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Quasi-two-dimensional fluctuations in the magnetization of La1.9Ca1.1Cu2O6+δ superconductors
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We report the results of magnetization measurements with the magnetic field applied along the c axis on
superconducting La1.9Ca1.1Cu2O6+δ single crystals processed under ultrahigh oxygen pressure. Strong fluctuation
effects were found in both low- and high-field regimes. Scaling analysis of the high-field magnetization data near
the critical temperature (Tc = 53.5 K) region reveals the characteristics of critical fluctuation behavior of quasi-
two-dimensional (2D) superconductivity, described by Ginzburg-Landau theory using the lowest Landau level
approximation. Low-field magnetic susceptibility data can be successfully explained by the Lawrence-Doniach
model for a quasi-2D superconductor, from which we obtained the ab plane Ginzburg-Landau coherence length
of this system, ξab(0) = 11.8 ± 0.9 Å. The coherence length along the c axis, ξc(0), is estimated to be about
1.65 Å, which is in between those of 2D cuprate systems, such as Bi2Sr2Ca2Cu3O10 and Bi2Sr2CaCu2O8, and
quasi-three-dimensional (3D) cuprate systems, such as overdoped La2−xSrxCuO4 and YBa2Cu3O7−δ . Our studies
suggest a strong interplay among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O
plane spacing, s, to the c-axis coherence lengths. A high s/ξc(0) was observed in the high-pressure oxygenated
La1.9Ca1.1Cu2O6+δ , and that apparently drives this system to behave more like a quasi-2D superconductor.
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I. INTRODUCTION

The discovery of high-Tc superconductivity in the
La-Ba-Cu-O system by Bednorz and Müller [1] started an
avalanche of scientific discovery which has persisted to the
present day. High-Tc superconductors are essential not only for
applications, but also for serving as a testbed of fundamental
physics problems, such as studies of exotic quantum effects
[2] and order-disorder transitions [3,4]. Two of the best-known
families of high-Tc materials: bismuth strontium calcium
copper oxide (BSCCO)-based, such as Bi2Sr2Ca2Cu3O10

(Bi2223) and Bi2Sr2CaCu2O8 (Bi2212), and rare-earth barium
copper oxide-based, such as YBa2Cu3O7−δ , are characterized
by layered (perovskite) structures, where the superconduc-
tivity takes place in the copper oxide planes [5]. However,
a major distinction between these two families is that the
c-lattice constant in yttrium barium copper oxide (YBCO)
(orthorhombic unit cell) is ∼11.6 Å, while in BSCCO the
c-lattice constant is on the order of 30.9 Å (in Bi2212)
[6]. In BSCCO, this characteristic distance far exceeds the
superconducting coherence length ξ and is one of the factors
essential for the rise to 2D superconductivity.

The transverse spatial correlations in BSCCO at high
magnetic fields are limited by the field and the quasiparticles
to low Landau levels [7]. This confinement reduces the
dimensionality of the system and increases the importance
of the phase fluctuations in the order parameter [7,8]. It has
been shown that the fluctuations at the lowest Landau levels
(LLL) effectively dominate the H−T superconducting phase
diagram above a characteristic field H̃ (T ) = (1/3)Hc2(T ) +
(
√

Gi/3)[H̃ (T )Hc2(0)T/Tc0]1/2 in a 2D system [7], where
Hc2(T ), T , and Tc0 stand for the upper critical field, temper-
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ature, and the mean-field transition temperature at zero field,
respectively. The scaling properties of the Ginzburg-Landau
lowest Landau levels (GL-LLL) theory suggest that the free
energy obeys the form F (T ,H ) = T Hf (At), where f (At) is
a scaling function of the field and a temperature-dependent
variable t = [T − Tc(H )]/(T H )n (n = 1/2 or 2/3 for a 2D
or 3D system, respectively). The 3D scaling behavior was
shown in YBCO single crystals in magnetization [8], electrical
conductivity [9], Ettinghauser effect [10], and specific heat
[11] measurements.

