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systems using the Kubo formula

Jan-Moritz Bischoff* and Eric Jeckelmann
Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany

(Received 13 September 2017; published 3 November 2017)

We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the
zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to
compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency
finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite
system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is
able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance
in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double
barrier.
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I. INTRODUCTION

Electronic systems exhibit a number of interesting proper-
ties when they are confined to reduced spatial dimensions. In
particular, the transport properties of (quasi-)one-dimensional
correlated electron systems such as quantum wires have been
extensively studied during the last two decades [1–3]. They
differ vastly from the well-understood dynamical properties
of a three-dimensional metal. The theory of Luttinger liquids
describes the low-energy properties of one-dimensional corre-
lated conductors [2]. Electronic Luttinger liquids are believed
to be realized in semiconductor quantum wires [4], carbon
nanotubes [5], and atomic wires deposited on semiconducting
substrates [6,7]. Beyond the generic Luttinger liquid paradigm,
however, we only have a fragmentary understanding of
quantum transport in one-dimensional systems because we
lack strong versatile methods for these problems.

The density-matrix renormalization group (DMRG)
method is the most powerful numerical method for com-
puting the properties of one-dimensional correlated lattice
models [8–11]. Various approaches have been developed to
compute the transport properties using DMRG. In particular,
time-dependent DMRG simulations of systems driven out
of equilibrium have proven to be a useful tool for this
purpose. They have been used successfully to investigate
the conductance of small interacting systems coupled to
noninteracting leads [12–19] and of isolated quantum wires out
of equilibrium [12,20,21]. In addition, time-dependent DMRG
approaches have been developed to study the Drude weight
of quantum systems at finite temperature [22–24], as well as
nonequilibrium steady states in quantum spin chains using the
Lindblad formalism [25,26]. However, it remains very difficult
to carry out accurate calculations over a long-enough period of
time to simulate the dc transport in large systems. Therefore,
a DMRG method that computes dc properties such as the
conductance of quantum wires directly is very desirable.

For instance, the static response to twisted boundary
conditions [27] was used to compute the Drude weight (charge
stiffness) of correlated chains [28,29] and the conductance
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through a short interacting region inside a noninteracting ring
[30,31]. However, this approach is not practical because of the
lower efficiency of DMRG methods for systems with periodic
boundary conditions.

A decade ago, Bohr et al. [32] showed that DMRG
could be used to evaluate the Kubo formula for the linear
response to a potential bias [33]. (Similarly, DMRG and Kubo
formalism can be combined to compute the Drude weight
[28,34].) Such DMRG computations of the linear conductance
were carried out for various interacting systems coupled to
noninteracting leads: short wires [32], small nanostructures
[35], and benzenelike ring structures [36]. Surprisingly, this
approach has rarely been used.

In this paper we revisit and improve the DMRG evaluation
of the Kubo formula for the zero-temperature linear conduc-
tance of one-dimensional correlated lattice models. We first
show how to compute the linear response of a finite system
to an applied ac source-drain voltage using the dynamical
DMRG method [37,38] and then how to extrapolate the
low-frequency finite-system response to the thermodynamic
limit to obtain the dc conductance of an infinite chain. The
method is demonstrated on the one-dimensional spinless
fermion model at half filling. We show that our approach is
able to replicate several predictions of the Luttinger liquid
theory, namely the renormalization of the conductance in a
homogeneous conductor [39], the universal effect of a single
barrier (on-site impurity) [40,41], and the surprising resonant
tunneling through a double barrier [41].

