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Laser pulse probe of the chirality of Cooper pairs
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The internal chirality of Cooper pairs is shown to modify strongly the response of a superconductor to the
local heating by a laser beam. The suppression of the chiral order parameter inside the hot spot appears to
induce the supercurrents flowing around the spot region. The chirality also affects the sequential stage of thermal
quench developing according to the Kibble-Zurek scenario: besides the generation of vortex-antivortex pairs
the quench facilitates the formation of superconducting domains with different chirality. These fingerprints of
the chiral superconducting state can be probed by any experimental techniques sensitive to the local magnetic
field. The supercurrents encircling the hot spot originate from the inhomogeneity of the state with the broken
time-reversal symmetry, and their detection would provide a convenient alternative to the search for spontaneous
edge currents sensitive to the boundary properties. Thus, the suggested setup can help to resolve the long-standing
problem of unambiguous detection of type of pairing in Sr2RuO4, which is considered a good candidate for chiral
superconductivity.
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I. INTRODUCTION

The interaction of light with different types of orderings
in condensed-matter systems is the focus of current research
in the field of optoelectronics [1–5]. The light-controlled ma-
nipulation of magnetic and/or superconducting states provides
a perspective way to construct new fast-operating switching
devices [1,2] and serves as a basis for different experimental
methods probing and characterizing the order parameter struc-
ture and dynamics [6,7]. In particular, remarkable progress has
been recently achieved in the design of sensitive supercon-
ducting bolometers and photon detectors [8,9]. Fundamental
issues of the order parameter dynamics have been investigated
probing the Higgs mode in the superconducting state [6,7].

The simplest physical picture describing the effect of the
light pulse on superconductors can be constructed starting from
a so-called hot-spot model [8,10,11]. Within this approach one
can assume the energy of the laser pulse is transferred to the
electronic subsystem, which results in further formation of the
locally heated state with an increased electronic temperature.
This increase in the local temperature is responsible for
the partial or complete suppression of the superconducting
order parameter in the region of the hot spot. The state with
the inhomogeneous temperature is unstable due to the heat
diffusion, and at the next stage the hot spot disappears, and
the order parameter relaxes to its initial value before the
light-pulse absorption. The exact picture depends, of course,
on the electron-electron and electron-phonon relaxation rates,
which are responsible for different stages of the evolution of the
nonequilibrium electronic distribution. Provided the relaxation
stage is rather short and can be considered a rapid thermal
quench, the thermodynamic order parameter fluctuations can
complicate the return to the initial state, giving rise to the
formation of the vortex-antivortex pairs according to the
Kibble-Zurek scenario [12–15].

Should we expect any essential changes in the above
model if the superconducting order parameter is not just a
single complex function but may have several components or
possess a nontrivial anisotropy in the momentum space? In

other words, does the study of the superconductor dynamics
excited by the light pulse allow us to distinguish the states
with different internal structures of the Cooper pairs? The
goal of the present paper is to develop a theoretical basis for
the use of the laser beam as a probe of such unconventional
superconducting states, more specifically, the states with a
nonzero internal average angular momentum of the Cooper
pairs L [16]. It is instructive to start our discussion of
the appropriate generalization of the hot-spot model from a
qualitative analysis of inhomogeneous states for L �= 0. The
angular momentum of the relative motion of two electrons
in the pair naturally interacts with the angular momentum of
the motion of the pair center of mass. For any inhomogeneity
of the superconducting state this interaction of the angular
momenta can induce the supercurrents and corresponding
magnetic field. Naively, one can expect these supercurrents
to be proportional to the effective magnetization currents
of the Cooper pairs: ∝ curl L. However, the orbital angular
momentum of the sample bulk appears to be significantly
reduced compared to the expected Nh̄/2 value, where N is the
total number of electrons in a volume. The orbital momentum
of the bulk is determined by the contribution of the Cooper
pairs, which are smaller than the interpair distance, so the
momentum is reduced by a factor (Tc/EF )2 [17]. A more
precise analysis gives an additional logarithmic factor, and the
final expression has the form Lz ∝ h̄N (Tc/EF )2 ln(EF /Tc)
[18,19]. A noticeable contribution to the supercurrent is
provided by another mechanism, namely, by the mixture of
several order parameter components generated by the order
parameter inhomogeneity. Such a mixture originates from
the obvious fact that the projection of the internal angular
momentum cannot be conserved in the presence of the
inhomogeneity. Previously, the search for the corresponding
spontaneous currents was mainly related to the edge of the
samples. Unfortunately, near the edge the order parameter
inhomogeneity and thus the generation of the additional order
parameter components and the resulting supercurrents strongly
depend on the details of the electron scattering at the surface,
i.e., on the surface quality [20–23]. As a consequence, the edge
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FIG. 1. The proposed experimental setup. The laser beam heats
the sample, inducing the supercurrents flowing around the hot spot.
The magnetic field created by these currents can be observed by the
SQUID microscope or the Hall sensor.