Magnetization studies have also been pivotal in revealing
the quasi-two-dimensional character of the high-Tc supercon-
ductivity in the BSCCO family, both in the decade following
its discovery [12–21] as well as in more recent times [22]. One
of the better-known signatures associated with fluctuation-
induced magnetization is the so-called “crossing point” effect,
i.e., all the temperature-dependent magnetization scans for
different fields (applied parallel to the crystallographic c-axis)
cross each other at a given point at a temperature near the
critical temperature, Tc [23]. This crossing point has been
ubiquitously observed in BSCCO, and—-more specifically—
-in Bi2212 [12–14] and Bi2223 [15–17], as well as in some
Tl-based cuprates [18,22]. A number of theories have emerged
attempting to explain the crossing-point effect: Bulaevskii
et al. dealt with the low magnetic field (H � 1 T) limit and
suggested it to be a result of the positional fluctuation of
vortices [19], while Tešanović et al. suggested that the crossing
at high fields (H � 1 T) is due to phase fluctuations of the
superconducting order parameters [20]. Particularly good has
been the agreement between these theories and experimental
data taken with H parallel to the c axis [14–18].

The lanthanum calcium copper oxide family [among which,
La2CaCu2O6 (La2126)] has been shown to be the simplest
bilayer structure among the copper oxide superconductors
(see Fig. 1) [24]. In a stoichiometric compound [La2126, as
shown in Fig. 1(a)], the interstitial oxygen site O(3) marked in
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FIG. 1. Crystal structure of (a) La2CaCu2O6 and (b)
La2CaCu2O6+δ .

Fig. 1(b) is not occupied. High-pressure oxygen annealing has
been shown to introduce interstitial oxygen onto the O(3) site,
which effectively bridges two CuO5 pyramids in a bilayer to
two CuO6 octahedra as shown in Fig. 1(b). La2126 has neither
the additional carrier reservoir layers in the superconducting
compounds of Bi2212 and Tl2Sr2CaCu2O8 (Tl2212), nor the
square planar Cu-O chain in the superconducting compound
of YBCO [24]. Furthermore, high oxygen pressure annealed
La2CaCu2O6+δ (La2126 + δ) is still a bilayer system, and
a bilayer cuprate is thought to be a typical example of a
stronger coupling within the bilayer and a relatively weak
one between bilayers [25]. The dimension of the conducting
bilayer in La2126 + δ has been known to lie between those
of the conduction layers in YBCO and BSCCO, raising the
question as to whether the La2126 + δ system will display
superconductivity closer to YBCO (3D) or BSCCO (2D).

Here, we report the analysis results of a magnetization
measurement on a La1.9Ca1.1Cu2O6+δ single crystal, and
thereby we show that the scaled form of the magnetization
at high fields suggests the presence of a two-dimensional
superconductivity according to the GL-LLL fluctuation theory.
Furthermore, based on the Lawrence-Doniach (LD) model,
the low-field magnetic susceptibility was shown to behave
more like a quasi-2D system. Comparing the superconducting
parameters obtained from the scaling results in this work with
those reported for the traditional 2D BSCCO and 3D YBCO,
it is interesting to note that (i) the large anisotropy, and (ii) the
large ratio of effective spacing of the superconducting layers
to the ξc(0), are essential for 2D superconductivity while the
opposite is true for 3D superconducting behavior. Although
the high oxygen pressure annealed La1.9Ca1.1Cu2O6+δ crystal
exhibits similar anisotropy to that of YBCO, it still behaves
more like a 2D superconductor, suggesting the importance of
the ratio of effective spacing of superconducting layers to the
ξc(0), which is properly related to the crystal structure.

The paper is organized as follows: In Sec. II we present
the preparation of the experimental sample along with the
synthesis conditions for its making and the conditions for
the magnetization measurements performed. In Sec. III we
present the data analysis on the magnetization data, with a

discussion of the scaling behavior of our La2126 sample, and
its implications on the superconductivity. Finally, we finish
with a brief summary section which recaps our findings and
conclusions.