II. MODEL AND METHOD

A. Model

We consider a one-dimensional lattice model with M

sites and open boundary conditions. The Hamiltonian of the
unperturbated system is

H = −t

M∑
j=2

(c†j cj−1 + c
†
j−1cj )

+V

M∑
j=2

(
nj − 1

2

)(
nj−1 − 1

2

)
, (1)
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FIG. 1. Scheme of the system. A one-dimensional lattice of M

sites is divided into three segments by an external potential with a
profile determined by coefficients C(j ) in Eq. (3): left and right leads,
where the potential is constant, and quantum wire of MW sites, where
the potential decreases linearly.

where c
†
j (cj ) creates (annihilates) a spinless fermion on site

j (=1, . . . ,M) and nj = c
†
j cj is the density operator on the

same site. We focus on the half-filled chain; i.e., the number
of fermions is M/2 and the system length is even. In addition,
we assume that the hopping term t > 0. This model is exactly
solvable using the Bethe ansatz method [2,42]. Its excitation
spectrum is gapless in the thermodynamic limit for the nearest-
neighbor interaction parameter −2t < V � 2t , and its low-
energy properties are then described by the Luttinger liquid
theory. In this work we discuss only the model properties in
this Luttinger liquid phase.

B. Conductance

Following [40,41] we apply a spatially constant electric
field in a restricted interval of a long wire. Thus, the chain is
separated into three segments (see Fig. 1) that play the role
of a left lead, a quantum wire, and a right lead. Note that
the hopping amplitude t and interaction parameter V remain
uniform as defined in the Hamiltonian (1). Therefore, the
distinction between leads and wire emerges solely from the
applied field.

To generate a current in a finite system, we assume that the
applied electric field oscillates slowly in time. This results in
a time-dependent perturbation,

δH (τ ) = qVSDf (τ )
M∑

j=1

C(j )nj , (2)

where q is the charge carried by one spinless fermion, VSD

is the potential difference between source and drain (left
and right leads), f (τ ) is a dimensionless function of time
τ oscillating between −1 and 1, and the potential profile is
given by

C(j ) =
⎧⎨
⎩

1
2 for j � j1,

− j−j1

j2−j1
+ 1

2 for j1 < j < j2,

− 1
2 for j � j2.

(3)

The wire includes the MW(= j2 − j1 + 1) sites with indices
j1 � j � j2; see Fig. 1.

The time-dependent perturbation (2) generates a current in
the system. We focus on the current flowing through the wire.

The corresponding current operator is

J = 1

MW − 1

it

h̄

j2∑
j=j1+1

(c†j cj−1 − c
†
j−1cj ). (4)

The frequency-dependent linear conductance is then defined
by

G(ω) = lim
VSD→0

Re

{
q〈J 〉(ω)

VSDf (ω)

}
, (5)

where f (ω) and 〈J 〉(ω) denote the Fourier transforms of the
function f (τ ) in (2) and the expectation value of the current
operator (4), respectively. The dc conductance is the zero-
frequency value

G = G(ω → 0). (6)

As we consider a spinless fermion wire, the quantum of
conductance is

G0 = q2

h
. (7)

In all our numerical results, the energy scale is set by t = 1
and the charge by q = 1, and h̄ = 1. This yields G0 = 1

2π
.

Therefore, we show 2πG = G/G0 in our figures.

C. Kubo formula

Applying the Kubo formula for the linear response of the
model (1) at zero temperature to the perturbation (2) yields

G(ω) = lim
η→0+

q2

ω
[GJ,η(ω) − GJ,η(−ω)], (8)

with the imaginary part of the dynamical current-current
correlation function

GJ,η(ω) = 〈0|J η

(E0 − H + h̄ω)2 + η2
J |0〉, (9)

where the expectation value is calculated for the ground
state of the unperturbated Hamiltonian (1) with energy E0.
Correlation functions (9) can be calculated accurately for fixed
frequencies in one-dimensional correlated quantum models
using the dynamical DMRG method [37,38].