currents can be strongly diminished, and surface imperfections
may cause the difficulties in their experimental observation in
Sr2RuO4 [24], which is considered to be a most promising
candidate for a superconductor with the chiral p-wave order
parameter [25]. The other explanations of the edge currents’
absence focus on the possibility of a chiral non-p-wave pairing
type in Sr2RuO4 [26] for which the macroscopic orbital
momentum vanishes in the finite-size samples [27–29]. Also
the properties of the edge currents appear to depend on the
band structure of Sr2RuO4 [30,31]. From this point of view the
order parameter inhomogeneity created by the laser beam far
from the sample edge of uncontrolled quality provides much
better conditions for the study of the above supercurrents. The
current circulating around the hot spot (see Fig. 1) should
be easily detected by any experimental techniques sensitive
to a small local magnetic field such as a superconducting
quantum interference device (SQUID) microscope or sensitive
Hall sensor. The generation of the magnetic field in the
inhomogeneously heated samples is common for systems with
broken time-reversal symmetry. For example, the magnetic
field appears in the hot spots in multiband s + is and s + id

superconductors [32]. The generation of the secondary order
parameter components can be even more pronounced at the
late stage of the hot-spot evolution. Indeed, provided the
spot dimension exceeds the coherence length, one can expect
that the rather fast quench to the initial temperature can
be accompanied by nucleation of different order parameter
components, forming thus a domain structure in addition to
the well-known vortex-antivortex configurations induced by
the Kibble-Zurek mechanism.

For further quantitative analysis of the above phenomena
we choose a rather general two-component Ginzburg-Landau
model introduced previously in a number of works [33,34]
for the description of properties of the Sr2RuO4 compound
[33,35].

In the Sec. II we introduce Ginzburg-Landau free energy
and the main equations describing the superconducting state.
For the case of a smooth order parameter profile in the
hot spot these equations are solved in Sec. III. The final
expression for the magnetic field is obtained for the Gaussian
profile of temperature. Section IV is devoted to superconductor
dynamics in the thermal quench mode and the study of
the chiral domain generation according to the Kibble-Zurek
mechanism. The stability of the domains and their interaction

with the vortices is discussed in Sec. V. In Sec. VI we sum up
the results of this paper.

II. MODEL

The superconducting order parameter has two components
(�+,�−) which stand for Cooper pairs with opposite direc-
tions of internal orbital momentum. The free energy of the
superconductor is given by the following expression [33]:

F =
∫ {

−a(|�+|2 + |�−|2) + b1

2
(|�+|2 + |�−|2)2

+ b2|�+�−|2 + K1(|D+�+|2 + |D−�+|2 + |D+�−|2
+ |D−�−|2) + K2|D+�− + D−�+|2 + K3[|D+�+|2
+ |D−�−|2 + (D+�−)∗(D−�+) + c.c.]

+ (curl A)2

8π

}
d3r, (1)

where A is the vector potential of the magnetic field, D =
−i∇ − 2π/�0A is the covariant derivative, D± = (Dx ±
iDy)/

√
2, �0 is the superconducting flux quantum, and a,

b1, b2, K1, K2, and K3 are the phenomenological parameters.
The coefficient a depends on the temperature as follows:
a = α(Tc − T ). For simplicity we omitted the terms lowering
the symmetry of the free energy to D4h symmetry, restricting
ourselves to the case of the D6h crystal. Also we assume that
the spatial variations of the order parameter are only in the
xy plane and neglect the variations along the z axis. If b2 > 0,
the equilibrium homogeneous states have the form of chiral
domains, (�+,�−) = (

√
a/b1,0) and (�+,�−) = (0,

√
a/b1).

