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Dirac semimetals are three-dimensional analogs of graphene with massless Dirac fermions as low-energy
electronic excitations. In contrast to Weyl semimetals, the point nodes in the bulk spectrum of topological Dirac
semimetals have a vanishing Chern number, but can yet be stable due to the existence of crystalline symmetries
such as uniaxial (discrete) rotation symmetry. We consider a model low-energy Hamiltonian appropriate for the
recently discovered topological Dirac semimetal Cd3As2, and calculate the Nernst response within semiclassical
Boltzmann dynamics in the relaxation-time approximation. We show that, for small chemical potentials near the
Dirac points, the low-temperature low-magnetic-field Nernst response is dominated by anomalous Nernst effect,
arising from a nontrivial profile of Berry curvature on the Fermi surface. Although the Nernst coefficient (both
anomalous as well as conventional) vanishes in the limit of zero magnetic field, the low-temperature low-magnetic-
field Nernst response, which has an almost steplike profile near B = 0, serves as an effective experimental probe
of anomalous Nernst effect in topological Dirac semimetals protected by crystalline symmetries. Additionally,
we also calculate the Nernst response for a lattice model of an inversion-asymmetric Weyl semimetal for which,
in contrast to the case of the Dirac semimetal, we find that the conventional Nernst response dominates over the
anomalous. Our calculations in this paper on Nernst response of Dirac semimetals and inversion broken Weyl
semimetals are directly relevant to recent experiments on Cd3As2 (Dirac semimetal) and NbP (inversion broken
Weyl semimetal), respectively.
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I. INTRODUCTION

Dirac semimetals (DSMs) are three-dimensional (3D)
analogs of graphene, with point nodes in the bulk energy
spectrum supporting low-energy excitations with relativis-
tic energy-momentum relations resembling massless Dirac
fermions [1,2]. In principle they can arise at the quantum
critical point between a 3D topological insulator and a con-
ventional insulator with fine tuning of an external parameter.
Topological Dirac semimetals are stable 3D electron systems
with bulk Dirac nodes protected by crystalline symmetries
[3–5]. In DSMs, owing to the simultaneous presence of time
reversal (TR) and space inversion symmetries, the bulk energy
bands are Kramers degenerate locally at each k (En,σ (k) =
En,−σ (k)). The Kramers degeneracy ensures that an accidental
crossing between valence and conduction bands engenders
a fourfold degenerate Dirac node. Such fourfold degenerate
nodes in the bulk energy spectrum can be stable only in the
presence of additional symmetries, such as uniaxial discrete
crystal rotation symmetries Cn [5]. This can be contrasted
with three-dimensional topological Weyl semimetals (WSMs)
[1,6–8], where (twofold degenerate) Weyl nodes in the bulk
energy spectrum are stable due to the existence of a nonzero
Chern number invariant associated with each Weyl node. In
DSMs the simultaneous presence of time reversal and space
inversion symmetry ensures that the Chern number vanishes
for each Dirac node, which can in turn be thought of as the
superposition of a pair of Weyl nodes with equal and opposite
chirality.

In recent studies several materials have been theoretically
proposed to be topological DSMs [3,6,9–11]. On the exper-
imental side, Cd3As2 [12–19] and Na3Bi [20–22] have been
experimentally confirmed to support three-dimensional bulk

Dirac nodes with a linear energy spectrum. In this paper we
take a system with a pair of fourfold degenerate Dirac nodes
on a high-symmetry axis (which we choose as the kz axis
as the axis of Cn crystal rotation symmetry) as a prototypical
topological DSM. The recently discovered DSMs, Cd3As2 and
Na3Bi, are both thought to be in this class. This class of DSMs
is topological because, since the Dirac points appear on the
high-symmetry axis at (kx,ky,kz) = (0,0,±kz0), the system is
invariant under a discrete rotation symmetry C4 about the kz

axis, which is responsible for the stability of the Dirac points.
The C4 discrete rotation symmetry about the kz axis allows one
to define an additional integer topological invariant (mirror
Chern number) on the kz = 0 plane [5]. The mirror symmetry
appears here as a result of the combination of space inversion
symmetry and π rotation about the kz axis, which follows from
the existence of the C4 symmetry.