II. MATERIALS AND METHODS

A. Materials synthesis

A single-crystal La1.9Ca1.1Cu2O6+δ was grown by the
floating zone method. The crystal was grown under oxygen
pressures of 11 bars. The details of the crystal growth have
been reported elsewhere [24]. The as-grown single crystal
was annealed under 1400 bars oxygen pressure at 1200 ◦C
for 10 h. The x-ray diffraction pattern of the sample reveals
the crystallographic dimensions of the unit cell, which are
as follows: a = b = 3.8578(8) Å and c = 19.967(4) Å. We
have used transmission electron microscopy techniques to
compare the structure of superconducting crystals with the
as-grown, nonsuperconducting starting material. A minority
no-superconducting phase (less than 2%) of La2−xCaxCuO4

(La-214) is detected. Layers of the La-214 phase are found
to be coherently interspersed along the c-axis direction of
the primary La-2126 phase. The occurrence of the La-214
intergrowthlike defects does not seem to harm the supercon-
ductivity of the La-2126 phase, nor does it change the overall
magnetization behavior and our interpretations.

B. Magnetization measurements

The large crystal used in our study weighed 271 mg.
All magnetization, M , measurements were carried out in a
field applied parallel to the crystalline c axis by using a
superconducting quantum interference device magnetometer
by Quantum Design, Inc. with a 6-cm scan length, where the
field inhomogeneity was estimated to be no more than 0.005%.
The reversible magnetization data were taken by measuring
the magnetic moment versus temperature from the irreversible
temperature data up to 300 K. A 2-min delay was introduced
after each temperature change to stabilize the system, so
that the system temperature was always within ±0.02 K of
the target temperature prior to measurement. An accuracy
of better than 2 × 10−6 emu (equivalent to 6 × 10−4 Oe for
the value of 4πM) for magnetic momenta was obtained. The
linear magnetization data were fitted from 90 to 130 K as the
baseline, which was utilized to correct for the background and
normal-state contributions of the magnetization results [7,15].
It was also noticed that there is a phase-transition point around
150 K, which greatly influences the magnetization. And, our
fitting points are far away from the transition area. We note
that the results in this study are not artifacts of a specific form
of the normal-state background.

C. Results and discussion

We performed magnetization measurements with zero-field
cooled and field-cooled thermal histories on the La2126 + δ

single crystal at a field of 2 Oe with the magnetic field applied
parallel to the c axis [see Fig. 2(a)]. Due to the large and
irregular size of the sample, it is necessary to rescale the real
field H by taking into account the demagnetization factor N
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FIG. 2. (a) Temperature dependence of the magnetic susceptibil-
ity of La1.9Ca1.1Cu2O6+δ . (b) Low-field parts of M(H ) at various
temperature for H ‖ c with demagnetization correct, respectively.
The solid line is the “Meissner line.” Here, the field H is equal to
Ha − NM , which has already taken into account the demagnetization
factor N at applied field Ha = 2 Oe.

according to H = Ha − NM , where Ha is the external field,
which is 2 Oe here. The resulting M(H ) curve for H ‖ c is
shown in Fig. 2(b), from which we estimate N to be 0.542
for H ‖ c and apply the value for plotting Fig. 2(a). The
slope of the fitted line in the linear region is −0.985(5) ≈ −1,
which is very close to the Meissner line plotted in Fig 2(b),
suggesting the full shielding within the Cu-O plane. The
critical temperature, Tc = 53.5 K, was obtained by linearly
extrapolating the 4πM(H,T ) data to the zero line, while
another linear fit through the bottom horizontal line was used
to define the transition width (�Tc ∼ 1.5 K). We note that a
small steplike feature was observed around 12.5 K [see inset of
Fig. 2(a)], indicating flux penetration into small defects in these
crystals. Our sample comprises large single-crystal domains
with the unavoidable presence of a very small amount of a CaO
secondary phase, which is embedded in the La2126 matrix
[24]. Actually, according to the result shown in Fig. 2(a), the
superconducting volume of our crystal is around 89.2% and is
estimated to contain roughly 2% of superconducting secondary
phases (Tc ∼ 12.5 K) by volume, which agrees with previous
observations [26–29]. Such a small amount of defects is not
expected to have a significant influence on the magnetization
behavior of the crystal around or above the Tc region.