The laser pulse is absorbed by the electron subsystem of the
superconductor, thus inducing a nonequilibrium distribution
of the quasiparticles in the sample. In the general case
this distribution does not correspond to any temperature,
although if we suppose that the electron-electron scattering
is the fastest process in the system, the distribution of the
quasiparticles rapidly thermalizes. Then we can introduce
an inhomogeneous temperature T (r), and the parameter a

also becomes a function of the coordinates a = α[Tc − T (r)].
We suppose inhomogeneity has the form of a hot spot and
the temperature is constant far from it, i.e., a(r) → a0 =
α(Tc − T0) at r → ∞, where T0 is the bath temperature.
Introducing the dimensionless order parameter components
η± = �±

√
b1/a0, we rewrite the free energy:

F = H 2
cm

4π

∫ {
−τ (|η+|2 + |η−|2) + 1

2
(|η+|2 + |η−|2)

+β|η+η−|2 + ξ 2(|Dη+|2 + |Dη−|2)

+ 2ξ 2ζ [(D+η−)∗(D−η+) + c.c.] + (curl A)2

2H 2
cm

}
d3r, (2)

where Hcm =
√

4πa2
0/b1 is the thermodynamical critical

field, ξ = √
(K1 + K2)b1/a0 is the coherence length, τ (r) =

a(r)/a0, ζ = K2/(K1 + K2), and β = b2a
2
0/b

2
1. Here we as-

sume that K2 − K3 is negligible due to the small electron-hole
asymmetry [36].
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We can obtain the Ginzburg-Landau equations for the order
parameter components:

ξ 2(D2η+ + 2ζD2
+η−) − τη+ + η+|η+|2

+ (1 + β)|η−|2η+ = 0, (3)

ξ 2(D2η− + 2ζD2
−η+) − τη− + η−|η−|2

+ (1 + β)|η+|2η− = 0. (4)

Varying the free-energy functional over the vector potential A,
we can obtain the expression for the superconducting current:

js = − c�0

16π2λ2
{η∗

+(Dη+) + η∗
−(Dη−)

+ ζ
√

2(x̂ + iŷ)[η−(D−η+)∗ + η∗
+(D+η−)] + c.c.}, (5)

where λ = �0/[4
√

2π3(K1 + K2)] is the London penetration
length. The first terms proportional to η∗

+(Dη+) and η∗
−(Dη−)

are common for the Ginzburg-Landau theory of conventional
superconductors. The other two terms contain not only the
contributions proportional to the superfluid velocities of the
different order parameter components but also a nonzero
contribution caused by the inhomogeneity of the magnitudes
of the order parameter components. Below we show that the
suppression of one of the order parameter components can
generate another component and the corresponding supercon-
ducting current.

III. WEAK HEATING: ADIABATIC APPROXIMATION

We choose for definiteness a chiral domain with η+ = 1 and
η− = 0 and consider a hot spot located far from the domain
boundaries. To elucidate our main results we start from a sim-
plified “adiabatic” model assuming that the temperature varies
slowly at the length scale ξ , i.e., |∇τ | � τ/ξ . Under these
assumptions the dominating order parameter component η+
“follows” the local temperature, and the other order parameter
component η− can be found as a perturbation:

η+ ≈ √
τeiφ, (6)

η− ≈ −2ζ ξ 2D2
−η+

βτ
, (7)

where φ is the unknown phase. Also we assume that the sample
is a thin film with the thickness d much smaller than the London
penetration length λ. This simplification allows us to neglect
the vector potential and the screening effects. For simplicity
we assume that the temperature distribution is axisymmetric,
τ (r) = τ (r). Then we can omit the phase φ and find the order
parameter components in the following form:

η+(r) = √
τ = f+(r), (8)

η−(r,ϕ) = ζ ξ 2

βτ

(
∂2η+
∂r2

− 1

r

∂η+
∂r

)
e−2iϕ = f−(r)e−2iϕ, (9)

where r and ϕ are the polar coordinates. Now we can substitute
the order parameter components into expression (5) and
obtain the following expression for superconducting current,

neglecting the terms of order η∗
−∇η−:

jϕ ≈ − c�0ζ

8π2λ2

(
f+

∂f−
∂r

− f−
∂f+
∂r

+ 2

r
f+f−

)
. (10)

