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Surface impedance and optimum surface resistance of a superconductor with an imperfect surface
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We calculate a low-frequency surface impedance of a dirty, s-wave superconductor with an imperfect surface
incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer.
Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed
impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained
spatial distributions of the order parameter and the quasiparticle density of states which then were used to
calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ(T ) as functions of
temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band
s-wave superconductor results in a nonexponential temperature dependence of Z(T ) at T � Tc which can mimic
the behavior of multiband or d-wave superconductors. The imperfect surface and the broadening of the gap
peaks in the quasiparticle density of states N (ε) in the bulk give rise to a weakly temperature-dependent residual
surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an
ideal surface by engineering N (ε) at the surface using pair-breaking mechanisms, particularly by incorporating
a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and
its contact resistance. The results of this work address the limit of Rs in superconductors at T � Tc, and the
ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in
superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.
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I. INTRODUCTION

The physics of electromagnetic response of superconduc-
tors has been an area of active fundamental research relevant
to many applications. For instance, quasiparticles generated
due to absorption of infrared photons with energies higher
than the gap energy h̄ω > 2� are essential for microwave
kinetic inductance detectors of cosmic photons [1]. At low
frequencies h̄ω � 2�, single photons cannot break Cooper
pairs, so the low-field surface impedance Z = iωμ0λ + Rs is
determined by the quasistatic London penetration depth λ and
the surface resistance Rs . At temperatures T well below the
critical temperature Tc and h̄ω � �, s-wave superconductors
have very small Rs giving rise to extremely high quality factors
instrumental for microresonators for quantum computing [2]
or radio-frequency superconducting (SRF) cavities for particle
accelerators [3]. The surface resistance in the Meissner state
has the following generic temperature dependence observed in
many experiments [4]:

Rs = (Aω2/T ) exp(−�/kBT ) + Ri, h̄ω � �. (1)

The first term on the right-hand side of Eq. (1) is the BCS
surface resistance resulting from the RF heating of thermally
activated quasiparticles, A depends on purity of the material,
and � = 1.76kBTc is the superconducting energy gap [5–8].
The last term Ri in Eq. (1) is a residual surface resistance
which sets the low-temperature limit of Rs . For instance,
typical values of Rs � 3–10 n� of the Nb resonator cavities
operating at T = 1.5 K and frequencies ∼1 GHz much smaller
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than the gap frequency 2�/h � 700 GHz exceed RBCS
s (T )

[9–11]. The residual resistance can also significantly exceed
RBCS

s (T ) in Nb3Sn [12–15], MgB2 [16–18], and iron-based
superconductors [19–22].

Mechanisms of the residual surface resistance are not well
understood, but it has been established that Ri can be changed
significantly by the materials treatment or by irradiation [23].
For instance, lossy oxides or metallic hydrides at the surface of
Nb, grain boundaries, or trapped vortices which appear during
cool-down of the sample through Tc, surface roughness, and
segregation of impurities at the surface can contribute to Ri

[9–11]. These extrinsic factors can be ameliorated by the
materials treatments, and by pushing out a fraction of trapped
vortices by strong temperature gradients [24–26], so the
fundamental lower limit of Ri is of great interest.

A finite Ri in the Meissner state does not come from the
BCS model in which the quasiparticle density of states (DOS)
N (ε) vanishes at all energies |ε| < � even in the presence
of weak nonmagnetic impurities [27]. However, numerous
tunneling experiments have shown that in the observed N (ε)
the BCS singularities at ε = � are smeared out and subgap
states with finite N (ε) appear at |ε| < �. Such N (ε) has
been often described by the phenomenological Dynes formula
[28,29]:

N (ε) = Re
Ns(ε + i�)√

(ε + i�)2 − �2
. (2)

Here the damping parameter � quantifies a finite lifetime
of quasiparticles ∼h̄/�, and Ns is the density of states at
T > Tc. Detailed discussions of tunneling measurements of
N (ε) and application of Eq. (2) can be found in Ref. [30].
Different mechanisms of broadening of DOS peaks have
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been considered in the literature, including inelastic scat-
tering of quasiparticles on phonons [8,31], strong Coulomb
correlations [32], anisotropy of the Fermi surface [33], local
inhomogeneities of the BCS pairing constant [34], magnetic
impurities [27,35,36], and effects of spatial correlations in
impurity scattering [27,37].