The magnetization M was measured at fields of 10 000,
30 000, and 50 000 Oe, applied parallel to the c axis (see

FIG. 3. Temperature dependence of the magnetization (H‖c axis)
of La1.9Ca1.1Cu2O6+δ in various magnetic fields parallel to the c axis.

Fig. 3 for a plot of 4πM versus temperature). The well-defined
crossover behavior of various 4πM(H,T ) versus T curves is
clearly shown in the figure as evidence of the strong fluctuation
effects present. The crossing point was found at the same loca-
tion for each 4πM(H,T ) versus T curve within experimental
error, where the crossing-point temperature T ∗ was shown
to be T ∗ = 51.0 ± 0.2 K, and crossing-point magnetization,
4πM∗ = −1.3 ± 0.1 G. At fields near the Hc2(T ) line, this
crossover behavior was defined to be the result of the entropy
associated with the fluctuation of vortices by Tešanović
et al. [20]. The vortex positions (or the phase fluctuation
of the superconducting order parameter) at low fields [near
Tc(H )] are important, while the amplitude fluctuations become
significant in the high-field regime [near the Hc2(T ) line] [14].

Similar critical fluctuations in the thermodynamics of quasi-
2D type II superconductors have been extensively studied
and described in terms of a nonperturbative scaling theory,
as long as the description of Ginzburg-Landau field theory on
a degenerate manifold spanned by the lowest Landau levels
for copper pairs is valid (GL-LLL) [20]. The GL-LLL scaling
in the case of a 2D system has suggested that in the vicinity of
the upper critical field Hc2(T ), the free energy F (T ,H ) scales
with the field and temperature as F (T ,H ) = T Hf (At), where
f (At) is a scaling function of the temperature-dependent vari-
able t = [T − Tc(H )]/(T H )1/2 and A is a numerical constant
[20,30,31]. This theory, has been widely and successfully used
for scaling the Bi-based high-temperature superconductors
with 2D critical fluctuation behavior, which has furthermore
provided an explicit closed-form expressions for the scaling
functions of the free energy f (x), as well as for the magnetiza-
tion, entropy, and specific heat [14,20]. In the particular case
of the magnetization, the scaling functions are given by [20]

F (T ,H )

T H
sφ0 = f (x), x = At, A = a′(φ0s/2b)1/2U0,

f (x) = −1

2
x2 + 1

2
x
√

x2 + 2 + sinh−1(x/
√

2),

(1)

M(H,T )√
HT

sφ0H
′
c2

A
= −f ′(x) = x −

√
x2 + 2, (2)
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FIG. 4. (a) 2D scaling of the magnetization data for
La1.9Ca1.1Cu2O6+δ measured at 10 000, 30 000, and 50 000 Oe with
magnetic fields parallel to the c axis. (b) 3D scaling of the same
magnetization data as shown in (a).

where a and b are the GL coefficients, φ0 is flux quantum
(equals to hc/2e), s is effective spacing of the superconducting
layers, and U0 (U0 = 0.8 around Hc2(T ) [14]) is the vortex
interaction constant [20]. As shown in Eq. (2), the only
adjustable parameters involved are H ′

c2 and Tc0, where
H ′

c2 = |dHc2/dT | at T = Tc0.
In order to ascertain the dimensionality of the supercon-

ductivity, we scaled the magnetization versus temperature
data according to 2D and 3D theories (see Fig. 4) [20].
Figure 4(a) shows a plot of the scaled fluctuation magnetization
under 2D behavior, where only the high-field data at 10 000,
30 000, and 50 000 Oe are plotted for clarity. The fitting
temperature region used in this study is in the temperature
regime T � Tc0 − 3H/H ′

c2, where the scaling theory applies.
The optimum fit yields Tc0 = 4.2 K and H ′

c2 = 3.33 T/K. It
was also noticed that the scaling behavior of the data was much
more sensitive to the Tc0 value than the choice of H ′