Although topological DSMs have certain nontrivial topo-
logical properties such as surface Dirac fermions and zero-
energy Fermi loops, topological thermoelectric responses such
as anomalous Hall and Nernst effects, which depend on
nonzero momentum space integrals of Berry curvature across
surfaces in the Brillouin zone, must vanish in the limit of
zero magnetic field, because of the existence of time-reversal
symmetry. Since anomalous Hall and Nernst conductivities
arise from the transverse current response (odd under time re-
versal) to an applied longitudinal electric field and temperature
gradient (even under time reversal), independent of an applied
magnetic field (odd under time reversal), it follows that the
anomalous conductivities must vanish in systems that preserve
time-reversal symmetry. This can also be understood from the
fact that the Chern number of the Dirac nodes in a DSM, which
measures the flux of the Berry curvature over closed surfaces
around the Dirac node, is identically zero, and thus, in the
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absence of a magnetic field, the net flux of the Berry curvature
vanishes everywhere in the Brillouin zone. In the presence of
a magnetic field, however, time-reversal symmetry is broken,
and topological DSMs reduce to WSMs, evincing anomalous
Hall and Nernst response, superimposed over the conventional
conductivities which must also be present because of a nonzero
magnetic field.

In this paper we focus on the Nernst effect (conventional
as well as anomalous) in topological Dirac semimetals for
small magnetic fields (of the order of a few Tesla) and small
chemical potential within the framework of Boltzmann theory
in the relaxation-time approximation. Using typical parameters
[23] for the scattering time τ ∼ 0.1 ps and ωc ∼ 1 meV, we
find ωcτ � 1, thus justifying our use of Boltzmann theory.
We also make the standard assumption that any perturbation
in the system decays exponentially with a relaxation time τ ,
which is valid for small (fk − f0) with fk (f0) the perturbed
(equilibrium) distribution function. In our calculations we
find that the conventional Nernst response is small due to
Sondheimer cancellation, and can be of either sign depending
on temperature, but the anomalous Nernst response is large
and positive because of the peak in the Berry curvature in
the limit of small chemical potentials. At low temperatures,
the behavior of the total Nernst coefficient is characterized by
an almost steplike profile at B = 0. However, exactly at B = 0
there is no Nernst signal from either conventional or anomalous
contributions, because of the restoration of time-reversal
symmetry. The measured low-field Nernst coefficient, thus, is
dominated by the anomalous Nernst effect, at least in the limit
of small temperatures. Our results have direct experimental
relevance for Nernst and thermoelectric measurements on the
available topological Dirac semimetals Cd3As2 and Na3Bi.
Very recently, an anomalous Nernst signal has been reported
in thermoelectric experiments on the Dirac semimetal Cd3As2

by the Princeton group [24], with a steplike profile at low
magnetic fields very similar to our prediction. For related
work on thermoelectric response, although not for topological
DSMs with a pair of Dirac points as appropriate for Cd3As2

and Na3Bi, see Refs. [25,26].
Additionally in this paper we discuss Nernst response of an

inversion-asymmetric WSM. Note that both the DSM and the
inversion broken WSM are TR invariant systems, so a nonzero
anomalous Nernst coefficient should be absent in the absence
of a magnetic field. However, in the presence of a magnetic
field a DSM as well as an inversion broken WSM should
show an anomalous (induced by Berry curvature) as well as a
conventional Nernst response, both of which vanish in the limit
of zero magnetic field. The Nernst effect in inversion broken
WSMs is thus expected to be similar to that in topological
DSMs. However, we find that in the inversion broken WSM the
conventional Nernst coefficient dominates over the anomalous
contribution, which is opposite to the case in DSMs. Our
calculations on Nernst response in DSMs and inversion broken
WSMs are directly relevant to recent experiments in CD3As2

and NbP, respectively [24,27].
This paper is organized as follows. In Sec. II we introduce

the low-energy Hamiltonian appropriate for a topological
DSM with a pair of Dirac points on a high-symmetry axis. This
model should serve as an effective description for the available
topological DSM Cd3As2. In Sec. III we briefly sketch the

derivation of Nernst conductivity within Boltzmann theory
description in relaxation-time approximation in the presence
of a nontrivial Berry curvature. In the presence of a nonzero
magnetic field, the Nernst response of topological DSMs
comprises conventional as well as anomalous components,
which are then described in Secs. IV and V, respectively.
Our central results, plots for the total Nernst conductivity
(conventional as well as anomalous) as a function of the
applied magnetic field at several different temperatures, are
displayed in Fig. 5. In Sec. VI we additionally discuss the
Nernst response of an inversion-asymmetric WSM and point
out the salient experimental features. In Sec. VII we compare
our findings to that of the recent experiments on Nernst
response in Dirac semimetals and inversion broken Weyl
semimetals. We end with a brief discussion and conclusion
in Sec. VIII.