The broadening of DOS peaks can result in a nonexponen-
tial dependence of Rs(T ) and the leveling off the Arrhenius plot
of ln Rs versus 1/T at low temperatures [38], which is usually
attributed to a residual resistance. Indeed, Eq. (2) suggests a
finite density of states Ns�/� at the Fermi level, which would
cause a finite Ri at T = 0. This was shown for the dirty limit
[38] and then extended to an arbitrary impurity concentration
[39]. Yet Eq. (2) has not been derived from the microscopic
theory of superconductivity, so not only the dependencies
of � on T and ε but also the validity of Eq. (2) at T � Tc

remain unclear. For instance, spatial correlations in impurity
scattering can result in an exponential low-energy tail in N (ε)
[27], and any power-law temperature dependence of �(T )
would manifest itself as an apparent residual resistance in the
Arrhenius plot measured within a limited temperature window.

The link between the subgap states and the residual
resistance [38] suggests that both Ri and N (ε) can be
very sensitive to the state of the surface. Indeed, tunneling
measurements of N (ε) are often masked by metallic suboxides,
local reduction of the BCS pairing constant, absorbed impu-
rity layers, or surface nonstoichiometry which can weaken
superconductivity at the surface [30]. The importance of the
surface contributions to the tunneling DOS was recognized
long ago [40,41], but the extent to which � in Eq. (2) represents
a true bulk value or is mostly controlled by the surface
properties is not well understood. Yet the exponentially small
surface resistance at T � Tc becomes extremely sensitive
to any surface contributions which yield a nonexponential
temperature dependence of Rs(T ). The fact that the observed
values of Ri in Nb could be accounted for by rather small
� � (0.02–0.05)� [38] suggests that if � does come from
the surface effects, superconductivity is weakened in a surface
layer thinner than the coherence length ξ . This conclusion
is consistent with the well-established structure of the Nb
surface covered by a layer of dielectric Nb2O5 oxide followed
by the layer of normal (N) metallic suboxide NbO and
a dirty Nb superconducting (S) layer in which the order
parameter is reduced by diffused oxygen impurities [9–11].
The thickness of the suboxide layer �1–2 nm is much smaller
than ξ � 40 nm, so this layer becomes superconducting due
to the proximity effect. This structure is characteristic of
the surface of many superconducting materials, particularly
Nb3Sn, MgB2, or iron-based superconductors, which can also
exhibit a significant surface nonstoichiometry.

In this work we calculate Z(ω,T ) for a realistic surface
modeled by a thin layer of weakened superconductivity or by
the N layer coupled to the bulk superconductor by the prox-
imity effect. This model allows us to calculate Z(ω,T ) using
the well-developed approach based on the Usadel equations
[42,43] for the proximity-coupled dirty N-S bilayers. Previous
calculations of such N-S bilayers have shown significant
broadening of DOS peaks and low-energy minigaps in the
N layer [44,45] which can manifest itself in dc screening
and nonexponential temperature dependencies of Rs(T ) and

λ(T ) at T � Tc. Screening of a dc parallel field and magnetic
breakdown of superconductivity in N-S bilayers has been
thoroughly investigated theoretically for arbitrary mean-free
path and temperatures [46–49]. In turn, the nonexponential
temperature dependence of Rs(T ) was observed in microwave
measurements on S-N bilayers of different materials [50–53].
However, unlike the nondissipative dc magnetic response, the
surface resistance is rather sensitive to the details of peaks
and low-energy tails in N (ε), so a theory of Rs(T ,ω) should
include self-consistent calculations of spatial variation of DOS
perpendicular to the surface. In this work we develop such
a theory of Rs which incorporates both bulk and surface
subgap states, and the residual surface resistance into the
BCS theory of electromagnetic response [7]. Since a moderate
broadening of DOS peaks can reduce the low-frequency Rs(T )
at intermediate temperatures [38]; this theory also shows
how Rs could be optimized using pair-breaking mechanisms,
for example by tuning the concentration of paramagnetic
impurities or properties of the N layer at the surface. Such
engineering of an optimum DOS by surface nanostructuring
and impurity management may be used for the material
optimization and increasing the quality factors of the SRF
resonant cavities for particle accelerators and microresonators
for quantum information processing and photon detectors.