c2, which
was also observed in the scaling of other quasi-2D systems
reported [14]. Thus, the H ′

c2 value could range from 3.18 to
3.65 without any distinguished changes between the curves,
while only 1% of the change in Tc0 could significantly distort
the scaling plot. Figure 4(a) shows how all lines neatly fall onto
one single curve using 2D scaling, which strongly suggests that
our sample is very close to quasi-2D behavior. For comparison,
an assumed 3D scaling fitting, for which universal curves of the
form M/(T H )2/3 versus [T − Tc(H )]/(T H )2/3 are expected,
is also performed and shown in Fig. 4(b). Figure 4(b) clearly

FIG. 5. Temperature dependence of T/χ (a) and χ (b), measured
at 300 and 500 Oe. The solid line in (a) represents the linear fit of the
data and the solid curve in (b) is a theoretical fit to the data of 300 Oe
using Eq. (3).

shows that the splitting near the transition region for different
fields inevitably exists, with any choice of H ′

c2 and Tc0. Thus,
3D scaling does not work as well as the 2D scaling near the
transition region, which demonstrates that the superconducting
transition of La2126 + δ is 2D in nature.

Furthermore, based on the static models proposed by
Lawrence and Doniach, Klemm, and Prober and Beasley
[15], the temperature dependence of the weak-field fluctuation
diamagnetic susceptibility χ (T ) above Tc will exhibit the
relationship χ (T )/T ∝ Tc/(T − Tc)n, where n is 1 for a 2D
system, and 1/2 for a 3D system. This relation is only valid
in the weak-field regime defined by Klemm [32], which
corresponds to B < S0 = φ0/(sL), where L is the effective
length in the ab plane, which is of the same order of magnitude
as the average grain size (∼10 μm) and we take half of the
unit-cell parameter for the s value here. As a result, the
weak-field regime here is around several kOe for the applied
field. We studied the temperature dependence of T/χ at 300
and 500 Oe, which is shown in Fig. 5(a). The data show very
close linear behavior at both fields between 58 and 63 K. In
principle, a linear behavior is expected for the 2D system based
on the model. Our data indicate that the La2126 + δ system
behaves more like a 2D system. The mean-field transition
temperature T MF

c = 58.13(5) K was obtained as the intercept
of the straight line in Fig. 5(a), which is 4.6 K higher than that
from a 2-Oe shielding measurement. Figure 5(b) shows a fit
of a 2D Lawrence-Doniach model to the data for χ (T ) with
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TABLE I. Superconducting transition temperature Tc, anisotropy γ , Ginzberg-Landau coherence length in the ab plane [ξab(0)] and along
the c axis [ξc(0)], superconducting interspacing distance s, and superconducting volume fractions in a particular quasi-2D superconductor
M∗/M∗th for La1.9Ca1.1Cu2O6, Bi2Sr2CaCu2O8, Bi2Sr2Ca2Cu3O10, and YBa2Cu3O7−δ All the data from comparison samples are from literature.
The Ginzberg-Landau coherence length along the c axis ξc (0) of our crystal is calculated through the anisotropy data reported in Ref. [40].
The superconducting volume fraction of YBa2Cu3O7−δ was estimated and calculated using the data from Ref. [9].

Compounds Tc (K) γ ξab (0) (Å) ξc (0) (Å) s (Å) M∗/M∗th

La1.9Ca1.1Cu2O6+δ 53.5 7.1 [40] 11.8 ± 0.9 1.65 (cal) 9.8 29.8%
Bi2Sr2CaCu2O8 [14,41,42] 84.2 >50 20.4 0.37 15.395 82%
Bi2Sr2Ca2Cu3O10 [15] 107.5 >50 9.6 0.2 18.6 60%
YBa2Cu3O7−δ [9,43] 92.1 ∼5.3 16 3 5.8 <10% (cal)

Tc = 58.13 K via Eq. (3):