II. HAMILTONIAN FOR TOPOLOGICAL
DIRAC SEMIMETALS

The effective low-energy Hamiltonian for the Dirac
semimetal Cd3As2, in the basis |s, ↑〉, |px + ipy, ↑〉, |s, ↓〉,
|px − ipy, ↓〉 can be written as [5,28]

Hk = a(k)σzs0 + b(k)σxsz + c(k)σys0

+ d(k)σxsx + e(k)σxsy. (1)

In Eq. (1), σ and s are Pauli matrices representing the orbital
degree of freedom and spin degree of freedom, respectively.
The matrix s0 ≡ I2 is the two-dimensional identity matrix in
spin space. The functions a(k) − e(k) are defined as

a(k) = m0 − m1k
2
z − m2

(
k2
x + k2

y

)
, (2)

b(k) = ηkx, (3)

c(k) = −ηky, (4)

d(k) = (β + γ )kz

(
k2
y − k2

x

)
, (5)

e(k) = −2(β − γ )kzkxky. (6)

The parameters m0, m1, m2, η, β, and γ depend on the material.
For example, for Cd3As2 ab initio calculations up to order k2

yield m0 = .02 eV, m1 = −18.77 eV Å
2
, m2 = −13.5 eV Å

2
,

and η = 0.89 eV Å [29]. This Hamiltonian produces two Dirac
points at K = (0,0, ± √

m0/m1) where the energy dispersion
exactly vanishes. Figure 1 shows the band structure for
the prototype DSM obtained by numerically diagonalizing
Eq. (1). The effect of an external magnetic field B, coupling
to the spin degree of freedom, can be now introduced by
adding the Zeeman term HZ = bzσ0sz in the Hamiltonian,
where bz = −μ · B, μ being the spin-magnetic moment, μ =
−μBgss/h̄. For typical experimental parameters for NbP and
Na3Bi (gs ∼ 20–40 and m∗ ∼ 0.11m0) [23,30] we find that the
Zeeman energy scale is ∼2 meV and the typical orbital energy
scale h̄ωc ∼ 0.9 meV. Therefore for the sake of simplicity in
the following we ignore the orbital coupling of the magnetic
field to the Dirac electrons. With the applied magnetic field
the Hamiltonian now produces a TR broken Weyl semimetal,
with four Weyl points located at (0,0,±√

(±bz + m0)/m1).
Each Weyl node now carries a nontrivial Chern number,
which is also its chirality quantum number. Figure 1 also
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FIG. 1. Left panel: Band structure of the Dirac semimetal given
by Eq. (1) consisting of two fourfold degenerate Dirac points at
(0,0,±√

m0/m1). Right panel: The spin degeneracy is lifted by a
magnetic field producing a total of four doubly-degenerate Weyl
points located at (0,0,±√

(±bz + m0)/m1). The parameters [31] used
were m2 = −η/5, m0 = −2η, m1 = −4η, β = −η/5, γ = η, and
bz = 0 (bz = 3η/5) for the (left) right panels. Bottom panels: Fermi
surfaces for the doped Dirac (Weyl) metals on the left (right), when
bz = 0 (bz = 3η/5), for μ = 0.16η. The parameter η was chosen to
be η = 50 meV.

shows the band structure for the TR broken Weyl semimetal.
Near half filling, the Fermi surface for a Dirac semimetal
consists of two disconnected spheres, as shown in Fig. 1, for
μ > 0. The Zeeman field then splits each sphere into two
disconnected surfaces around each Weyl point. Although the
topological DSM described by the Hamiltonian in Eq. (1) is
characterized by a vanishing Berry curvature, the topological
WSM described by H = Hk + HZ has a nontrivial profile of
Berry curvature in the Brillouin zone. The expression for the
Berry curvature is given by [32]

	n
ab = i

∑
n
=m

〈n|∂H/∂ka|m〉〈m|∂H/∂kb|n〉 − (a ↔ b)

(εn − εm)2
.

(7)

The Hamiltonian H = Hk + HZ produces four bands which
we have labeled by the index n in the above expression. Also,
|n〉 is a Bloch eigenstate of the Hamiltonian H with eigenvalue
εn. In Fig. 2 we have plotted the Berry curvature distribution for
the DSM with Zeeman coupling described by the Hamiltonian
H = Hk + HZ .

III. NERNST EFFECT IN THE PRESENCE
OF BERRY CURVATURE

The Nernst effect refers to the generation of a transverse
electric field in the presence of a longitudinal temperature

FIG. 2. Berry curvature flux for the topological DSM described
by the Hamiltonian given in Eq. (1), in the presence of a magnetic
field (in the presence of a magnetic field the system is effectively a
Weyl semimetal). The plot on the left shows the Berry curvature in
the plane kx = 0 suggesting a sink and source of Berry flux near
each Dirac point at (0,0,±√

m0/m1). On the right, we have the
Berry curvature distribution zoomed in near a single Dirac point
(0,0,+√

m0/m1) ≈ (0,0,0.7) [now split into two Weyl points at
≈(0,0,0.6) and ≈(0,0,0.8) when bz 
= 0]. A similar distribution (not
shown specifically by zooming) exists around the other Dirac point
(0,0,−√

m0/m1).

