB6 is a narrow-gap mixed-valent semiconductor [1,2],
with a gap of the order of 20 meV. The gap is considered
to be caused by the hybridization of the 4f levels with a
conduction band, but is renormalized to the small value by
strong electronic correlations [3,4]. Transport measurements
indicate that the material is a bulk semiconductor [2], but has
metallic surface states [5–7] which give rise to a plateau in the
resistivity for temperatures below 4 K. It has been proposed
that SmB6 is a strongly correlated topological insulator [8],
which gives rise to topologically protected metallic surface
states. The existence of metallic surface states is consistent
with angle-resolved photoemission spectroscopy (ARPES)
measurements [9–11] that indicate the presence of a Weyl
cone of surface electron states with the Weyl point located
inside the valence band.

Magnetic torque measurements on flux-grown SmB6 sam-
ples have revealed quantum oscillations. Li et al. [12] have
reported oscillations that show a 1/cos θ dependence of the
amplitudes, where θ is the angle between the field and the
normal to the surface. This angular variation is characteristic
of (two-dimensional) surface states. The inferred small area
enclosed by the surface Fermi-surface orbits is consistent
with the small � pocket observed in ARPES measurements
[13]. However, a second set of measurements [14] on floating-
zone-grown samples have been interpreted in terms of a bulk
(three-dimensional) metallic Fermi surface, enclosing areas
similar to those of metallic LaB6 [15]. The observation of
the insulating nature of bulk SmB6 and the interpretation
of a Fermi surface of neutral fermions responding to a
magnetic field pose a serious challenge to the Lorentz invariant
descriptions based on quantum electrodynamics (QED). In
QED the coupling to charged particles is described by the
minimal coupling transformation, whereby pμ → pμ − e

c
Aμ,

which suggests that only charged particles couple to magnetic
and electric fields. It is important to note that the analysis
of Li et al. [12] focused on the metallic surface states found
for fields around 10 T, whereas the anomalous oscillations

found in the measurements of Tan et al. [14] were observed
in the field range of 18 to 40 T. Since the data are similar (to
within the noise) for fields below 10 T [13], the difference in
interpretation seems to be related to the high-field regime.

II. MAGNETIC BREAKTHROUGH

Here we point out that the two sets of measurements may be
reconciled by using the well-established concept of magnetic
breakthrough [16,17]. At low fields, quantum oscillations
in a metal are usually interpreted in terms of Onsager’s
quasiclassical picture [18]. In Onsager’s picture, the magnetic
field causes electrons to move in orbits around planar cuts
of equi-energy surfaces. This implies that the energy splitting
of the Landau levels h̄ωc, where the cyclotron frequency is
defined by

ωc = eB

mc
, (1)

is a small perturbation to the zero-field Hamiltonian of the
periodic lattice. In terms of the Fourier components of the
lattice potential V (Q), this requires

h̄ωc � |V (Q)|. (2)

Therefore, in this limit, the orbiting electrons do not to jump
over band gaps. On the other hand, for

h̄ωc � |V (Q)|, (3)

the effectiveness of a band gap [caused by V (Q)] in interrupt-
ing the performance of field-induced Landau orbits is greatly
reduced. As we describe later, the inequality shown in Eq. (3)
is too restrictive and should be replaced by a less stringent
inequality. In the high-field regime, the electronic states are
localized. The electronic motion in the plane perpendicular to
the applied field can be described by Landau orbits localized
around fixed centers in the x-y plane. The motion parallel to
the field is not perturbed by the Lorentz force or, equivalently,
scattering by V (Q

z
) is not affected by the in-plane Landau
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orbits. Hence, for the kz motion, Bragg scattering is fully in
effect. When applied to a semiconductor, the kz motion of
electrons is prohibited by the band gap at the kz boundaries
of the Brillouin zone. Despite the localized nature of the
electronic wave functions, due to the ineffectiveness of Bragg
scattering through either Qx or Qy , the Landau levels are split
according to

En(kz) = h̄ωc(n + γ ) + ε(kz) (4)

and can still lead to de Hass–van Alphen (dHvA) oscillations.
The phenomenon whereby an applied magnetic field drives
the electrons between different cross-sectional areas of the
zero-field Fermi surface is known as magnetic breakthrough.
This phenomenon was noticed in experiments on Mg [19]
and was explained by Cohen and Falicov [16], who proposed
the criterion for breakdown given in Eq. (3) which is too
restrictive. A criterion that is more favorable for the occurence
of breakdown was subsequently derived by Blount [17]. Co-
incidentally, two branches of the dHvA oscillations observed
in metallic LaB6 were attributed to magnetic breakthrough on
neck orbits of the Fermi surface [15].