Bohr et al. [32] calculated the difference in (8) analytically
and obtained another correlator [i.e., the derivative of (9) with
respect to ω], which they evaluated directly at zero-frequency
using DMRG. Here, we have chosen to compute the correlation
function (9) for a narrow frequency interval around ω = 0
with dynamical DMRG and then to calculate the difference
in (8) numerically for ω → 0. We were able to evaluate the
Kubo formula for chains with up to M = 2000 sites using
the dynamical DMRG with less than m = 200 density-matrix
eigenstates kept. For comparison, Bohr et al. [32] reported
using up to m = 1200 density-matrix eigenstates for systems
with up to 200 sites only.

Obviously, our approach is both simpler and computation-
ally faster, but one could fear that it is ill conditioned because
of the divergent term 1/ω multiplying the difference between
correlation functions in the Kubo formula (8). However, this
formula corresponds to taking the derivative of (9) for ω → 0,
and we have found that this correlation function is smooth
around ω = 0 if the limit η → 0 is taken properly. Problems
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FIG. 2. Alternating-current conductance G(ω) of the noninteract-
ing chain for (a) M = 100, with broadening η = 0.48t/M , and (b)
three different system sizes M , with broadening η = 48t/M . In all
cases, MW = 10.

occur only for finite systems (i.e., taking the limits η,ω → 0
for a fixed M). Therefore, the real issue is to use the proper
finite-size scaling. As an example, Fig. 2 shows G(ω) for an
noninteracting chain (V = 0) for various values of M and
η. Figure 2(a) reveals the discrete structure of the spectrum
for a too-small broadening η, while Fig. 2(b) illustrates the
smooth spectra G(ω) that are obtained with large-enough
broadening η.

D. Finite-size scaling

Dynamical DMRG yields numerical results for GJ,η(ω) in
a system with finite sizes M and MW at finite broadening η.
Steady-state transport is ruled out in a finite-length chain with
open boundary conditions, however. For instance, the Drude
spectral weight of a one-dimensional metal is shifted to a
finite frequency ∼1/M in the optical conductivity spectrum
[43]. Therefore, taking (6) and (8) into account, we have to
compute three limits,

G = lim
ω→0

lim
η→0+

lim
M→∞

q2

ω
[GJ,η(ω) − GJ,η(−ω)], (10)

from our DMRG data for GJ,η(ω). This is the physically
correct order of the limits. The time required to go through the
system ∼M must be larger than the measurement time ∼1/η,
which must be larger than the period of the perturbation ∼1/ω

in the linear response theory. Note that changing the limit order

FIG. 3. DMRG results for the conductance G(M) of the nonin-
teracting chain as a function of the ratio MW/M between system
size and wire length for different wire lengths MW. For all cases,
η = 48t/M . Solid lines are polynomial fits. The dashed line shows
the exact result for MW = 10.

can yield wrong results. For instance, taking the limit M last
always yields G = 0.

In agreement with the finite-size-scaling analysis of the
optical conductivity presented in Ref. [37], we have found
that we can take the first two limits simultaneously using
the scaling ηM = C, where the constant C is large enough
to hide the discrete structure of the finite-system spectra.
Then the value of the conductance can be obtained directly
at zero-frequency because the finite η smoothens the spectrum
of G(ω) over a range �ω ≈ η = C/M around ω = 0. For
instance, the smoothened spectra can be seen in Fig. 2(b) for
a noninteracting chain using ηM = 48t .

Physically, this scaling means that we can simulate dc
transport over a finite time scale ∼ω−1 ∼ η−1 ∼ M in a finite
system of size M . We note G(M), the value of the conductance
obtained with this procedure for a fixed system size M ,

G(M) = q2

ω
[GJ,C/M (ω) − GJ,C/M (−ω)]|ω=0. (11)

Extrapolating these values to M → ∞ yields the dc con-
ductance in the thermodynamic limit (10). For all results
presented here, we have used η = 48t/M and chain lengths
up to M = 2000.

For a noninteracting chain [i.e., V = 0 in the Hamiltonian
(1)], we can perform all calculations analytically, and we
recover the quantum of conductance (7) as expected. For finite
M and MW we can reduce the expectation value (9) to sums
over the single-particle eigenstates, which can be evaluated
exactly using simple numerics. The resulting G(M) is shown
in Fig. 3 for MW = 10.