gradient. Conventionally, the Nernst effect can occur only in
the presence of an external magnetic field, which provides
a transverse velocity to the electrons by the Lorentz force.
However, a nontrivial Berry curvature 	 can also give rise to a
Nernst response as a result of an anomalous velocity term [33].
In the presence of an external electric field E and a temperature
gradient −∇T , one can write the following linear response
relations for the charge current J and thermal current Q:(

J
Q

)
=

(
σ̂ α̂
ˆ̄α κ̂

)(
E

−∇T

)
. (8)

The tensors ˆ̄α and α̂ are related to each other by Onsager’s
relation: ˆ̄α = T α̂. In the absence of charge current (J = 0),
we have E = σ̂−1α̂∇T . The Nernst coefficient ν can be
derived to be

ν = Ey

(−dT /dx)
= αxyσxx − αxxσxy

σ 2
xx + σ 2

xy

. (9)

Berry curvature significantly contributes to the conductivities
σ and α. In the presence of Berry curvature 	k, the
semiclassical equation of motion for an electron takes
the form [33,34] ṙ = 1

h̄

∂ε(k)
∂k + ṗ

h̄
× 	k. The first term

is the familiar relation between semiclassical velocity ṙ and
the band energy dispersion ε(k). The second term is the
anomalous transverse velocity term originating from 	(k).
In the presence of electric and magnetic fields we also have
the standard relation ṗ = eE + eṙ × B. These two coupled
equations for ṙ and ṗ can be solved together to obtain [35,36]

ṙ = D(B,	k)
(

vk + e

h̄
(E × 	k) + e

h̄
(vk · 	k)B

)
, (10)

ṗ = D(B,	k)

(
eE + e

h̄
(vk × B) + e2

h̄
(E · B)	k

)
(11)

where D(B,	k) = [1 + e(B · 	k)/h̄]−1.
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Using the semiclassical Boltzmann equations in the pres-
ence of a nonzero electric and magnetic field and a Berry cur-
vature, one can derive the following thermoelectric and charge
conductivity tensors (σ and α) which include contributions
from the B and �k [25,26,37,38]:

σxx = −e2
∫

[dk]v2
xτ

(
−∂feq

∂ε

)
(cx − D), (12)

σxy = −e2
∫

[dk][v2
ycy + vxvy(cx − D)]τ

(
−∂feq

∂ε

)

+ e2

h̄

∫
[dk]	zf0, (13)

αxx = e

∫
[dk]v2

x

[
τ

ε − μ

T

(
−∂feq

∂ε

)
(cx − D)

]
, (14)

αxy = e

∫
[dk]

[
v2

ycy + (cx − D)vxvy

][
τ

ε − μ

T

(
−∂feq

∂ε

)]

+ kBe

h̄

∫
[dk]	zsk (15)

where vx ≡ h̄−1∂εk/∂kx and vy ≡ h̄−1∂εk/∂ky are the band
velocities, εF is the Fermi energy, τ is the scattering time,
[dk] ≡ d3k

(2π)3 , f0 is the Fermi-Dirac distribution, and sk =
−f0 log f0 − [(1 − f0) log(1 − f0)] is the entropy density for
the free-electron gas. The scattering time τ usually has a
nontrivial energy and momentum dependence. In this paper
we have assumed τ to be a phenomenological constant, which
suffices for our discussion and does not change our qualitative
results. The correction factors cx , cy , and D in Eqs. (12)–(15)
have lengthy expressions and have been discussed elsewhere
[25]. In the absence of Berry curvature D → 1, and cx − D →
−1 (up to zeroth order in B). It is important to note that the
longitudinal conductivities (σxx , αxx) are also modified from
their standard Boltzmann expressions due to Berry curvature
corrections. If these corrections can be ignored, then Eqs. (12)
and (14) reduce to the following [39]:

σxx = e2
∫

[dk]v2
xτ

(
−∂feq

∂ε

)
, (16)

αxx = − e

T

∫
[dk]v2

xτ (ε − μ)

(
−∂feq

∂ε

)
. (17)

Similarly, if the Berry curvature corrections to the conventional
B-dependent conductivities are ignored, then Eqs. (13) and
(15) reduce to [33,39]

σxy = −e3τ 2B

h̄

∫
[dk]

(
−∂f0

∂ε

)(
v2

x∂
2ε

∂k2
y

− vxvy∂
2ε

∂kx∂ky

)

+ e2

h̄

∫
[dk]	zf0, (18)

αxy = e3τ 2B

T h̄

∫
[dk](ε − μ)

(
−∂f0

∂ε

)(
v2

x∂
2ε

∂k2
y

− vxvy∂
2ε

∂kx∂ky

)

+ kBe

h̄

∫
[dk]	zsk. (19)