The current has only the azimuthal component. This current
creates the magnetic field which can be measured experimen-
tally. The value of the field in the center of the spot can be
found as follows:

Bz = − �0ζ

4πλeff

∫ ∞

0

dr

r

(
f+

∂f−
∂r

− f−
∂f+
∂r

+ 2

r
f+f−

)
,

(11)
where λeff = λ2/d is the effective penetration length. The
magnetic field far from the defect has a dipole form with the
magnetic moment equal to

m = − �0ζ

8πλeff

∫ ∞

0
r2

(
f+

∂f−
∂r

− f−
∂f+
∂r

+ 2

r
f+f−

)
dr.

(12)

The above approach, indeed, can be applied only if the
temperature varies slowly and is always below the critical one.
Otherwise, one should solve the Ginzburg-Landau equations
numerically.

Gaussian beam

The evolution of the local temperature is a complicated
process which is governed by heat diffusion, electron-phonon
interaction, and nonequilibrium phonons escaping to the
substrate [37]. The diffusion can be neglected if all other
characteristic times like the time of the electron-phonon
interaction and phonon escape time are much less than the
characteristic diffusion time, which depends on the beam size.
With the diffusion omitted, the local temperature appears to be
a function of the local absorbed power, which can be linearized
in the vicinity of the bath temperature T0 for the weak heating.

Assuming a Gaussian profile of the laser beam, we have the
following temperature profile:

T (r) = T0 + κP

2πσ 2
exp

(
− r2

2σ 2

)
, (13)

where κ is the proportionality coefficient between the local
power and the temperature. We can introduce the dimension-
less power τ0 = κP/[πξ 2(Tc − T0)] and obtain the following
expressions for the order parameter components, the magnetic
field in the spot, and the magnetic moment for a slightly heated
spot, (T − T0) � (Tc − T0):

η+ ≈ 1 − τ0ξ
2

2σ 2
e−r2/2σ 2 − τ 2

0 ξ 4

8σ 4
e−r2/σ 2

, (14)

η− ≈ − ζ

β

[
τ0ξ

4r2

2σ 6
e−r2/2σ 2 + τ 2

0 ξ 6r2

σ 8
e−r2/σ 2

]
, (15)

Bz ≈ �0

4πλeffξ

7ζ 2τ0
√

π

8β

(
ξ

σ

)5

, (16)

m ≈ �0ξ
2

8πλeff

ζ 2τ 2
0

2β

(
ξ

σ

)4

. (17)
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(a) (b)

(c) (d)

FIG. 2. (a) and (b) The magnetic field in the center of the spot and (c) and (d) the magnetic moment vs (a) and (c) the beam size and
(b) and (d) intensity. The solid lines correspond to the solutions obtained numerically. The results of the adiabatic approximation for the
weak field are represented by the dashed lines. The parameters of the Ginzburg-Landau functional are β = 1 and ζ = 0.5; no screening is
considered.

The magnetic field and the magnetic moment reveal power-
law dependence on the beam size (Bz ∝ σ−5, m ∝ σ−4) and
intensity (Bz ∝ P , m ∝ P 2).

The magnetic field in the center of the spot and the magnetic
moment of the currents versus the beam parameters σ and
τ0 are shown in Fig. 2. The adiabatic approximation works
reasonably for the slow temperature variations and fails if the
local temperature is close to the critical one.

The dependence of the magnetic field in the center of
the spot on the beam size σ and the dimensionless power
τ0 is calculated for the Gaussian spot within the adiabatic
approach (11) and numerically. The adiabatic approximation
is reasonable for the slow temperature variations and fails if
the local temperature is close to the critical temperature.

The maximal value of the field is reached when the
temperature in the center of the spot is close to the critical
one. The field is given in units of H0 = �0/(4πλeffξ ) =
Hcm/

√
2d/λ in Figs. 2(a) and 2(b). The plot shows that the

maximal field achieved for the small spots is between 10−2H0

and 10−3H0. At the border of the applicability range we

suppose that the thickness of the film is d = λ and consider
low-temperature parameters ξ = 66 nm and λ = 152 nm.
These assumptions give us an estimate of observable field
up to 1.5 G. In fact this value may be too optimistic due to the
Meissner screening which comes into play for thick enough
samples.