χ = χ0 − 1

3
geff

πkBξ 2
ab(0)T

φ2
0s

Tc

T − Tc

, (3)

where χ0 contains the normal-state contributions in the
absence of fluctuations and is assumed to be independent
of T . geff is the effective number of complex s-wave order
parameters in the Cu-O plane, which is taken as 2 for the
bilayer Cu-O planes in La2126 + δ within the 2D fluctuation
regime. Although it is difficult to fit the data precisely because
of the slightly nonlinear behavior observed in Fig. 5(a), we can
nevertheless estimate the ξab(0) from Eq. (3). The fit of the data
for both of the fields (300 and 500 Oe) yields ξab(0) = 10.95 −
12.60 Å. Table I shows the comparison of our La2126 + δ

crystal to the Bi2223 2D system, as well as the 3D YBCO
system. La2126 + δ exhibits Ginzburg-Landau coherence
lengths comparable to those of Bi2223[ξab(0) ∼ 9.6 Å] and
YBCO [ξab(0) ∼ 16 Å] in the ab plane (see Table I).

In order to put the 2D superconductivity in La2126 + δ

in perspective, one needs to understand the structural as well
as transport properties of the system in hand. Structurally,
La2CaCu2O6+δ is recognized as the simplest bilayer system
[33]. La2CaCu2O6+δ has been shown to possess Cu-O bilayers,
but without the Cu-O chains present in YBCO [33,34]. Its unit
cell comprises two CuO5 pyramidal planes, separated by a
cation monolayer [33]. The interstitial oxygen has been shown
to go on the O(3) site upon high-pressure annealing (see Fig. 1),
and effectively bridging the two CuO5 pyramids in a bilayer
to two CuO6 octahedra [28,29,35]. The interstitial oxygen
plays an important role in the superconductivity although the
detailed role is still unclear. In addition, there are La-O and
Ca-O layers between the CuO6 octahedra, which is similar with
the structure arrangement in Bi2223. Thus, from the aspect of
structural properties, La2126 + δ is structurally closer to the
2D Bi2223 system.

High-temperature superconductors possess H–T phase di-
agrams, which are characterized by large areas where the
fluctuations in the order parameter are important. As a matter of
fact, the relative importance of the thermal fluctuations is given
by the Ginsburg parameter Gi, which is heavily determined by
the coherence length ξ and the dimensionality of the system
D [36]. The correlations grow weaker at reduced dimensions
[37]; thus, the effect of the fluctuations is more pronounced
in 2D compared to 3D, particularly when it comes to the con-
tributions of the fluctuations to magnetization measurements

[36]. Two indications which would suggest that the system
is either 2D or 3D would be (i) the relationship between the
superconducting coherence length and the spacing between the
conduction planes [38], and (ii) the strength of the Josephson
coupling. The latter item is related to the superfluid density and
its assessment is beyond the scope of the present paper [39].

A decisive factor determining the dimensionality of a
superconductor is the field anisotropy γ (for comparison
of ξ ’s and γ ’s in La2126, Bi2223, and YBCO, please see
Table I). As we can see, γ Bi2223 is much larger than γ YBCO

(γ YBCO ∼ 4 − 7) [43,44] or γ La2126 (γ La2126 ∼ 7) [40], leading
to the extremely small c-axis coherence length ξc(0) observed
in Bi2223 [ξBi2223

c (0) ∼ 0.2 Å]. From the anisotropy value
for La2126 + δ, we can similarly estimate its ξLa2126

c (0),
and we show that it is around 1.65 Å [clearly lying much
above ξBi2223

c (0), while being below ξYBCO
c (0)]. In fact, the

dimensionality of a superconductor can be changed by slightly
changing the doping level. Such a behavior was observed by Li
et al. in the La2−xSrxCuO4 system [7], which clearly showed
that its dimensionality moves from 2D-like behavior to 3D-like
behavior as the Sr content increases [7]. Qualitatively speak-
ing, increasing the charge concentration makes the system less
anisotropic, and decreases the effective layer spacing [7]. In
an intermediate- and strong-coupled layered superconductor,
s may not be taken as the physical distance between two
relatively weakly coupled superconducting layers [7]. It is
the effective separation including the positional correlation
in the neighboring layers. However, there is no quantitative
description of the relation between the crossing-point magne-
tization and the anisotropy for a layered superconductor [7].
Most notably, the 2D to 3D crossover happens as a result of
a shrinking effective s∗ and/or decreasing γ (with a subse-
quent increase in ξc), suggesting the importance of the ratio
of s to ξc.