The paper is organized as follows. In Sec. II we formulate
the Usadel equations for the quasiclassical Green’s functions
and the boundary conditions. In Sec. III we solve the Usadel
equations for a semi-infinite superconductor covered by a
thin layer with a reduced pairing constant g(x), and a thin
proximity-coupled N layer at the surface. For both cases, we
calculate self-consistently the Green’s functions, �(x), and
N (ε,x) and show that the effect of a thin surface layer extends
into the bulk over distances much larger than ξ for quasiparticle
energies close to �. In Sec. IV we calculate the effect of the sur-
face layer on the magnetic penetration depth and the surface re-
sistance in the local London limit. It is shown that the nonideal
surface can result in nonexponential dependencies of λ(T ) and
Rs(T ) at low temperatures which can extend down to very low
T � Tc for a large S-N interface resistance, and Rs can be
minimized by tuning the properties of the N layer. In Sec. V
we discuss implications of the obtained results for the inter-
pretation of experimental data on the measurements of surface
impedance at low temperatures, and optimization of Rs .

II. USADEL EQUATIONS AND BOUNDARY CONDITIONS

Consider the geometry shown in Fig. 1 which represents
a superconductor with a thin surface layer (0 � x � 	) of
reduced BCS pairing constant g, and a superconductor (x � 0)
covered with a thin N layer (−d � x < 0). We use the
quasiclassical theory [42,43] for a dirty superconductor de-
scribed by the normal and anomalous thermodynamic Green’s
functions G = cos θ and F = sin θ , where θ (x) obeys the
Usadel equation:

h̄D

2
θ ′′ = −�(x) cos θ + h̄ωn sin θ. (3)

Here D is the electron diffusivity, and the prime denotes
differentiation with respect to x. The pair potential �(x)
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FIG. 1. (a) A surface layer of gradually reduced BCS pairing
constant g(x). Inset shows a profile of g(x). (b) A superconductor
covered with a normal layer of thickness d . The vertical black line in
(b) shows the S-N interface giving rise to the contact resistance RB .

satisfies the self-consistency equation

�(x) = 2πkBT g(x)
�∑

ωn>0

sin θ (x), (4)

where the summation over the Matsubara frequencies ωn =
πkBT (2n + 1)/h̄ is cut off at the Debye frequency �.
Equation (3) written for both N and S regions is supplemented
by the boundary conditions at the outer surface and x → ∞:

θ ′|surface = 0, (5)

θ (∞) = θ∞. (6)

Here θ∞ defines the uniform Green’s functions:

G(ωn) = cos θ∞ = h̄ωn√
(h̄ωn)2 + �2

, (7)

F (ωn) = sin θ∞ = �√
(h̄ωn)2 + �2

, (8)

where � ≡ �(∞) denotes an equilibrium order parameter in
the S region far away from the surface, as opposed to the
varying pair potential �(x) in Eq. (4). For the case shown in
Fig. 1(b), we use the following boundary conditions at the S-N
interface [54]:

σnRBθ ′
− = sin(θ0 − θ−), (9)

σnθ
′
− = σsθ

′
0. (10)

Here θ− = θ |x=−0, θ0 = θ |x=+0, RB is the N-S contact
resistance, and σn and σs are the normal-state conductivities
in the N and S regions, respectively. It is convenient to define
the following dimensionless parameters:

α = Nn

Ns

d

ξS

, (11)

β = 4e2

h̄
RBNn�d, (12)

where Nn and Ns are the normal densities of states in N and S
regions, and ξS and ξN are the respective coherence lengths in

the dirty limit:

ξN =
√

h̄Dn

2�
, ξS =

√
h̄Ds

2�
. (13)

Notice that α and β are independent of the mean-free path
in the N layer. If Nn = Ns , we have α = d/ξS = 0.05 for a
moderately dirty Nb with ξS = 20 nm covered by an N layer
of thickness d = 1 nm.

