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Tunable band structures in digital oxides with layered crystal habits
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We use density functional calculations to show that heterovalent cation-order sequences enable control over
band-gap variations up to several eV and band-gap closure in the bulk band insulator LaSrAlO4. The band-gap
control originates from the internal electric fields induced by the digital chemical order, which induces picoscale
band bending; the electric-field magnitude is mainly governed by the inequivalent charged monoxide layers
afforded by the layered crystal habit. Charge transfer and ionic relaxations across these layers play secondary
roles. This understanding is used to construct and validate a descriptor that captures the layer-charge variation
and to predict changes in the electronic gap in layered oxides exhibiting antisite defects and in other chemistries.
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I. INTRODUCTION

Digital ternary A-B-O oxides consisting of multiple and
deliberate periodic cation arrangements are now routinely
accessible [1–3]; they can exhibit interesting properties absent
from chemically equivalent solid solutions owing to the
creation of unique local environments [4]. When the A cations
exhibit different formal oxidation states, different internal
electric field profiles can be accessed by varying the A

cation sequence while maintaining a fixed B-cation valence
[5–7]. These electric fields can induce unanticipated electronic,
ferroic, and optical functionalities, e.g., two-dimensional
electron gases (2DEGs) at oxide heterointerfaces, because
the picoscale order produces GV/m fields [8]. The huge
internal electric fields cause electrostatic instabilities requiring
polarity compensation [9] at the nanoscale, which in oxides
is achieved through multiple mechanisms: atomic relaxation
[10], charge transfer [11], and vacancy formation [12] or
other defects [13]. The long-range chemical order effect is
distinct from random heterovalent cation substitution or δ

doping in superlattices whereby carriers are introduced into the
compound to modulate the charge density [14]. Cation order
introduces a complicated interplay among symmetry [15],
structure [16,17], electromagnetic interactions [18], and orbital
configurations [19] with the balance among these degrees of
freedom governing the properties of the digital oxide.

Recently up to 2-eV changes in electronic band gaps were
predicted in LaSrAlO4 by changes in the A cation arrangement
in the n = 1 Ruddlesden-Popper (RP) structure [20]. The
A2BO4 RP structure consists of alternating perovskite/rocksalt
components, (ABO3)/(AO), stacked along the [001] direction.
This layered crystal habit affords stacking of [AO] and [BO2]
layers, which can be utilized to direct the internal electric
fields by sequencing of the charged layers: [LaO]1+, [SrO]0,
and [AlO2]1−. Along with the internal electric fields, electronic
band-structure changes are induced by structural bond length
and angle distortions in response to the cation order.

Here we realize both semiconducting and metallic
LaSrAlO4 at fixed chemical composition by utilizing long
period stacking sequences of [LaO]1+ and [SrO]0 layers. We
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use density functional theory (DFT) calculations to formulate
a quantitative model for the band gap variation and collapse,
which we show is due to band bending at the subunit cell level.
The stacking of charged layers owing to the RP topology makes
these ordered oxides natural heterostructures with built-in
electric fields. Indeed, we show that the internal electric fields
and electrostatic potential profile obtained from DFT can be
predicted with a simple ionic model. We then formulate a
descriptor which captures the spatial distribution of A cations
along the ordering direction, and show its high correlation
with the electronic band gap. The descriptor captures a broad
range of cation sequences beyond which it was constructed and
facilitates prediction of properties sensitive to internal electric
fields beyond the band gap.

II. MATERIALS AND METHODS

We constructed 13 unique A cation ordered variants, with
ordering along the tetragonal axis (Table I) [21], starting from
the bulk LaSrAlO4 structure (I4/mmm symmetry) [22]. A
total of eight A-cation sites may be occupied by an equal
number of La and Sr to give 70 total variants (including
redundant structures), which are reduced down to 13 unique
variants by symmetry, including three structures studied in
Ref. [20]. Figure 1(a) depicts variant 1, which consists of
four different perovskite blocks; its oxide layer sequence
along [001] is . . . [SrO-AlO2-SrO] − [SrO-AlO2-LaO] −
[LaO-AlO2-LaO] − [LaO-AlO2-SrO] . . . , where “−” indi-
cates a separation between the two-dimensional perovskite
blocks given in square brackets. The notation can be further
simplified by omitting the B cation (Al) and denoting La and
Sr as L and S, respectively. Thus variant 1, Fig. 1(a), is defined
as SS SL LL LS, such that the A cation pairs now define a
perovskite block.