It is interesting to note that the ratio of conduction interlayer
separation and coherence length of a 2D system is very
large, as compared to a 3D one (see Table I) [38]. The
interspacing distance, s in La2126, is again an intermediate
value between the respective distances in Bi2223 and YBCO,
sBi2223 and sYBCO. Most significantly, Bi2223 and YBCO
exhibit 2D and 3D superconductivity, respectively, which
would be suggested by the relation of conduction layer
spacings to superconducting coherence lengths (see Table I).
We can explain this by introducing the Cooper pair-coupling
behavior as plotted in Fig. 6. In this 3D plot, it is clearly
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FIG. 6. 3D plot of Cooper pair-coupling behavior based
on the data listed in Table I. We choose Bi2Sr2Ca2Cu3O10,
La1.9Ca1.1Cu2O6+δ in this paper and YBa2Cu3O7−δ for 2D, 2D to 3D
crossover, and 3D behavior, respectively. Here, we fix the interspacing
distance between layers s for all the samples and ξc (0) changes
according to the ratio of ξc(0)/s listed in Table I. The anisotropy
value γ is applied to decide ξab(0). The different colors represent the
electron concentration levels, where the red part means the highest
concentration (set to 1 in the color bar) and the dark blue (set to
be 0 in the color bar) shows the lowest concentration. The pictorial
representation where the overlap is the greatest corresponds to the
3D system where the coherence length is longer than the interlayer
spacing, while the one where the two lobes are completely separated
corresponds to the bona fide 2D case with the crossover scenario
being in the middle.

shown that a strong coupling between superconducting layers
is observed in the 3D superconductor, while the 2D system

exhibits the separately distribution of the Cooper pair coupling
inside the superconducting layers. Our La2126 sample shows
the crossover behavior between 2D and 3D but much closer to
2D system due to the much larger s/ξc(0) ratio. The fluctuation
character of the superconductivity in La2126 appears to be very
robust, unlike the one observed in (i) MgB2, where fluctuation
effects occur at only the very low fields (H ∼ 100 Oe) [45] or
(ii) Pb nanoparticles, in which case the first-order fluctuation
correction is found to be valid only outside the critical region,
where it accurately describes the diamagnetic magnetization
for magnetic fields (only not too close to the critical field)
[46]—-all observations consistent with GL-LLL. Our La2126
system also did not exhibit nonconventional fluctuation dia-
magnetism as the one observed in some underdoped systems,
such as Y1−xCaxBa2Cu3Oδ [47,48], and attributed to thermally
excited vortices which need to be properly accounted for via
a Coulomb-gas theoretical approach [49], albeit this may be a
behavior that we may anticipate to see at much lower applied
fields.

III. CONCLUSIONS

In conclusion, the analysis of the magnetization data
presented here shows that the magnetization properties of a
superconducting La1.9Ca1.1Cu2O6+δ single crystal near Tc(H )
in high fields can be described quite nicely by GL-LLL
fluctuation theory for a 2D superconductor. The low-field
fluctuation diamagnetic susceptibility χ (T ) above Tc can
be fitted in terms of the 2D Lawrence-Doniach model.
Our findings suggest that La1.9Ca1.1Cu2O6+δ is a quasi-2D
superconductor from the aspects of both its structural and
transport properties: It is suggested that the large anisotropy
in La1.9Ca1.1Cu2O6+δ , manifest in the large ratio between
the superconducting interspacing distance and the coherence
length along the c axis is the cause behind the 2D nature
of the fluctuation superconductivity in it. We suggest future
optical spectra and μSR measurements to assess the superfluid
density, i.e., the strength of the Josephson couplings between
the different conduction bilayers.
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