IV. CONVENTIONAL NERNST RESPONSE

The conventional Nernst coefficient can be deduced by
using Eqs. (16)–(19) in the limit �k → 0, and the definition
of ν [Eq. (9)]. In conventional metals, the quasiparticle
Nernst coefficient is usually small as a result of Sondheimer
cancellation [40,41]. For example, the Nernst coefficient ν/B

is 3.9 nV/KT for Al, and −21.6 nV/KT for Cu [42,43]. In
the limit of small μ, the conventional Nernst coefficient for a
linearized Dirac Hamiltonian (εk = h̄vF σ · k) can be derived
to be [25]

ϑ0 = −π2

3

k2
BT

e

eBv2
F τ

h̄
, (20)

where τ parametrizes the scattering time. If τ is large,
then the Nernst coefficient can also be parametrically large
even in the presence of Sondheimer’s cancellation. For our
model and the chosen parameters [29] for Cd3As2, using
Eqs. (16)–(19) with �k → 0 and τ ∼ 0.1 ps [23], we found
that the conventional Nernst coefficient is at least one order
of magnitude smaller than the anomalous Berry curvature
dependent response, due to the peaks in the Berry curvature
near μ = 0 at the four nodal Weyl points (see Fig. 3).
Importantly, the sign of the conventional Nernst coefficient
is not directly related to the sign of the dominant charge
carriers in the material. It can be either positive or negative
for an electron or a holelike Fermi surface, depending on the
detailed Fermi-surface topology [41,44]. Our model produces
a negative conventional Nernst signal (for positive bz) at
low temperatures (T ∼ 10 K), and a positive Nernst signal
(for positive bz) at higher temperatures (T ∼ 100 K). Further,
electron (μ > 0) or hole (μ < 0) doping does not change the
sign of the conventional Nernst coefficient.

Though the conventional quasiparticle Nernst signal is
known to be small, the Nernst effect has been used as a probe
for high-Tc cuprate superconductors, where vortex movement
is well known to give rise to a large positive Nernst signal
[41,45]. This also forms the commonly used convention to
assign a definite sign to a Nernst signal. We have followed this
sign convention in our paper.

FIG. 3. Berry curvature 	z in the kx = 0 plane for the Weyl
semimetal phase of the Hamiltonian in Eq. (1), for bz = η/5. The
Berry curvature peaks around the nodal (Weyl) points on the kz axis.
For a small chemical potential, when the Fermi surface just encloses
the Weyl points, the Nernst response is primarily dominated by the
anomalous Berry curvature dependent contributions.
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At low temperatures, the Mott relation gives αij as a
derivative of σij with respect to the chemical potential [39].
Specifically,

αij = −π2

3

k2
BT

e

∂σij

∂μ
. (21)

The Mott relation (at least at low temperatures) remains valid
for both conventional and anomalous conductivities. Using the
Mott relation, the Nernst coefficient ν can be derived to be

ν = −π2

3

k2
BT

e

∂�H

∂μ
, (22)

where �H = σxy/σxx is the Hall angle, in the limit σxy � σxx .
Expanding ∂�H/∂μ, we have

ν = −π2

3

k2
BT

eσ 2
xx

(
σxx

∂σxy

∂μ
− σxy

∂σxx

∂μ

)

= αxx

σxx

(�P − �H ), (23)

where �P is the Peltier angle, with �P = αxy/αxx . For a Dirac
node having a spherical Fermi surface the longitudinal conduc-
tivity (σxx), which depends on the area of the Fermi surface,
increases (decreases) for an electron (hole) doped system, with
increasing μ. The Hall conductivity (σxy), which correlates
with the Fermi-surface curvature, is negative (positive) for
electron (hole) doping. However, σxx > 0, and ∂σxy/∂μ < 0
for both electronlike and holelike Fermi surfaces. Hence the
Hall and Peltier angles carry the same sign in Eq. (23).
Sondheimer’s cancellation [40,41,45] occurs when the angles
�H and �P are close to each other in magnitude and have
the same sign, sgn(�H ) = sgn(�P ). This is the case in our
calculation of the conventional Nernst response, resulting in
a conventional Nernst coefficient much smaller in magnitude
than the anomalous Nernst coefficient, which does not undergo
Sondheimer cancellation. This has also been illustrated in
Fig. 4, where the currents due to charge conductivity tensor σ

and the Peltier coefficient α oppose each other, in the case of
conventional Nernst response.