Similar generation of the magnetic field in the hot spots may
also occur in other superconductors with broken time-reversal
symmetry like s + id superconductors [32]. However, the
patterns of the magnetic field in the s + id and the chiral
p-wave superconductors appear to be qualitatively different
due to the different symmetries of the superconducting states.
Assuming an axially symmetric temperature distribution, we
find that the supercurrent and thus the magnetic field also have
axial symmetry. We neglected the terms in the free energy
which reduce the symmetry of the superconductor to D4h, so
the pattern of the magnetic field is expected to have tetragonal
distortions. This still qualitatively differs from the case of the
s + id superconductor in which the pattern of the magnetic
field has a pronounced twofold symmetry [32]. Thus, these
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types of pairings may be distinguished using the spatially
resolved magnetic field measurements.

Another fingerprint of the chiral superconductivity is a
nonzero magnetic moment of the thermally induced currents
in the superconducting films. The key difference between the
s + id and px + ipy states is that the latter is characterized
by an internal vorticity in the momentum space directed
along the z axis. Thus, in contrast to the (s + id)-wave
superconductors, the total magnetic moment of the induced
currents (integrated over the sample) can be nonzero for a hot
spot in a p-wave superconductor, and the magnetic moment
direction should depend on the internal vorticity, which is
proved by the above direct calculations. So magnetic moment
measurements provide another possibility to provide the chiral
p-wave superconductivity.

IV. STRONG HEATING: DOMAIN GENERATION

In the case of strong heating the temperature within the spot
may exceed the critical temperature of the superconductor.
This results in the significant suppression of the order
parameter components. In this case one cannot apply the above
perturbation approach directly; however, the qualitative picture
is similar: there is a supercurrent flowing around the normal
spot which creates magnetic field. However, for pulsed heating
the relaxation of temperature can cause the formation of the
chiral domains according to the Kibble-Zurek mechanism
[12,13,35]. The domain walls carry superconducting current
[38] which can be detected by techniques sensitive to the
magnetic field. The same mechanism is responsible for the cre-
ation of vortex-antivortex pairs in nonequilibrium transitions
in s-wave superconductors [15] which can be identified by the
specific magnetic field pattern. In the case of chiral p-wave
superconductors the pattern of the magnetic field appears to
reveal a number of specific features which can be used to
distinguish this type of pairing.

We use the approximation of the local temperature assum-
ing now that it can depend on time. We start from the strongly
nonhomogeneous temperature distribution, which gradually
relaxes to the equilibrium value T = T0. We studied the growth
of the chiral domains numerically within the time-dependent
Ginzburg-Landau approach:

−tGL

(
∂

∂t
+ 2πic

�0
ϕ

)
η+ = χ+(r,t) − τ (r,t)η+ + η+|η+|2

+ η+|η−|2(1 + β) + ξ 2(D2η+
+ 2ζD2

+η−), (18)

−tGL

(
∂

∂t
+ 2πic

�0
ϕ

)
η− = χ−(r,t) − τ (r,t)η−

+ η−|η−|2 + η−|η+|2(1 + β)

+ ξ 2(D2η− + 2ζD2
−η+), (19)

σn∇2ϕ + c div
δF

δA
= 0, (20)

σn

c

∂A
∂t

+ c

4π
curl curl A + σn∇ϕ + c

δF

δA
= 0. (21)

The Coulomb gauge div A = 0 is considered, σn is the
normal-state conductivity, tGL = �/a0 is the order param-
eter relaxation time, and � is a temperature-independent
constant. The functions χ± are the δ-correlated noise
sources 〈χα(r,t)χβ(r′,t ′)〉 = χ2δαβ

δ(r − r′)δ(t − t ′) where
χ2 = 8πtGLTc/H

2
cm. Here we assume the thickness of the

superconducting film exceeds the penetration length λ but is
small enough that the sample could be heated homogeneously
in the z direction. These simplifications allow us to consider
two-dimensional (2D) Meissner screening instead of solving
the full three-dimensional problem. The heat equation was
not taken into account self-consistently. Instead, the explicit
model spatial and temporal profile of temperature was spec-
ified as τ = 1 − τ0ξ

2

σ 2 exp (−r2/[2σ 2] − t/tT ), where tT is the
temperature relaxation time which is determined, e.g., by the
heat flow into the substrate.