With this procedure we obtain the dc conductance G for
a wire of finite size MW. While there are open problems
for finite-size structures that we could investigate with this
approach, we are here interested in long wires that can exhibit
the properties of Luttinger liquids. Therefore, we also have to
analyze the finite-size scaling with MW.

Furthermore, a space- and time-dependent electric field
E(k,ω) with wave number k and frequency ω induces a current
j (k,ω) = σ (k,ω)E(k,ω) in a one-dimensional system with
linear conductivity σ (k,ω) [44]. In an ideal, infinitely long
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one-dimensional conductor, the conductance G determines the
response to an inhomogeneous (k �= 0) but static (ω = 0) field:
Re{σ (k,0)} = 2πGδ(k). In the setup of Fig. 1 with M → ∞,
the wave number is determined solely by the range over which
the potential varies, i.e., k ∼ 1/MW, and thus we have to
investigate the scaling of G for large-enough MW after taking
the limits in (10). In contrast, calculating the limit M → ∞ for
a fixed ratio M/MW first and then taking the limit ω,η → 0
yields the Drude weight D, which determines the response
to a homogeneous (k = 0) but time-dependent(ω �= 0) electric
field: Re{σ (k = 0,ω)} = 2πDδ(ω).

As a first test, we computed the dynamical correlation
function (9) with DMRG for the noninteracting system [V = 0
in Eq. (1)] and then calculated G(M) as described above. The
results are shown in Fig. 3. Clearly, G(M) converges toward the
exact result (7) for increasing M , and the convergence depends
mostly on the ratio M/MW between system size and wire
length. Physically, this just means that the charge reservoirs
(both lead parts of the one-dimensional lattice) must be much
larger than the central wire segment to simulate dc transport
in the wire. Figure 3 shows that we can reproduce the exact
result using relatively small wires. This is very convenient
because large ratios of M/MW are needed, and the DMRG
computational cost increases rapidly with M .

Therefore, we conclude that our approach is accurate
enough to determine the dc conductance in the thermodynamic
limit. In the next section, we will illustrate its possibilities for
interacting systems using a fixed wire length MW = 10, first
for homogeneous systems and then for wires including one or
two site impurities.

III. RESULTS

A. Homogeneous Luttinger liquid

According to the theory of Luttinger liquids, the transport
properties of an ideal one-dimensional conductor can be
renormalized by the interaction between charge carriers. In
particular, the dc conductance of a homogeneous one-channel
Luttinger liquid is [39–41]

GLL = KG0, (12)

where K is the so-called Luttinger parameter. This result
is valid for the setup described in Sec. II B, i.e., when the
interaction parameters are identical in leads and wire. Its
relevance for experiments is still controversial [3]. For the
half-filled spinless fermion model (1), the Luttinger parameter
can be calculated exactly from the Bethe ansatz solution of the
1D spin- 1

2 Heisenberg model [42],

K = π

2

1

π − arccos
(

V
2t

) . (13)

Therefore, the dc conductance is known exactly for a homo-
geneous Luttinger liquid.

We have calculated G(M) for the homogeneous spinless
fermion model (1) using the procedure introduced in the
previous section. The results are shown in Fig. 4 for several
interaction strengths V besides the noninteracting case. We
see that G(M) converges with increasing M toward the exact
result given by Eqs. (12) and (13) in all cases.

FIG. 4. DMRG results for the conductance G(M) as a function
of the inverse system size for various nearest-neighbor interaction
strengths V . Solid lines are polynomial fits. For all cases, η = 48t/M

and MW = 10. Pentagons on the vertical axis (1/M = 0) show the
exact values predicted by the Luttinger liquid theory (12) combined
with the Bethe ansatz solution (13).