Here, in order to emphasize the important factor that was
absent in the original work of Cohen and Falicov [16], we
present a simplified derivation of the criterion for magnetic
breakdown. The critical value of the magnetic field is that
which separates the regions where magnetic breakthrough does
and does not occur. This criterion can be stated in terms of the
lifetime of the nth Landau orbit τn due to scattering by the
potential of the crystal lattice and the cyclotron frequency of
the orbits ωc. The critical field is determined to be such that(

ωcτn

2π

)
∼ 1. (5)

For ωcτn

2π
> 1, the electrons are able to complete multiple

Landau orbits before being scattered by the lattice potential.
This is the region where magnetic breakthrough can occur.
On the other hand, for ωcτn

2π
< 1, a complete orbit cannot be

traversed before the electron is Bragg scattered. The resulting
orbits are strongly restricted to those allowed by the zero-field
band structure. In the Landau gauge, the vector potential
caused by applying a uniform B field in the z direction is
given by

A = xBzêy. (6)

In this gauge, the Landau orbits are described by the wave
functions

1

L
exp[i(kyy + kzz)]φn

(
x − h̄ky

mωc

)
, (7)

where φn(x) are one-dimensional harmonic oscillator wave
functions. These unconstrained Landau orbits will acquire a
width due to scattering by the periodic potential. For scattering
through Qy , one sees that the scattering can only occur between
Landau orbits that are centered at differ x positions, namely
at x0 = h̄ky

mωc
and at xQy

= h̄(ky±Qy )
mωc

. The Fermi-Golden rule
expression for the lifetime of the nth Landau orbit is given by

1

τn

=
(

2π

h̄

) ∑
n′

|< φn(x0)|V (Qy)|φn′(xQy
)

> |2δ[En(kz) − En′(kz)]

∼
(

2π

h̄

) |< φn(x0)|V (Qy)|φn(xQy
) > |2

h̄ωc

, (8)

which involves the overlap of shifted harmonic oscillators.
According to the aufbau principle, Landau levels are succes-
sively filled according to their energies and the Pauli exclusion
principle. For metals and semiconductors, typical values of n

at the chemical potential are given by

nh̄ωc = W, (9)

where W is the width of the occupied portion of the (free-
electron or unhybridized) conduction band. For large values
of n, one may use the asymptotic expressions for the overlap
of the displaced oscillator wave functions and arrive at the
expression

h̄

τn

= |V (Qy)|2
n h̄ωc

. (10)

Hence, the relative time spent in the Landau orbital before
Bragg scattering occurs is given by(

ωcτn

2π

)
= W h̄ωc

|V (Qy)|2 . (11)

The criterion for magnetic breakthrough is that the broadening
of the Landau levels due to Bragg scattering should be smaller
than the spacing of the Landau levels

W h̄ωc

|V (Qy)|2 > 1, (12)

which is same criterion arrived at by Blount [17], Pippard
[20,21], and Reitz [22]. Although the above derivation assumes
that the lattice potential is weak, as shown by Chambers
[23], the same criterion can be found by considering the case
where the crystalline potential is strong. The criterion can
also be applied to real metals [24]. The above expression for
the criterion carries an extra factor of n ∼ W

h̄ωc
compared to

the criterion shown in Eq. (3) that was originally proposed by
Cohen and Falicov [16]. The factor of n is not inconsequential
for most metals, since for Cu with B = 10 T, n ∼ 6000. The
correct criterion is much more favorable for the occurrence of
magnetic breakthrough. The amplitude of the oscillations is
affected by the smearing of the Landau levels, which results
in the amplitudes being suppressed by an exponential factor:

exp

[
− 2π

ωcτn

]
= exp

[
− |V (Qy)|2

Wh̄ωc

]
. (13)

The above exponential factor is similar to the Dingle factor in-
corporated into the standard Lifshitz-Kosevich formulation of
dHvA oscillations. The Dingle factor represents the disruption
of Fermi-surface orbits caused by scattering off impurities [25]
or off collective electronic fluctuations [26]. However, it should
be stressed that the above exponential factor does not represent
scattering by spatial or temporal fluctuations (collisions) but,
instead, is due to the static periodic crystalline potential.
The exponential factor only produces a small effect on the
anomalous orbits in the breakthrough regime, but produces a
large suppression of the anomalous oscillations in the low-field
regime.
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III. DISCUSSION

The above analysis can be applied to the hybridization gap
model of SmB6 [4], in which case the hybridization matrix
element V that produces the avoided band crossings should be
identified with V (Q). With this identification, the direct gap is
given by 2V and the indirect gap is given by 2�, where

� = V 2

W
. (14)

One finds that the magnetic breakthrough should occur
whenever

h̄ωc > � (15)

and that the amplitude of the anomalous oscillations are
suppressed by a factor of

exp

[
− �

h̄ωc

]
. (16)