If the temperature quench is adiabatically slow (tT ≫
tGL), then the order parameter adiabatically follows the
quasiequilibrium solution, which is slightly disturbed by the
thermal fluctuations. In this case the homogeneous domain
appears after the quench is over. However, if the temperature
quench has a rate similar to the order parameter relaxation rate
(tT ∼ tGL), then the state of the superconductor is essentially
nonequilibrium until the late stage of the quench. The nuclei
of both order parameter components arise from the thermal
fluctuations and grow rapidly until they are stabilized by the
nonlinear terms in the Ginzburg-Landau equation. The order
parameter relaxation time tGL diverges at temperatures close to
the critical one, tGL ∝ (Tc − T0)−1, so the domain nucleation
is likely to occur in the vicinity of the phase transition.

The results of the simulation are shown in Figs. 3(a) and
3(b). The peculiar picture of the chiral domains appears after
a long simulation time when the temperature is stabilized. The
currents of the domain structure generate the inhomogeneous
magnetic field pattern with the zero total flux. The distribution
of the magnetic field qualitatively differs from the case of
a conventional s-wave superconductor for which the Kibble-
Zurek mechanism is known to be responsible for generation of
vortex-antivortex pairs [15] [see Figs. 3(c) and 3(d)]. One can
expect that the generation of the domain structure should be
accompanied by the generation of the vortex-antivortex pairs
in the bulk of the domains, but most of the vortices appear
to be pinned at the domain walls. The pinned vortices can be
found in Fig. 3(b) as asymmetric peaks of magnetic field. At
the early stage of the Kibble-Zurek quench both the vortices
and the domain walls nucleate, but eventually, the vortices
move to the domain walls and remain trapped there. Thus, the
number of unpinned vortices depends on the vortex-domain-
wall interaction strength.

The same reasoning is valid for any multicomponent super-
conductor which supports the formation of domain walls like
s + id superconductors. In this case a similar magnetic field
pattern which corresponds to the system of domain walls with
the vortices pinned at the walls is expected after the Kibble-
Zurek quench, which complicates identification of the chiral
p-wave superconductivity in the sample. However, as we noted
in Sec. III, the magnetic moment of the currents in the films of
the nonchiral superconductors vanishes, so it is possible to dis-
tinguish these types of pairings performing the measurement
of the magnetic moment of the sample after the quench.
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FIG. 3. The results of the Kibble-Zurek quench for (a) and (b) a p-wave superconductor and (c) and (d) an s-wave superconductor described
by a simple one-component Ginzburg-Landau model. (a) and (c) The absolute values of the superconducting order parameters. In (a) only the
component η+ is shown (the component η− is dominant in the areas where η+ is suppressed). (b) and (d) The pattern of the magnetic field
within the sample after the quench. The magnetic field outside the film is expected to be partially smoothed out. The hot spot size is σ = 60ξ ,
the temperature relaxation time is tT = 5tGL, the dimensionless absorbed energy is τ = 5.4 × 104, and the noise strength is χ 2 = 10−4tGLξ

3.

V. DOMAIN STABILITY

The vortex-antivortex pairs which appear in the conven-
tional superconductors according to the Kibble-Zurek scenario
are unstable due to the attraction between the vortices of the
opposite winding numbers. However, the impurities in the
sample can pin the vortices, thus preventing the relaxation
to the homogeneous state. A similar scenario may be relevant
for the domains in the chiral superconductor: the domains can
be unstable and shrink eventually, so the domain picture can
be observed only within a finite time after the quench unless
we take pinning into account. Although the total vorticity
of the dominating order parameter component is equal to
zero, the winding number around some domains may be
nonzero, affecting the evolution of the domain. We are going
to discuss the dynamics of the domains using an extension
of the London theory for the chiral p-wave superconductor
assuming λ/ξ � 1.