In all our figures we show polynomial fits to our data for
G(M). Actually, these polynomial fits do not always yield
accurate results for the extrapolation G = limM→∞ G(M) in
interacting chains. For instance, see the case V = 2t in Fig. 4.
Probably, there are slowly decaying nonanalytical finite-size
corrections to G as a function of 1/M . Thus, the polynomial
fits should be considered as guides for the eye.

Nevertheless, Fig. 4 confirms that our method can evaluate
the conductance of homogeneous Luttinger liquids. As for the
noninteracting chain, only a short wire length MW is required,
but the total system size M (or more precisely the ratio
M/MW) must be very large to approach the thermodynamic
limit quantitatively.

B. Luttinger liquid with one barrier

Field-theoretical methods [39–41] predict that impurities
affect the transport properties of Luttinger liquids in a
fundamentally different way from normal metals. Thus, we
apply our method to the problem of a Luttinger liquid with one
and two barriers (on-site impurities) in order to test its validity
for inhomogeneous systems and verify the field-theoretical
predictions in a lattice model. We discuss first the results for
a single barrier. Results for two barriers are presented in the
next section.

To model the single impurity, a local potential ε is applied
at a site ja close to the middle of the wire [ja ≈ (j1 + j2)/2].
The system Hamiltonian is then

HI = H + ε nja
, (14)

where H is the Hamiltonian (1). As HI is particle-hole
symmetric, the conductance is independent from the sign of ε,
and thus we discuss only the cases ε � 0.

First, we investigate the noninteracting chain. According to
Landauer transport theory, the local impurity can be viewed
as a barrier that scatters charge carriers elastically. The
conductance of a single-channel wire is determined by the
transmission probability T through the barrier at the Fermi
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FIG. 5. DMRG results for the conductance G(M) of a nonin-
teracting chain with a single on-site impurity as a function of the
inverse system size for various barrier strengths ε. Solid lines are
polynomial fits. For all cases, η = 48t/M and MW = 10. Pentagons
on the vertical axis (1/M = 0) show the exact values predicted by
the Landauer formula (15) and (16).

energy and is given by the Landauer formula [45]

GL = G0T . (15)

The transmission coefficient can easily be calculated for a
single on-site impurity in a noninteracting one-dimensional
tight-binding lattice,

T = 4t2 sin2(kF )

4t2 sin2(kF ) + ε2
, (16)

where kF is the Fermi wave number, which takes the value
kF = π/2 in our half-filled model. Thus, the conductance of
a noninteracting wire with a single on-site impurity is known
exactly. It decreases continuously from G0 to 0 as the barrier
height ε increases.

We have computed the conductance of this noninteracting
system using our DMRG-based method as a first test for
inhomogeneous systems. The results for G(M) are shown in
Fig. 5 together with the exact results. We see that our results
match the exact values remarkably well even when the barrier
height becomes large.

The effects of impurities on the transport properties of Lut-
tinger liquids are in striking contrast to that for noninteracting
fermions [40,41]. For repulsive interactions, the conductance
is completely suppressed by the weakest on-site potential, and
thus G jumps from GLL to 0 as soon as ε �= 0. For attractive
interactions, charge carriers are not affected regardless of the
barrier strength, and thus G = GLL for all ε. Our DMRG
results are compatible with these universal properties, as
shown exemplarily in Figs. 6 and 7 for a repulsive (V = 2t)
and an attractive (V = −t) chain, respectively.

We can see for the repulsive system in Fig. 6 that the
conductance G(M) converges to zero in the thermodynamic
limit for any ε �= 0. In that figure, we show again the
conductance without barrier (ε = 0) from Fig. 4 to underscore
the qualitatively different scaling of a homogeneous Luttinger
liquid. Furthermore, in this enlarged scale we see more clearly
that extrapolating G(M) based on the polynomial fit yields a
value that slightly but visibly deviates from the exact result

FIG. 6. DMRG results for the conductance G(M) of a chain with
a repulsive interaction V = 2t and a single barrier of strength 0 � ε �
3t as a function of the inverse system size. Solid lines are polynomial
fits. For all cases, η = 48t/M and MW = 10.