Equations (9) and (10) result from the general boundary
conditions [55,56] for quasiclassical Green’s functions if
the N-S interface has a small transmission coefficient t ∼
πRK/RBk2

F � 1, where kF is the Fermi wave vector, and
RK = h/e2. The condition t � 1 imposes a restriction on β

which becomes apparent by presenting Eq. (12) in the form
β = (4d/πξ0)(k2

F RB/πRK ), where Nn = m∗kF /2π2h̄2, m∗ is
the electron effective mass, and ξ0 = h̄vF /π� is a coherence
length in the clean limit. Thus, the parameter β at t � 1 is
confined within the region d/ξ0 � β < ∞, which at d/ξ0 � 1
comprises the essential cases of both β > 1 and β � 1
considered in this work. As a result, Eqs. (9) and (10) can
be used for the calculations of Rs for thin, proximity-coupled
N layers with both β � 1 and β > 1, and qualitatively for
intermediate transparency t ∼ 1 and β � d/ξ0.

Retarded Green’s functions GR = cosh θ and FR = sinh θ

are obtained by solving the Usadel equation in the real-
frequency representation h̄ω → −i(ε + i�):

h̄D

2
θ ′′ = i�(x) cosh θ − i(ε + i�) sinh θ, (14)

where �(x) satisfies Eq. (4), and � accounts for a finite
quasiparticle lifetime. For a uniform superconductor,

GR(ε) = cosh θ∞ = ε + i�√
(ε + i�)2 − �2

, (15)

FR(ε) = sinh θ∞ = �√
(ε + i�)2 − �2

. (16)

The self-consistency equation for � in the bulk is obtained by
substituting Eq. (8) with h̄ωn → h̄ωn + � into Eq. (4):

ln
T

Tc0
= 2πkBT

∑
ωn

[
1√

(h̄ωn + �)2 + �2
− 1

h̄ωn

]
, (17)

where Tc0 = (2γ̃ h̄�/πkB) exp(−1/g) is the BCS critical
temperature at � = 0, and ln γ̃ = γE = 0.577 is the Euler
constant. Setting � = 0 and summing over ωn in Eq. (17)
yields the following equation for Tc:

ln
Tc

Tc0
+ ψ

(
1

2
+ �

2πkBTc

)
− ψ

(
1

2

)
= 0, (18)

where ψ(z) is a digamma function. Equation (18) has the form
of the well-known equation for Tc(�) of a superconductor
with paramagnetic impurities [27,60]. Here Tc decreases with
� and vanishes at � = �0/2, where �0 = 2h̄� exp(−1/g) is
the BCS gap at T = 0 and � = 0. The bulk pair potential �(�)
at low temperatures T � Tc can be obtained by replacing the
summation in Eq. (17) with integration over ω, which yields
�2 = �0(�0 − 2�). In the case of � � �0 considered in this
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work, Tc and � take the form

Tc = Tc0 − π�

4kB

, (19)

� = �0 − �. (20)

In the following we assume no BCS pairing in the N layer,
adopt ξS and � as units of length and energy, and use the
dimensionless parameters x/ξS , kBT /�, h̄ω/�, and ε/�

unless stated otherwise.