We restrict ourselves to the 2D case so the domain walls are
the contours which separate the domains of different chirality.
The absolute values of the order parameter components in
the bulk of the domain are (1,0) or (0,1) depending on the
domain type, so we can consider the phase of the dominant
order parameter component a dynamic variable within the
corresponding domains. This gives us the usual expression
for the free energy of the bulk of the domains:

Fbulk = �2
0

32π3λeff

∑
α=+,−

∫
�α

(
∇θα − 2π

�0
A

)2

d2r, (22)

where θ± are the phases of the order parameter components
and �± are the areas occupied by the chiral domains. The
domain wall can be viewed as a Josephson junction between
the domains with a certain equilibrium superconducting phase
difference. The optimal phase difference, however, depends on
the wall orientation as θ+ − θ− = 2θn for the flat equilibrium
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walls, where θn is the angle between the normal direction to
the wall and the crystal axis [39] in the absence of tetragonal
distortions. Assuming the curvature of the wall is much less
than ξ−1, we can consider the wall to be almost flat at each
point and write the free energy of the domain wall as follows:

Fwall = �2
0

32π3λeff

∮
DW

{ε + j cos(θ+ − θ+ − 2θn)} dl, (23)

where the integration is taken over all domain walls and ε and
j are the positive constants which characterize the energy of
the domain wall and the Josephson energy per unit length,
respectively. The domain walls are energetically unfavorable,
so the condition ε > j must be satisfied. The energy of the
wall can be obtained straightforwardly from the Ginzburg-
Landau functional by integrating the free-energy density over
the short segment across the wall, assuming a steplike form
of the absolute values of the order parameter components.
Using this approach, we can estimate the parameters ε ∝ ξ−1

and j ∝ ζ ξ−1 and find the additional corrections to the wall
energy which come from the phase gradients at the sides of
the wall. These corrections allow us to take into account the
supercurrents flowing along the wall [39] which cannot be
described within the simple Josephson-like model. However, in
the case of a strong type-II superconductor λ/ξ � 1 and weak
interaction between the order parameter components ζ � 1,
the Josephson-like term gives the most significant contribution
to the energy of the domain wall. The free energy of the sample
naturally comes as a sum of bulk and interface terms:

F = Fwall + Fbulk. (24)

This functional yields Laplace equations for both phases of
the order parameter components with the nonlinear boundary
conditions at the domain walls:

∇2θ± = 0, (25)

∂θ±
∂n

− j sin(θ+ − θ− − 2θn)

∣∣∣∣
DW

= 0. (26)

Here n stands for direction normal to the domain wall from
the “plus” to the “minus” domains.

Using the above model, we study the stability of a
circular domain of radius R which carries no magnetic
flux. This requires the absence of vorticity in the exterior
domain (for certainty we consider the η+ domain to be an
exterior one); that is, the phase of the corresponding order
parameter component must be a single-valued function.
We neglect the vector potential A, assuming the sample
to be a thin film and the domain size R to be much
less than the effective penetration length λeff . Due to the
nonlinearity of the boundary conditions (26) the exact
solution of Eq. (25) appears to be complicated. However,
in the case of the small domains and weak interaction between
the order parameter components so jR � 1, one can linearize
the boundary conditions. We suppose that the phases are
almost constant, i.e., |θ±(r) − �±| � 1 for some �± = const.
Due to the gauge invariance an arbitrary constant may be added
to both �+ and �−, while a change in the difference �+ − �−
results in rotation of the whole domain. Thus, without a loss of
generality we can assume �+ = �− = 0. The phases θ± must

satisfy the Laplace equation with the following boundaries:

∂θ+
∂r

= j sin 2ϕ, (27)

∂θ−
∂r

= j sin 2ϕ. (28)

Here the angle θn, which determines the direction of the
normal, simply coincides with the polar angle ϕ. We can
easily find the solutions

θ± = ∓jR

2

( r

R

)∓2
sin 2ϕ (29)

and obtain the free energy of the domain in the lowest order
by R:

F ≈ 2πRε. (30)

The minimum is at R = 0, which means the small domains
cannot be stable.

The solution (29) of Eq. (25) for the small domains can
be used as an appropriate ansatz for the nonlinear problem
which appears if the domain is large jR � 1. We look for the
solution in form of the trial function,

θ± = γ±
( r

R

)±2
sin 2ϕ, (31)

where γ± are unknown parameters, and substitute it into the
free energy (24):

F = 2π [γ 2
+ + γ 2

− + Rε + jRJ1(γ+ − γ−)]. (32)

If jR � 1, the minimum is γ± = ∓x0/2, where x0 ≈ 1.84 is
the position of the first maximum of the Bessel function J1(x).
The final expression for the free energy is

F ≈ 2πR[ε − jJ1(x0)]. (33)

The dependence also appears to be linear, and dF/dR > 0, so
the domain cannot be stabilized, although the slope of the curve
F (R) is reduced compared to the case of the small domain.