V. ANOMALOUS NERNST RESPONSE

In the presence of Berry curvature (	k), Eqs. (16)–(19)
can be used to compute the Nernst coefficient. The anomalous
transverse conductivities can be extracted to be

σA
xy = e2

h̄

∫
[dk]	zf0, (24)

αA
xy = kBe

h̄

∫
[dk]	zsk. (25)

The quantity σA
xy depends on the Berry curvature of the filled

bands, but αA
xy is a Fermi-surface quantity, because sk is zero

for completely filled and empty bands. It is for this reason that
an insulator can give rise to an anomalous Hall response (σA

xy),
but not αA

xy . The Dirac semimetal itself does not result in an
anomalous Nernst signal, as the net flux of Berry curvature
exactly vanishes everywhere in the Brillouin zone. Under
the application of an external magnetic field B, each Dirac
node splits into two Weyl nodes, and near half filling a Weyl
semimetal is realized. The transition from a Dirac semimetal
to a Weyl semimetal under the application of a magnetic

FIG. 4. Top panel: Sondheimer’s cancellation for conventional
quasiparticle Nernst effect. The magnitudes of the Hall angle �H

and the Peltier angle �P are close to each other, with sgn(�H ) =
sgn(�P ), resulting in a small Nernst signal in the presence of a
longitudinal temperature gradient −∇T and a perpendicular magnetic
field B. The red arrows represent the current direction due to the
electric field and temperature gradient. Bottom panel: The Hall and
the Peltier angles no longer have the same signs for the anomalous
Nernst response in a Dirac semimetal, resulting in no net Sondheimer
cancellation. The magnetic field breaks TR symmetry giving rise to a
Weyl system with a measurable Nernst signal (electric field generated
in the y direction for a temperature gradient −∇T in the x direction),
which is a primarily anomalous response due to the peaking of the
Berry curvature for small chemical potentials.

field has been highlighted in Fig. 1. A Weyl semimetal has
a nontrivial distribution of magnetic flux (as illustrated in
Figs. 2 and 3), and an anomalous Nernst signal can thus be
expected.

Unlike the conventional Hall conductivity (σxy), the anoma-
lous Hall conductivity (σA

xy) has a different behavior with
respect to changes in the chemical potential. The magnitude of
the anomalous Hall conductivity peaks near the band-touching
points at μ = 0, as in the vicinity of these points the Berry
curvature is sharply peaked (Fig. 3). For small electron or hole
doping, when μ 
= 0, the Berry curvature effects reduce and the
magnitude of σA

xy decreases. The Mott relation [Eq. (21)], thus
produces opposite signs of αA

xy for electron (positive sign) and
hole doping (negative sign). The anomalous Peltier coefficient
αA

xy = 0 for an arbitrary μ, if the underlying quasiparticle
dispersion is that of an unbounded linearized spectrum of
Weyl fermions, because then σA

xy is robust to changes in the

Fermi energy [25,26]. Specifically, σA
xy = e2

2π2h̄
k0 for a simple

linearized model of a Weyl semimetal with node separation
given by k0 in momentum space [8,46,47]. However, for
a physical Weyl semimetal with an ultraviolet cutoff, αA

xy

remains generically finite [25].
Now we note that for the anomalous conductivities (σA

xy ,
αA

xy) the Hall (�H ) and Peltier (�P ) angles, irrespective of
their own magnitudes (which may or may not be of the
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FIG. 5. Nernst coefficient (ν/T ) as a function of applied magnetic
field B, for the Dirac semimetal at μ = 0.01 eV (with an electron-
like Fermi surface). The full Nernst coefficient has been plotted,
although we find that the response is primarily dominated by the
anomalous contribution which is an order of magnitude larger than
the conventional contribution. At lower temperatures, the behavior
is characterized by an almost steplike profile near B = 0. However,
exactly at B = 0 there is no Nernst signal from either conventional
or anomalous contributions. The estimated Nernst coefficient is
of the order ∼μV/K2. Recently, an anomalous Nernst signal has
been reported in thermoelectric experiments on topological Dirac
semimetal Cd3As2 by the Princeton group [24], with a steplike profile
similar to above. The values of parameters were chosen from the
ab initio calculations [29] for Cd3As2 DSMs as given below Eq. (6)
and τ ∼ 0.1 ps [23].

same order), have opposite signs of each other, sgn(�H ) =
−sgn(�P ) [in contrast to the case of conventional Nernst
response where sgn(�H ) = sgn(�P )]. This suggests that
Sondheimer’s cancellation does not take place, generating
a measurable anomalous Nernst signal, stronger than the
conventional quasiparticle Nernst signal. This feature has also
been illustrated in Fig. 4. The angles �H and �P carrying
opposite signs result in a net nonzero electric field Ey in
the transverse direction. The overall sign of the anomalous
Nernst signal in the present case correlates with the sign of the
anomalous Hall conductivity σA

xy .
We numerically compute the full Nernst coefficient, in-

cluding contributions from the the conventional B-dependent
responses and the anomalous responses, using Eqs. (12)–(15).
In Fig. 5, we plot the estimated Nernst coefficient (ν/T )
as a function of external magnetic field B applied in the
ẑ direction. As suggested by our previous discussion, the
Nernst response is primarily dominated by the anomalous
contribution. This is further confirmed by our numerical
results, where the conventional Nernst coefficient was found to
be at least one order of magnitude smaller than the anomalous
Nernst coefficient. At lower temperatures (∼T < 100 K), the
behavior of the Nernst coefficient (ν/T ) is characterized by
an almost steplike profile at B = 0. The distribution of the
flux of the Berry curvature determines the anomalous Hall
conductivity σA

xy . For B < 0, σA
xy < 0, and for B > 0, σA

xy > 0.