We next performed DFT calculations using the Vienna
Ab-initio Simulations Package (VASP) [23,24] with the revised
Perdew-Burke-Ernzerhof functional for solids, PBEsol [25],
with the plus Hubbard U correction [26]. Projector-augmented
wave (PAW) potentials [27] were used to describe the electron
core-valence interactions with the following configurations:
La (4f 05s25p65d16s2), Sr (4s24p65s2), Al (3s23p1), and
O (2s22p4). A 600-eV plane-wave cutoff is used to obtain
the ground structures for each cation variant with 8 × 8 × 2
and 12 × 12 × 4 Monkhorst-Pack k-point meshes [28] for
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TABLE I. LaSrAlO4 variants by cation order sequence (S and L denote Sr and La, respectively) and space group (SG). The energy difference
relative to the ground state, �E, (metal, M , or insulator, I ), and energy difference between conduction band (CB, minimum La 5d-orbital
energy) and valence band (VB, O maximal 2p-orbital energy) edges, εCB − εVB, are also given for each variant. Negative values indicate
metals. Potential-energy differences are calculated between layers with maximum and minimum values from the ionic model (�Vionic) and
DFT calculations (� ¯̄V DFT); the latter is for both structures with the ions constrained to the bulk solid-solution structure and with ions relaxed
to the ground state. Variant 13 is excluded from calculation of � ¯̄V DFT (see Ref. [21]). Variants 9, 12, and 13 correspond to η = 1/2, 2, 1/3 as
referred to in Ref. [20].

� ¯̄V DFT (eV)

Variant Cation Order SG �E (eV/f.u.) State εCB − εVB (eV) �Vionic (eV) Frozen ions Relaxed ions

1 SS SL LL LS Pmma 0.492 M −0.493 −4.73 −10.31 −7.869
2 SS SL LL SL P 4mm 0.367 M −0.135 −3.61 −9.756 −7.278
3 SS SS LL LL P 4/nmm 0.558 M −0.088 −4.06 −10.37 −7.226
4 SS LS LL SL Pmma 0.253 I 0.367 −2.03 −9.109 −6.902
5 SS SL SL LL P 4mm 0.271 I 0.380 −3.61 −10.12 −6.794
6 SS SL LS LL P 4mm 0.225 I 0.682 −3.04 −9.179 −6.474
7 SS LS SL LL P 4mm 0.227 I 0.704 −3.04 −9.391 −6.448
8 SS LS LS LL P 4mm 0.180 I 1.055 −1.80 −8.503 −6.233
9 SS LL SS LL P 4mm 0.259 I 1.364 −1.35 −7.768 −5.900
10 SL SL LS LS P 4/nmm 0.039 I 2.564 −2.70 −7.955 −4.799
11 SL SL SL LS P 4mm 0.029 I 2.575 −2.48 −7.925 −4.681
12 SL LS SL LS P 4/nmm 0.000 I 3.000 −1.35 −6.734 −4.240
13 SL SL SL SL I4mm 0.024 I 3.149 −0.90

relaxation and self-consistent total-energy calculations, re-
spectively. Brillouin-zone integrations employed the tetra-
hedron method [29] for insulating variants and a Gaussian
smearing scheme of 50–100 meV for metallic phases. The cell
volume and atomic positions were evolved until the forces on

each atom were less than 3 meV/Å
−1

. A Hubbard U = 10
eV [30] was applied to the La 4f orbitals to shift the states
approximately 6 eV above the Fermi energy [31]. All variants
are metastable phases relative to solid solution LaSrAlO4

FIG. 1. Equilibrium (a) structure of LaSrAlO4 (metallic variant 1)
with its corresponding ionic-model electrostatic quantities (in atomic
units); (b) isolated layer charge density (e/a2), (c) electric field [δE =
e/(a2ε0εr )], and (d) electrostatic potential (δE dave) along the c axis.
The electric-field direction is along the positive c direction.

and are dynamically stable [32]. Detailed structural data are
available in Ref. [21], which includes Refs. [33,34].