G = GLL = G0/2 for ε = 0 [see Eqs. (12) and (13)], as
discussed in the previous section.

For the attractive system, we see in Fig. 7 that G(M)
diminishes only slightly for increasing barrier strength ε at
a fixed chain length. For not-too-strong on-site potentials
(ε � t), G(M) clearly converges toward the same conductance
as the homogeneous Luttinger liquid in the thermodynamic
limit. For stronger impurities, the convergence is less clear,
and significantly larger system sizes than M = 2000 would be
required to obtain a more precise extrapolation for M → ∞.

In summary, these results confirm that our method can
evaluate the conductance of Luttinger liquid with one impurity.
The qualitatively correct behavior is obtained for small wire
lengths MW. Large system sizes M are required, however, to
obtain quantitative results, especially for weak barriers (small
ε) in the repulsive case and for strong barriers (large ε) in the
attractive case.

C. Luttinger liquid with two barriers

If the wire contains more than one barrier, the transport
properties are more complicated and no longer universal; e.g.,

FIG. 7. DMRG results for the conductance G(M) of a chain with
an attractive interaction V = −t and a single barrier of strength
0 � ε � 3t as a function of the inverse system size. Solid lines are
polynomial fits. For all cases, η = 48t/M and MW = 10.
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FIG. 8. DMRG results for the conductance G(M) of a repulsive
Luttinger liquid (V = 2t) with two nonresonant barriers of absolute
strengths ε as a function of the inverse system size. The impurity sites
are nearest neighbors and have the same on-site potential. Solid lines
are polynomial fits. For all cases, η = 48t/M and MW = 10.

they depend on the barrier strengths and positions. Here we
focus on the case of a repulsive Luttinger liquid with the
nearest-neighbor interaction V = 2t . To model two barriers
in the wire, the system Hamiltonian becomes

HII = H + εa nja
+ εb njb

, (17)

where H is the Hamiltonian (1) and both impurity sites ja

and jb are situated close to the middle of the wire segment
[ja,b ≈ (j1 + j2)/2]. We will discuss only cases with on-site
potentials |εa| = |εb|

Kane and Fisher [41] provided a simple physical explana-
tion for the drastic effect of a single barrier in a repulsive
Luttinger liquid [K < 1 ⇔ V > 0 in the model (1)]. In
such a system, there is a tendency toward the formation of
a charge density wave (CDW) quasi-long-range order. An
arbitrary weak on-site potential pins the CDW, resulting in
an insulating state. In the half-filled model (1) the dominant
CDW fluctuations have a periodicity of 2 sites. Thus, the
corresponding CDW ground state has a density profile 〈nj 〉 =
1/2 + (−1)j δn and is twofold degenerate (i.e., δn > 0 or
δn < 0). Therefore, when two barriers are added to the system,
we have to consider two cases. First, both on-site potentials
can reinforce each other, i.e., favor the same CDW ground
state. Second, both on-site potentials can oppose each other,
i.e., favor different CDW ground states.

We have tested the first case for two configurations: (I) two
next-nearest-neighbor barriers with the same potential sign
(ja = jb + 2,εa = εb) and (II) two nearest-neighbor barriers
with potentials of opposite signs (ja = jb + 1,εa = −εb). In
both cases, the DMRG results for G(M) are qualitatively
similar to those shown in Fig. 6 for a single barrier, and we
conclude that the conductance vanishes for any nonzero barrier
height.