Exactly at B = 0, one does not expect a finite σA
xy , or a finite

ν, as �(B=0) = 0. As pointed out before, the sign of ν directly
correlates with the sign of σA

xy .

VI. NERNST RESPONSE FOR INVERSION
BREAKING WEYL SEMIMETALS

Our motivation for this section comes from another recent
experiment, where the Nernst response in an inversion-
asymmetric Weyl semimetal has been measured [27]. As in a
DSM discussed in previous sections, inversion broken WSMs
do not break TR, therefore we do not expect anomalous
(induced by Berry curvature) Nernst response in the absence
of a magnetic field. In the presence of broken TR symmetry
by a magnetic field, however, we expect both anomalous and
conventional Nernst response. In this section we calculate the
total (sum of conventional and Berry curvature induced) Nernst
response for an inversion breaking WSM. The low-energy
lattice Hamiltonian for an inversion breaking WSM can be
written as [48]

H (k) = −{m[1 − (cos kz)
2 − cos ky]

+ 2tx(cos kx − cos k0)}σ1 − 2t sin kyσ2 − 2t cos kzσ3.

(26)

The Hamiltonian in Eq. (26) produces four Weyl points at
(±π/2,0,±π/2) as shown in Fig. 6. We will briefly comment
about the symmetries of the above lattice Hamiltonian under
the action of two symmetry operators, namely, P (inversion
symmetry operator) and T (time-reversal symmetry operator).
Following Ref. [48], we can choose a definite representation
of the operators, P = σ1 and T = K, where K is the
complex conjugation operator (as we are considering spinless
fermion bands), and we note that P†H (−k)P 
= H (k) and
T †H (−k)T = H (k), indicating that the low-energy effective
Hamiltonian breaks inversion symmetry but preserves time-
reversal symmetry. To account for contribution from an
external magnetic field (bz) we add the term bzσ3 to the
above Hamiltonian. The total Nernst coefficient normalized
by the temperature for an inversion broken WSM described
by the Hamiltonian in Eq. (26) is shown in Fig. 6. For this
model we find that the conventional contribution is much
higher than the anomalous contribution, therefore the Nernst
signal constitutes a mostly conventional B-dependent signal.
The Nernst coefficient ν/T is ∼100 μV/K2, which is of the
same order of magnitude as in the experiments [27]. We
also note that the Nernst signal has a maximum at a finite
value of the magnetic field, in contrast to the behavior of an
anomalous contribution dominated Nernst coefficient in DSMs
which peaks and saturates at low magnetic fields producing a
steplike feature near B = 0 (Fig. 5). Our results consisting of
a finite magnetic field peak for the conventional Nernst signal
and the low-field saturation leading to a steplike feature near
B = 0 for the anomalous Nernst signal are consistent with the
experiments [24].

VII. EXPERIMENTAL IMPLICATIONS

Recently an anomalous Nernst signal has been reported in
thermoelectric experiments on topological Dirac semimetals

195119-6



NERNST EFFECT IN DIRAC AND INVERSION- . . . PHYSICAL REVIEW B 96, 195119 (2017)

FIG. 6. Upper panel: The band structure of an inversion broken
WSM given by Eq. (26) consists of four Weyl points located
at (±π/2,0,±π/2). For our numerical calculations we have used
the parameters [48,49] k0 = π/2, tx = t/2, m = 2t , μ = t/5, t =
5 meV, and τ = 0.1 ps. Lower panel: Total Nernst signal (ν/T ) as a
function of applied magnetic field B (in Tesla) for an inversion broken
WSM described by the Hamiltonian in Eq. (26) at μ = t/5. The plot
shows the full Nernst signal for different temperatures. When the
magnetic field is zero the total Nernst signal vanishes, as expected,
and it gradually decreases with increase in temperature. Although the
full Nernst signal has been plotted, in contrast to the case of DSMs
(Fig. 5), the conventional contribution is significantly larger than the
anomalous contribution. As a result, the total Nernst signal has a
maximum at a finite value of the magnetic field, in contrast to the
Nernst response in DSMs dominated by the anomalous contribution
which has a steplike profile near B = 0.