We used a simple macroscopic average following Ref. [35]
with ¯̄f (z) = (1/α)

∫ z+α/2
z−α/2 dsf̄ (s), where α is the local period

and f̄ (s) is the ab planar average of f (s). The determination
of the period, α, can be set to the length of building block
comprising the disordered bulk structure. This approach
then allows us to extract the effective electrostatic potential
deviation in the digital superlattices from the disordered
structure. For perovskite superlattices, α is routinely set to
be the length of a perovskite unit cell which consists of
alternating [AO] and [BO2] layers. In the LaSrAlO4 RP
compounds examined, on the other hand, the building block is
an isolated 2D perovskite slab, i.e., two [AO] and one [BO2]
layer [36].

III. RESULTS AND DISCUSSION

A. Atomic and electronic structure

Among the 13 variants, cation order produces symmetry
reductions from the solid solution (Table I). Only variants
1 and 4 exhibit symmetries lower than that produced by
the cation order, i.e., P 4/mmm → Pmma, after achieving
dynamic stability. The lowest energy variants are all insulating
(see �E, Table I) and the highest energy phases, relative
to the ground state, exhibit metallic behavior. Nonetheless,
low-energy variants can be epitaxially stabilized [37] using
oxide molecular-beam epitaxy [38,39]. The energetics closely
follow the ordering of the charged layers: variants with more
chemically equivalent [AO] layers nearby each other are higher
in energy.

Beyond affecting phase stability, the inequivalent oxidation
states of the cations in the stacked monoxide layers induce
considerable variations in the internal electric fields [40] and
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FIG. 2. Band structures for variants 1–13, with the reciprocal space trajectory along the conduction-band minimum and valence-band
maximum. The position of the valence-band maximum depends on crystal symmetry: It is located at the M point (1/2, 1/2, 0) for tetragonal
variants and Y point (0, 1/2, 0) for orthorhombic variants owing to a zone-folding effect. The Fermi level is located at 0 eV (horizontal, red,
line).

electrostatic potential along the ordering axis. Beginning from
an ionic model for the superlattice [11], we estimate the
electrostatic effect using a layer-averaged charge density (σ )
and a parallel-plate capacitor model [13]. The σ values for
each [SrO]0, [AlO2]1−, and [LaO]1+ are 0, −e/a2, and +e/a2

(in atomic units), respectively, based on the formal oxidation
states of the ions. Gauss’ law requires a stepwise change
in the internal electric field (E) of δE = σ/(ε0εr ), where
εr is the dielectric constant and the electrostatic potential
energy felt by an electron is V = e

∫
Edx. Figure 1 depicts

profiles of these electrostatic quantities for variant 1. (Note
that we obtain the potential energy in SI units, by using the
average layer spacing dave and εr of bulk LaSrAlO4 [22],
resulting in a conversion factor of 1.35 eV [41].) Despite the
fixed chemical composition, V strongly varies with charged
monoxide layer sequence: The difference between the largest
and smallest layer potential values, �Vionic, ranges from −0.90
to −4.73 eV (Table I). We next apply a macroscopic averaging
scheme to the local Hartree potential obtained from DFT to
determine the internal electric field across each monoxide
plane for all variants [35]; the left panel of Fig. 3 depicts the
results for variant 1, whereby excellent qualitative agreement
is found between the two schemes. Because a larger amplitude
of �Vionic indicates a larger local electric field within the
structure, the electronic properties of the digital oxides with
large �Vionic are anticipated to deviate from that of the solid
solution.

From our DFT calculations, we find that the conduction-
band (CB) and valence-band (VB) edges are composed of La
5d and O 2p states, respectively. Figure 2 shows the band
structures for all variants along the crystal momentum path
defining the band edges. The CB minimum (εCB) was found at
	 in all variants, where as the VB maximum (εVB) is located
at M or Y , indicating they are indirect gap semiconductors.
Remarkably, we find that variants 1–3 among the 13 variants
are metallic, i.e., εCB − εVB < 0 (Table I), despite the same
LaSrAlO4 composition.