III. SOLUTION OF THE USADEL EQUATION

A. Surface layer with a reduced pairing constant

1. Self-consistent pair potential

Consider a thin surface layer with an inhomogeneous BCS
pairing constant g(x) = g + δg(x), as shown in Fig. 1(a),
where g = g(∞). For a weak perturbation δg(x) � g, result-
ing in a weak disturbance of θ (x) = θ∞ + δθ (x) and �(x) =
1 + δ�(x), the linearized thermodynamic Usadel equation for
δθ � θ∞ takes the form

δθ ′′ − k2
ωδθ = − cos θ∞δ�(x), (21)

where kω = (ω2
n + 1)

1
4 and δ�(x) satisfies the linearized gap

equation

δ�(x) = 2πT

�∑
ω

[g cos θ∞δθ (x) + δg(x) sin θ∞]. (22)

Equations (21) and (22) can be solved by the cosine Fourier
transform as shown Appendix A:

δ�(x) = 1

πg2

∫ ∞

0
dk

δgk

S(k)
cos kx, (23)

S(k) = 2πT

∞∑
ω

k2
√

ω2
n + 1 + 1(

ω2
n + 1

)(
k2 + √

ω2
n + 1

) , (24)

where δgk is the Fourier image of δg(x). Notice that S(k) is a
slow function of k, varying from S(k) = 1 + πk2/4 at k2 �
1 to S(k) = ln(2k2) at k2 
 1. As an illustration, consider
δ�(x) for the exponential profile of δg(x) = −ζg exp(−x/	)
for which

δgk

g
= − 	ζ

1 + k2	2
, (25)

where the parameter ζ < 1 quantifies the magnitude of δg(x).
Since S(k) ∼ 1 varies very slowly with k at k 
 1, the integral
in Eq. (23) converges at k ∼ 1/	. Thus, the disturbance
δ�(x) ∝ δg(x) decays over a short length ∼	 � ξS much
smaller than the length scales of variation of the retarded
Green’s functions, as will be shown below.

2. Retarded Green’s functions and density of states

To calculate the retarded Green’s functions we solve the
Usadel equation in the real-frequency representation,

θ ′′(x) = i[1 + δ�(x)] cosh θ (x) − iε sinh θ (x). (26)

Because the disturbance of the pair potential δ�(x) ∝ δg(x)
decreases rapidly over the length 	 � ξS , we can approximate

δ�(x) as follows:

δ�(x) = −�δ(x), (27)

where � is given by the Fourier component δ�k at k = 0:

� = 1

g2

∫ ∞

0
δg(x)dx = ζ	

g
. (28)

The solution of Eq. (26) is given by (see Appendix B)

tanh
θ (x) − θ∞

4
= tanh

θ0 − θ∞
4

e−kεx, (29)

where kε ≡ (1 − ε2)1/4. The value θ0 ≡ θ (x = 0) is deter-
mined by a self-consistency equation which is obtained by
multiplying Eq. (26) by θ ′ and integrating from x = +0
to ∞ using the boundary conditions θ ′(+0) = −i� cosh θ0,
θ (∞) = θ∞, and θ ′(∞) = 0. As shown in Appendix B, this
procedure yields the following equation for θ0:

2kε sinh
θ0 − θ∞

2
= i� cosh θ0. (30)

The solutions for the Green’s functions are then

GR = 4t(1 + t2)

(1 − t2)2
sinh θ∞ +

[
2(1 + t2)2

(1 − t2)2
− 1

]
cosh θ∞,

(31)

FR = 4t(1 + t2)

(1 − t2)2
cosh θ∞ +

[
2(1 + t2)2

(1 − t2)2
− 1

]
sinh θ∞,

(32)

where t(x) = tanh{[θ (x) − θ∞]/4} is given by

t(x) =
(

tanh
θ0 − θ∞

4

)
e−kεx . (33)

Equations (30)–(32) define self-consistently θ (x) in a super-
conductor with a thin pair-breaking layer.