[24], with a steplike profile similar to our theoretical pre-
diction. In this section we will briefly compare our findings
to these recent experiments. The Nernst signals observed in
these experiments reveal a large anomalous Nernst coefficient,
suggesting the existence of Berry curvature produced by the
separation of the Weyl nodes. For samples which reveal an
anomalous response, the observed anomalous Nernst signal
shows a steplike profile near B = 0, with significant beating
effect in the quantum oscillations of the Nernst signals at
higher B. The steplike characteristic feature is similar to our
prediction, however the beating effect is not revealed in our
calculations, indicating breakdown of the quasiclassical limit
at higher values of B. On the other hand, in samples which
reveal a conventional response, the Nernst signal rises steeply
to a sharp Drude-like peak at a finite value of B and then

decreases towards zero for higher B. This feature is also
captured in Fig. 6, which shows the Nernst coefficient for
an inversion broken WSM which is dominated by the conven-
tional contribution. The order of magnitude of the anomalous
Nernst signal observed in the experiments also seems to be
at least one order of magnitude bigger than the observed
conventional Nernst signal, as in our calculations. The orders
of magnitude of the Nernst coefficient predicted in our paper
for Dirac semimetals (Fig. 5) and for inversion-asymmetric
Weyl semimetals (Fig. 6) are similar to the ones seen in
experiments in Refs. [24,27], respectively. In particular in
Ref. [27] the Nernst thermopower (αxyz) for T = 10.5 K is of
the order of 100 μV/K. On the other hand from our numerical
calculations in Fig. 6 the Nernst coefficient ν/T varies
between 15 and about 60 μV/K2 for temperatures between
T = 22 and 15 K, respectively, which translates into a value
for the Nernst thermopower ranging from 300 to 900 μV/K.
The slight disagreement between experimental values and
numerical ones can be due to uncertainty in the values of
τ which we take to be ∼0.1 ps, which is only an order-of-
magnitude estimate [48,49]. There is a similar factor of 2–5
difference between the experimentally reported values of ν/T

in Ref. [24] (ν/T ∼ 1 μV/K2) and our numerical values for
the same quantity given in Fig. 5, although they are similar in
the order-of-magnitude estimates. This slight discrepancy can
also be due to uncertainties in the values of τ , which again is
taken to be τ ∼ 0.1 ps as in Fig. 6.

VIII. CONCLUSIONS

Three-dimensional topological Dirac semimetals are char-
acterized by nodes in the bulk energy spectrum with a vanish-
ing Chern number. Because of the vanishing flux of the Berry
curvature through any surface in the Brillouin zone, anomalous
Hall and Nernst conductivities vanish in a topological DSM
in the absence of a magnetic field. In the presence of a
magnetic field, however, a topological DSM reduces to a
Weyl semimetal, evincing a nonzero Hall and Nernst response,
which have contributions from both conventional as well as
anomalous (Berry curvature mediated) components. In this
paper we consider a topological DSM with a pair of Dirac
nodes on a high-symmetry axis (axis of fourfold rotational
symmetry, C4), which is an appropriate description of the
experimentally realized Dirac semimetal Cd3As2. For this
system we compute the total Nernst coefficient (conventional
as well as anomalous) in the presence of a small finite
magnetic field (a few Tesla) and small chemical potential,
within the Boltzmann description in the relaxation-time
approximation.

In Boltzmann formalism we find that the conventional
Nernst response in topological DSMs is typically small due to
Sondheimer cancellation, and can be of either sign depending
on temperature, small and negative at low temperatures
(∼10 K), and small and positive at higher temperatures
(∼100 K). In contrast, we find that the anomalous Nernst
response is large and positive because of the peaking of the
Berry curvature in the limit of small chemical potentials
and due to the absence of Sondheimer cancellation. Our
calculated anomalous Nernst coefficient is almost one order
of magnitude larger than the conventional Nernst coefficient
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at similar temperatures and magnetic field. The measured
low-field Nernst coefficient, thus, is expected to be dominated
by the anomalous Nernst effect, at least in the limit of small
temperatures. At low temperatures, the behavior of the total
Nernst coefficient is characterized by an almost steplike profile
at B = 0. However, exactly at B = 0 there is no Nernst signal,
from either conventional or anomalous contributions, because
of the restoration of time-reversal symmetry. Our results have
direct experimental relevance for Nernst and thermoelectric
measurements on the experimentally available topological
DSMs Cd3As2 and Na3Bi, as an anomalous Nernst signal can
directly probe Berry curvature in these materials. Recently an
anomalous Nernst signal has been reported in thermoelectric
experiments on topological Dirac semimetals [24], with a
steplike profile similar to our theoretical prediction.

Additionally we have also discussed Nernst response of
an inversion-asymmetric WSM. Since both the DSM and the
inversion broken WSM are TR invariant systems, the Nernst
effect in inversion broken WSMs is thus expected to be similar
to that in a DSM. However, we find that in the inversion
broken WSM the conventional Nernst coefficient dominates
over the anomalous contribution, which is opposite to the case
in DSMs. Our calculation on Nernst response in an inversion
broken WSM is also directly relevant to recent experiments in
NbP [27].
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