Generally, the electronic density of states (DOS) of variants
with large gaps are quite similar while variants with small gaps

have wider bandwidth, especially in the VB [21]. Interestingly,
no significant electronic reconstruction occurs. Rather the VB
and CB states in each layer-resolved DOS are rigidly shifted,
showing a strong correlation to the variation in the local
potential profile.

Figure 3 (right) shows a representative metallic case (variant
1). In one [AlO2]1− layer, the VB edge overlaps with the CB
edge of two [LaO]1+ layers such that the La 5d and O 2p

states cross the Fermi level (EF ), pinning it and producing the
insulator-metal transition (IMT). The metallicity is confined to
those layers and the Fermi surface reveals a 2DEG [21], similar
to SrTiO3/LaAlO3 heterostructures [42], albeit occurring here
in a single phase material. In variant 1, the local electric
fields obtained from our macroscopic averages range up to
68.8 GV/m, which is ∼50% higher than those in the highly
insulating variants (e.g., variant 12). This large local electric
field enhances the band bending and drives the IMT, as it does
at heterojunctions with interface dipoles [43]; however, the
band bending here occurs at the subunit cell scale.

FIG. 3. Averaged electrostatic potential energy (left) from DFT
(black, bottom scale) and from the ionic model (red, top scale).
Bilayer projected DOS for metallic LaSrAlO4 in variant 1.
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The aforementioned interlayer-driven IMT is obtained
within a unit cell length of c ∼ 27 Å, which is considerably
shorter than the critical length for the appearance of a 2DEG in
SrTiO3/LaAlO3 heterostructures [42] or head-to-head (tail-to-
tail) polarization domain walls in ferroelectric superlattices
[44]. We attribute the shorter critical length to arise as
direct consequence of the layered RP structure; it permits
an additional [AO] monoxide layer for every one perovskite
block, providing a route to shorten the distance between
different charged layers. Furthermore, the VB character is
largely of O 2p character; the oxide anion functions then as
the necessary electron or hole reservoir and permits so-called
self-doping [45].

The cation order dictates the potential profile, which in
turn shifts the VB and CB edges, assigned to well-defined
oxide layers. Because the band gap is related to the energy
difference between the band edges, any shift of the VB/CB
edges also provides a measure of the band bending. This
observation allows us to define the band bending effect in
terms of the local potential differences, VCB − VVB, where Vi

is the electrostatic potential energy of the CB and VB edge,
respectively. This quantity is calculated from both the ionic
model as �Vionic and at the density functional level as � ¯̄V DFT

(see Table I). By calculating the shift in the CB/VB edges,
the band-gap variation away from the bulk solid-solution
structure can be directly quantified. What remains to be
determined, however, is how the electrostatic compensation
mechanisms, e.g., charge transfer and dielectric screening,
affect the equilibrium electrostatic potential profile.

B. Contributions to the band-gap variation

We disentangle these contributions by computing the
potential variation relative to the equilibrium band gap using
different models (Fig. 4). First, we apply the ionic model such
that there is neither charge transfer nor atomic relaxation
[21] using the formal oxidization states of the ions. The
use of other dynamical [20,46] or chemically motivated [47]
charges did not qualitatively affect the results. Across all
variants, �Vionic captures the general evolution in the band
gap with changes in the local potential [Fig. 4(a)]. Next, we
obtain the local potential using DFT and calculate � ¯̄V DFT

for each variant using atomic positions of the solid-solution
bulk structure, which we define as the frozen-ion configuration
in Fig. 4(b). In this way we capture the effect of charge
transfer and chemical bonding independent from the ionic
response producing the distribution of oxide-layer spacings.
These additional interactions improve the agreement of the
linear trend between � ¯̄V DFT and the band gap.