The physics is more interesting when both on-site potentials
oppose each other. As predicted by field theory [41] the
transport properties are no longer universal and can depend
on the system parameters. Figure 8 shows G(M) for two
nearest-neighbor barriers (ja = jb + 1) with identical on-
site potentials (εa = εb = ε). We see that G(M) appears to

FIG. 9. DMRG results for the conductance G(M) of a repulsive
Luttinger liquid (V = 2t) with two resonant barriers of absolute
strengths ε as a function of the inverse system size. The impurity
sites are next-nearest neighbors and have on-site potentials of opposite
signs. Solid lines are polynomial fits. For all cases, η = 48t/M and
MW = 10.

converge to a finite value close to GLL for a weak barrier with
ε = 0.5t but clearly converge to zero for a stronger barrier
with ε = 1.5t . For intermediate values of ε, polynomial fits
yield values GLL > G > 0 in the thermodynamic limit and
thus suggest a continuous behavior of G with ε as in a
noninteracting wire. However, we need to investigate much
larger system size M to determine accurately the asymptotic
value G for intermediate barrier strengths ε before we can
draw a conclusion.

One of the most counterintuitive predictions of field theory
[41] is that a double barrier can exhibit a perfect resonant
transmission for fine-tuned conditions despite the fact that
a single barrier causes total reflection. We have found that
such a resonant double barrier is realized for two next-
nearest-neighbor on-site potentials of opposite signs (ja =
jb + 2,εa = −εb). Figure 9 shows that G(M) converges to the
same value G ≈ GLL = G0/2 for all tested barrier strengths.

Therefore, our DMRG-based method is able to reproduce
some of the most striking correlation effects on the transport
properties of one-dimensional quantum systems. As already
mentioned in the other cases, only a small wire length MW

is necessary to find the qualitatively correct behavior, but a
very large ratio M/MW > 200 is required to obtain accurate
quantitative results for the conductance in some unfavorable
cases.

IV. CONCLUSION

We have improved the DMRG calculation of the linear
conductance in correlated one-dimensional lattice models
using the Kubo formula. Our method can reproduce several
properties predicted by field theory for the Luttinger liquid
phase of the half-filled spinless fermion model. The key idea
is the proper finite-size scaling, in particular for the broadening
η. A practical problem is that our approach requires a large
system size, or more precisely, a large ratio between total
system size and wire length. Nevertheless, the most difficult
DMRG simulations carried out for this work (for system
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size M = 2000) require less than 100 hr on a single modern
CPU each. Therefore, larger systems (and thus more accurate
results) are certainly possible if one uses supercomputer
facilities.

Our method can easily be extended to more general models.
We have already tested it successfully on the one-dimensional
Hubbard model for interacting electrons away from half filling.
In addition, it should be possible to compute the conductance of
any system for which the current-current correlation functions
(9) can be evaluated efficiently around ω = 0 using DMRG,
such as electron-phonon systems [46], disordered wires, or
ladder systems [47,48].

We tested our method on the spinless fermion model in the
setup described in Sec. II B because it is a well-defined problem
with reliable results from field theory [39–41]. Essential
features are that the wire is distinguished from the leads by
the potential profile only and that the potential difference is a
model parameter. The relevance of this setup for transport
experiments is controversial, however [3]. Therefore, it is
desirable, and we think that it is possible, to extend the
present approach to more realistic setups for comparison with
experiments.

First, we can certainly use different interaction and hopping
parameters in the wire and in the leads to represent their

different nature and also include relatively extended and
smooth transition regions. Preliminary results confirm that
our method can be applied to such systems but also suggest
that the finite-size scaling becomes more complicated. Second,
we should measure the effective potential difference between
both leads in the lattice model rather than use the applied
potential difference VSD to define the conductance [3]. We
think that it is possible to calculate this effective potential
difference from the changes in the local density of states for
a varying applied potential, which can also be calculated with
dynamical DMRG [49]. Finally, it should be possible to extend
our approach to finite temperatures using recently developed
DMRG algorithms for computing frequency-resolved dynam-
ical correlation functions at finite temperature [50]. Therefore,
we believe that the DMRG evaluation of the Kubo formula
will become a very useful tool to study the conductance of
low-dimensional correlated systems.
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