Equations (29)–(33) allow us to calculate the effect of
the pair-breaking layer on the normalized DOS, n(ε) =
N (ε)/Ns = Re[GR(ε,x)]. Shown in Fig. 2 is n(ε,x = 0) =

0 0.5 1 1.5 2
/

0

1

2

3

4

5

6

N
(

)/
N

s

FIG. 2. Density of states at the surface calculated for � = 0.2
and � = 0.01 (red line). The blue line shows DOS in the bulk.
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Re cosh θ0 at the surface calculated from Eq. (30) at � = 0.2
and �/� = 0.01, along with the Dynes DOS with �/� = 0.01
in the bulk. The surface pair-breaking layer broadens the peak
in DOS and shifts it to lower energies, which may complicate
extraction of the bulk gap � from tunneling measurements
using the conventional fitting procedure based on Eq. (2).

B. Effect of normal layer at the surface

1. Self-consistent pair potential

Consider an N layer of thickness d < ξN at the surface,
as shown in Fig. 1(b). To calculate θ (x) and �(x), we first
solve the thermodynamic Usadel equation ξ 2

Nθ ′′ = ωn sin θ in
the N layer at −d � x < 0. Since θ (x) varies weakly over the
thin N layer with d � ξN , the solution satisfying the boundary
condition θ ′(−d) = 0 can be approximated by

θ (x) = θ− + x(x + 2d)

2ξ 2
N

ωn sin θ−. (34)

The relation between the boundary values θ− and θ0 at the N
and S sides of the interface can be obtained using Eq. (9) and
θ ′
− = (d/ξ 2

N )ωn sin θ−:

sin θ− = sin θ0√
1 + β2ω2

n + 2βωn cos θ0

. (35)

Then Eq. (10) becomes

θ ′(0) = ωn� sin θ0, (36)

� = α√
1 + β2ω2

n + 2βωn cos θ0

. (37)

Now the problem is reduced to solving the Usadel equation in
the S region:

θ ′′ = −[1 + δ�(x)] cos θ + ωn sin θ, (38)

with the boundary condition (36) at x = 0, where δ�(x) is a
short-range perturbation of the pair potential approximated
by Eq. (27) with the amplitude � to be calculated self-
consistently. The solution satisfying the boundary condition
(6) is given by (see Appendix C)

tan

[
θ (x) − θ∞

4

]
= tan

[
θ0 − θ∞

4

]
e−kωx. (39)

Here θ0 and � satisfy the following equations:

2kω sin
θ0 − θ∞

2
+ ωn� sin θ0 + � cos θ0 = 0, (40)

� = 2πTg

�∑
ωn>0

∫ ∞

0
[sin θ∞ − sin θ (x)]dx. (41)

The closed set of Eqs. (37) and (39)–(41) simplifies in the
limit of � � 1 which encompasses a range of the parameters
of practical interest. In this case Eqs. (39) and (40) can be
linearized in δθ = θ − θ∞ � 1, giving

δθ (x) = δθ0e
−kωx, δθ0 = −ωn(� + �)

k3
ω + �ω2

n

. (42)

FIG. 3. A contour map of the self-consistent pair potential �

calculated from Eq. (43) at kBT /� = 0.057 and h̄� = 11�. The
parameters α and β are defined by Eqs. (11) and (12).

Substituting Eq. (42) into Eq. (41) yields

� = SN

1 − SD
, (43)

where

SN = 2πTg

�∑
ωn>0

ω2
n�

k3
ω

(
k3
ω + �ω2

n

) , (44)

SD = 2πTg

�∑
ωn>0

ω2
n

k3
ω

(
k3
ω + �ω2

n

) . (45)

Figure 3 shows a contour plot of � calculated from Eqs. (37)
and (42)–(45), from which it follows that the condition � < 1
is satisfied in a wide range of α and β. At T � Tc, the
summation in Eqs. (44) and (45) can be replaced by integration,
allowing for analytical evaluation of � in certain cases
summarized in Appendix D. For instance, in the practically
important case of α � 1 and β > α2/4, we have

� = α(β − 1)