We next compute � ¯̄V DFT for all variants with the atomic
positions fully relaxed, allowing differential ionic displace-
ments, to assess the effect of dielectric screening on these
dependencies [Fig. 4(c)]. A more accurate linear trend now
emerges, indicating that � ¯̄V DFT can be used to understand
the band-gap evolution and that it relies on local distortions
in the crystal structure. The insets in Fig. 4 depict the two
major structural relaxations that occur in response to the
local electric field: ionic displacements within a layer (�uz,
removing the coplanar nature of the cations and oxide ions)
and deviations in the interlayer spacing, S. The former occur to

FIG. 4. The potential difference between the CB and VB edges
vs εCB − εVB for all structures using the (a) ionic model, (b) DFT
calculations with the solid-solution structure without atomic relax-
ation, and (c) DFT calculations after atomic relaxation. Macroscopic
averaging is applied to the potential-energy profiles computed at the
DFT level.

reduce the layer-to-layer potential difference by forming layer
polarizations [48]. The layer strains are a result of the interplay
among many factors, including bond strength and ionic size:
�uz and S∗ generally decrease with decreasing band gap.
Indeed, the largest �uz (1.00 Å) and S∗ (2.69 Å) were found in
the metallic variants 3 and 1, respectively, which deviate from
the bulk solid-solution values (uz = 0.28 Å, S0 = 2.18 Å).
Higher local electric fields are prominent features of the
smaller band-gap oxides (εCB − εVB < 1 eV). This correlation
implies these structural contributions evolve to resolve the high
electrostatic instability within the structures. Thus, we find
that the equilibrium electrostatic potential profile is a result of
multiple compensation mechanisms that act to reduce the sharp
layer-to-layer gradient (high electric field) in the unit cell.

C. Atomic scale modeling strategy

The general linear evolution and collapse of the band gap
with cation order is captured by �Vionic. The predictive power
of the ionic model motivates us to construct a structural
descriptor for the explored cation order variants, which can
be utilized for electronic structure design of other layered
materials. First, we observe that when chemically equivalent
[AO] layers are closely clustered, for example in variants 1
and 3 (Table I), the electric field and potential gradients are
larger. Therefore, we propose the spatial distribution of A

cations, i.e., La and Sr, quantified using a standard deviation
σA in the z position of each A cation, as the band-gap
descriptor. Taking the average atomic layer spacing as 2.11 Å,
the standard deviation in units of Å provides a sense of the
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FIG. 5. Sum of the standard deviation of the z position for each
A cation depending on the potential difference predicted by the ionic
model. The size of each data point represents the relative value of the
band gap. Metallic structures are shown as empty symbols. Structures
with antisite defects are linked to the corresponding pristine structures
by a dotted line.

cation homogeneity over the oxide layers. Noting the periodic
boundary conditions of the unit cell, the minimum A cation
standard deviations were obtained for each monoxide plane
cation X and then summed as

σX =
[

1

N

∑
i∈X

{(zi − t) − (z̄ − t)}2

]1/2

,

where X and N denote the unique chemical element and the
number of X atoms in the unit cell (N = 4), respectively, z̄ is
the mean z position, and t is an appropriate c-lattice translation
for an atom to ensure σX is minimized. The resulting standard
deviation provides a sense of the cation homogeneity over the
oxide layers.

Figure 5 shows the dependence of σSr + σLa on �Vionic for
each variant with the band gap indicated by the relative size
of each symbol. We find a clear linear trend, supporting the
model that the A-cation distribution establishes the potential
difference in the digital materials and the band-gap evolution.
This relationship can be used to predict the relative band
gaps of a new chemical composition from a large space of
possible digital superlattices; it is especially useful for long
periodicities approaching the limits of standard electronic
structure methods.

We also address the issue of atomic site mixing in the
ordered cation variants and its consequence on the electronic
structure. Using LaSrAlO4 variants 1 and 3 as examples, we
exchange the La and Sr atoms from their ordered sites at the
interface to mimic intermixing [21]. We then recompute the
band structure and find a gap opens for variant 3 (0.61 eV)
from the metallic state, whereas variant 1 remains metallic
despite the site disorder (Fig. 5). The site-occupancy change is
captured by our chemical homogeneity descriptor σSr + σLa,

which makes it possible to assess how much site intermixing
can be tolerated at the nanometer scale before the effect
of ordering is reduced. Based on our model predictions,
intermixing of A cations will diminish the layer-to-layer
variations in the charge density and then the local electric-field
strength.