These estimates are consistent with the results for the
hybridization gap model found numerically by Knolle and
Cooper [27]. However, Knolle and Cooper did not identify the
origin of their results as being due to magnetic breakthrough.
On using an effective mass of 0.23 me [15] and an indirect
hybridization gap, 2�, of the order of 20 meV [28], one
finds a critical field of 20 T. For fields of the order of
40 T, it is estimated that the amplitude of the anomalous
oscillations is suppressed by a factor of the order of 0.6
that should render them observable with amplitudes similar
to usual oscillations in a bulk metal. On the other hand,
for fields in the range between 5 and 10 T, the anomalous
amplitudes are suppressed to between 2% and 14% of their
high-field values and so should be difficult to observe. This
is consistent with the three-dimensional oscillation that were
observed by Tan et al. [14] and their absence in the analysis
of Li et al. [12] which focused on the small area oscillations
of the metallic surface states found in the lower-field regime.
The magnetic breakthrough of the hybridization gap in SmB6

should lead to the anomalous orbits enclosing areas similar
to the Fermi-surface areas found for LaB6 [15], since the 4f

levels in La are above the Fermi energy and, therefore, do
not produce hybridization gaps. This assertion is supported
by the estimates of the Fermi surface from magnetoresistance
measurements [29] on the metallic state of SmB6, produced by
the application of high fields and pressure. The hypothesis of
magnetic breakthrough is also supported by the similarity of
the small effective masses of m∗ ∼ 0.18 me found by Tan et al.
[14] to the smallest effective masses (m∗ ∼ 0.23 me) inferred
from dHvA measurements on LaB6 [15]. Since larger masses
are also found in LaB6, they could be expected to be observed
in SmB6; however, larger masses are harder to see in dHvA
experiments.

A related explanation of the high-field oscillations in
SmB6 has recently been proposed [31] which is based on
a model that consists of a pair of hybridized bands. The
model was constructed to accommodate parity inversion as
required for a topological insulator. Crucially, the authors use
a spin-orbit-coupling hybridization matrix element V which,
due to the factor of k, mixes states with opposite parity. The two
bands are modeled by inverted parabolic bands with different

effective masses, in which the Fermi-level lies within the
hybridization gap. The assumed dispersion of the bands is
not crucial since, by adiabatically continuing the 4f mass
upwards, the model reduces to a (spin-orbit) hybridized band
model with an almost flat 4f band. To be sure, the topological
invariants are independent of the dispersion relation and, as
long as there is no band-crossing, can be calculated by using
the flat-band approximation. Since the adiabatic continuation
does not produce degeneracy [32], the topological character
of the model remains invariant but remains inequivalent to the
hybridization band model in which the hybridization matrix
element is assumed to be k independent. The inequivalence
occurs since a k-independent hybridization matrix element
only mixes states with the same parity. Since the spin-orbit-
induced hybridization is associated with the potential of the
crystalline lattice, the oscillations are classifiable as being
due to magnetic breakthrough. The criterion at which the
breakthrough occurs is different from that of the hybridized
band model, in that the W in the factor of W

h̄ωc
is replaced by

the small energy-separation ∼300 meV between the top and
the bottom of the electron and hole pockets.

IV. CONCLUSION

While the above analysis does not rule out more exotic
scenarios, such as a Fermi sea of Majorana fermions [33]
or the description of SmB6 as a failed superconductor [34],
it does offer an explanation in terms of the well-known and
well-tested mechanism of magnetic breakthrough. It remains
to be shown whether the field and temperature dependencies
of the experimentally observed high-field three-dimensional
oscillations have an amplitude and field dependence consistent
with the breakthrough formula that includes the field [29,30]
and temperature [3] dependencies of the hybridization
gap. Likewise, the small values of the effective masses
extracted from the surface oscillations (m∗ ∼ 0.1−0.2 me)
need to be reconciled with the larger quasiparticle masses
(m∗ ∼ me) inferred from the Weyl cone dispersion relations
found in ARPES [9–11] and the heavy quasiparticle masses
(m∗ ∼ 10−100 me) inferred from magnetothermoelectric
measurements [35]. A second crucial question that needs to be
answered is the following: Why are Shubnikov–de Haas oscil-
lations not seen in the surface resistivity? Another interesting
and possibly related question is whether bulk spin-excitons
in SmB6 [36–38], due to the long decay lengths of the surface
state (estimated from ξ ∼ h̄vF

�
, with vF ∼ 6.5 × 105 m/s [12]

as ξ ∼ 430 Å), couple to the metallic surface states [39], and if
so, is the resonant interaction [40] responsible for the observed
decrease in magnetic activity within 400–900 Å of the
surface [41]?
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