However, the circular domain can be stabilized if it carries
two quanta of magnetic flux. The order parameter of the
exterior domain thus has vorticity equal to ±2 depending on the
domain type. In our case θ− = π and θ+ = 2ϕ. This solution
satisfies the Laplace equation inside the domains and the
boundary conditions at the domain wall because it minimizes
the Josephson-like energy along the whole wall. The free
energy of such a domain is given by the following expression:

F = �2
0

16π2λeff

[
4 ln

λeff

R
+ (ε − j )R

]
. (34)

The free energy of the exterior domain diverges logarithmically
at r → ∞, so the integral was cut off at r = λeff . The free
energy has a local minimum at R∗ = 4/(ε − j ); that is, the
domain carrying two quanta of the magnetic flux is stable to
the radial perturbations. The numerical simulations performed
within the time-dependent Ginzburg-Landau framework
show stability of the two-quanta domains with respect to the
azimuthal perturbations. Note that under certain conditions the
two-quanta domains can to be energetically more favorable
than two singly-quantized vortices [40,41].

The above model may be applied for arbitrary vorticity
n of the exterior order parameter. The presence of nonzero
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FIG. 4. (a) The order parameter and (b) the magnetic field of the chiral domain with three vortices pinned by the domain wall. The winding
number of the outer order parameter component η+ is equal to −1. The vortices reveal themselves as localized peaks of magnetic field. The
domain shown is not a stable configuration but a snapshot of the domain evolution.

vorticity leads to the logarithmic term ∝ n2 ln(λeff/R) in the
free-energy expression, which comes from the kinetic energy
of the Cooper pairs in the exterior domain. This term stabilizes
the domain at some finite radius. However, in this model all
the domains are considered to be circular, which is not true if
n �= ±2. The Josephson energy is frustrated in this case, and
such domains lose circularity due to the azimuthal instability.

This instability reveals itself in the appearance of the
vortices pinned by the domain wall. These vortices represent
the short segments of the wall where the phases of the order
parameter components are inconsistent with the Josephson
relation. Between these vortices the Josephson-like energy of
the domain wall is minimized. The simulations performed
within the time-dependent Ginzburg-Landau model show that
these vortices lead to the sharp bending of the domain wall and
loss of the cylindrical symmetry of the domain (see Fig. 4).
The azimuthal instability plays a crucial role in the evolution
of the domains, allowing the domains with n �= 0 to shrink.

VI. SUMMARY

In this work we have studied the effect of the laser
pulse on the film of a chiral superconductor. Reducing the
influence of the laser pulse to only the effect of the sample
heating, we have found the distribution of the order parameter
components and the magnetic field within the hot spot. We have
analyzed the dynamics of the superconductor after the pulse
absorption in the regime of a subsequent temperature quench.
We show that if the initial pulse was strong enough to suppress
superconductivity locally, then the chiral domains may grow
during the temperature quench according to the Kibble-Zurek

scenario. The magnetic field created by the currents of the
domain walls can be observed experimentally. The field pattern
of the domain walls differs qualitatively from the field of
vortex-antivortex pairs known to appear via the Kibble-Zurek
mechanism in the conventional s-wave superconductors. Such
a behavior is a fingerprint of the chiral superconductivity, and
the appropriate experiments may be useful for its identification
in Sr2RuO4.

In order to study the stability of the domains we developed
a model which allows us to analyze the samples with the given
shape of the domains in London limit assuming the domain
wall is a Josephson junction with orientation-dependent
Josephson energy. Using this model, we studied the stability of
the circular domains and showed that two-quanta domains are
stable, while zero-quanta domains shrink. Simulations within
the time-dependent Ginzburg-Landau framework show that
the circular domains are unstable with respect to the azimuthal
perturbations if the winding number of the exterior domain
differs from ±2 due to the Josephson energy frustration, which
is similar to the frustration in the circular Josephson junctions
between the chiral p-wave and s-wave superconductors [42].
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