Last we demonstrate the transferability of the ionic model to
other systems by performing a similar series of calculations on
LaSrBO4 compounds with B = Ga and Sc [21]. We obtained
the same hierarchy of band-gap values depending on the
cation order in each variant, supporting the generality of using
picoscale variations in the electrostatic potential to control the
band gap of digitally ordered materials. Extending the model to
layered oxides with dn B cations is straightforward, however,
we note that there may be a more complex interplay of the
internal electric field on the band edges owing to Mott and/or
charge-transfer physics. Furthermore, the model also applies
to materials with A cations of different formal oxidation states,
e.g., NaLaTiO4 (Na1+ and La3+) and related alkali-metal
rare-earth titanates [49]. Indeed, we found similar band-
gap variations. Because these layered oxides are proposed
anode hosts in the Li-ion battery [6,50], when such oxides
are designed with this strategy it may be possible to tune
the redox potentials to achieve optimal matching with the
electrolytes.

IV. CONCLUSION

In conclusion, we identified that A cation order can tune
the electronic band gap in digital oxides with layered habits,
making these ordered oxides natural heterostructures. We
demonstrated that digital LaSrAlO4 exhibits drastically dif-
ferent properties than the solid solution, namely an insulator-
to-metal transition; these metasable superlattices should be
accessible via nonequilibrium deposition techniques. The
governing principles for the electronic control results from
band bending effects driven by variations in the local electro-
static potential. We formulated a point-charge–structure model
based on formal oxidation states and the spatial distribution of
equivalent A cations to predict the relative size (or collapse) of
the band gap, enabling the design of digital oxides in diverse
chemistries for photovoltaic or electrochemistry applications;
the band gap and metal redox energies may also be predicted
prior to synthesis or electronic structure calculations.

ACKNOWLEDGMENTS

Y.S. and J.M.R. acknowledge support from an Alfred P.
Sloan Foundation fellowship (Grant No. FG-2016-6469) and
the National Science Foundation (Grant No. DMR-1729303),
respectively. The authors thank P. V. Balachandran for useful
discussions. Calculations were performed using the QUEST
HPC Facility at Northwestern, the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported
by the National Science Foundation under Grant No. ACI-
1548562, and the Center for Nanoscale Materials (Carbon)
Cluster, an Office of Science user facility supported by the
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.

195108-5



YONGJIN SHIN AND JAMES M. RONDINELLI PHYSICAL REVIEW B 96, 195108 (2017)

[1] B. B. Nelson-Cheeseman, A. B. Shah, T. S. Santos, S. D. Bader,
J.-M. Zuo, and A. Bhattacharya, Cation-ordering effects in the
single layered manganite La2/3Sr4/3MnO4, Appl. Phys. Lett. 98,
072505 (2011).

[2] G. Rijnders and D. H. A. Blank, Materials science:
Build your own superlattice, Nature (London) 433, 369
(2005).

[3] J. A. Mundy, C. M. Brooks, M. E. Holtz, J. A. Moyer, H. Das, A.
F. Rébola, J. T. Heron, J. D. Clarkson, S. M. Disseler, Z. Liu et al.,
Atomically engineered ferroic layers yield a room-temperature
magnetoelectric multiferroic, Nature (London) 537, 523
(2016).

[4] T. S. Santos, S. J. May, J. L. Robertson, and A. Bhattacharya,
Tuning between the metallic antiferromagnetic and ferromag-
netic phases of La1-xSrxMnO3 near x = 0.5 by digital synthesis,
Phys. Rev. B 80, 155114 (2009).

[5] N. K. Chaki, S. Mandal, A. C. Reber, M. Qian, H. M. Saavedra,
P. S. Weiss, S. N. Khanna, and A. Sen, Controlling band
gap energies in cluster-assembled ionic solids through internal
electric fields, ACS Nano 4, 5813 (2010).

[6] S.-H. Song, K. Ahn, M. G. Kanatzidis, J. A. Alonso, J.-G.
Cheng, and J. B. Goodenough, Effect of an internal electric
field on the redox energies of ALnTiO4(A = Na or Li,Ln =
Y or rare-earth, Chem. Mater. 25, 3852 (2013).

[7] J. Fontcuberta, X. Obradors, and J. B. Goodenough, Influence
of internal electric field on the transport properties of the
magnetoplumbite system bafe BaFe12-xMnxO19, J. Phys. C 20,
441 (1987).

[8] S. Mangin, M. Gottwald, C. H. Lambert, D. Steil, V. Uhlíř,
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