1 + β2
+ α

(1 + β2)3/2

× ln
(1 + β�)(β +

√
1 + β2)√

(1 + �2)(1 + β2) − � + β
, (46)

where � = h̄�/� is a large parameter of the BCS model.
Yet for real materials, � may not be necessarily the largest
parameter in Eq. (46): for Nb with � � 17.5 K and h̄�/kB �
184 K, we obtain � � 10.5, so the BCS limit of � 
 1 should
be taken with care. Indeed, for α = 0.05 used in our numerical
simulations presented below, Eq. (46) describes both cases
of �β � 1 and β� 
 1. If β� 
 1, we have � ≈ 0.62α

at β = 1, � = α[ln(2/β) − 1] at β � 1, and � = α/β at
β 
 1. However if β� � 1, Eq. (46) shows that � becomes
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independent of β:

� = α

(
ln

2h̄�

�
− 1

)
= α

(
1

g
− 1

)
. (47)

Here the BCS gap equation � = 2h̄� exp(−1/g) at T = 0
was used. For Nb, the condition under which Eq. (47) is
valid overlaps with the condition α � 1 under which the
thin N layer approximation of this work is applicable. Our
numerical simulations for α = 0.01 and h̄� = 11� show that
Eq. (46) describes the full Eq. (43) to an accuracy of better
than 3% in a wide range 10−2 < β < 102.

2. Retarded Green’s functions and density of states

Retarded Green’s functions are obtained by solving the
real-frequency Usadel equations in the N and S regions. In the
N region (x < 0) we have

GR = cosh

[
θ− − iεx(x + 2d)

2ξ 2
N

sinh θ−

]
, (48)

FR = sinh

[
θ− − iεx(x + 2d)

2ξ 2
N

sinh θ−

]
, (49)

where

sinh θ− = sinh θ0√
1 − β2ε2 − 2iβε cosh θ0

. (50)

The boundary condition at x = 0 is then

θ ′(0) = −iε� sinh θ0, (51)

� ≡ α√
1 − β2ε2 − 2iβε cosh θ0

. (52)

At x � 0, the Green’s functions are given by Eqs. (31)–(33)
and θ0 satisfies the self-consistency equation

2kε sinh
θ0 − θ∞

2
= iε� sinh θ0 + i� cosh θ0, (53)

which takes into account the proximity effect in the N layer
and a reduction of the pair potential in the S region, where �

is given by Eq. (43) (see also Fig. 3).
Using Eqs. (31) and (48), we obtain the density of states

n(ε,x) = ReGR(ε,x):

nN (ε,x) = Re

[
cosh θ0 − iβε√

1 − β2ε2 − 2iβε cosh θ0

− iεx(x + 2d) sinh2 θ0

2ξ 2
N [1 − β2ε2 − 2iβε cosh θ0]

]
, (54)

nS(ε,x) = Re

[
ε(1 + 6t2 + t4) + 4t(1 + t2)

(1 − t2)2
√

ε2 − 1

]
, (55)

where t(x) is defined by Eq. (33). For ε not too close to 1 so
that |δθ0(ε)| � 1, Eq. (55) simplifies to

nS(ε,x) � Re

[
ε√

ε2 − 1
+ δθ0e

−kεx

√
ε2 − 1

]
, x > 0. (56)

Figures 4(a) and 4(b) show the DOS at the N and S sides
(x = ∓0) of the interface, respectively. For a nearly transparent
interface with β � 1, a thin N region disturbs the DOS weakly
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FIG. 4. Densities of states at (a) N side and (b) S side of
the interface, calculated for α = 0.05, � = 0, h̄� = 11�, and
β = 0.1,1,10. Inset in (b) shows details of the proximity-induced
low-energy tail of N (ε) at S side.

so that n(ε) is close to the BCS DOS in both the S and N
regions which are coupled strongly by the proximity effect.
As β increases, the N and S regions become more and more
decoupled resulting in subgap states in the N region and the
quasiparticle minigap ε0 < 1 which decreases with β. By
contrast, the DOS at the S region approaches the BCS-like
DOS as β increases.

To see under what conditions the minigap in the N region
can drop well below the bulk �, we evaluate ε0 in the
limit of � = 0 and α � 1 for which ε0 is an end point
at which the density of states N (ε) vanishes. As follows
from Eqs. (37) and (43), we have δθ0 � 1 for α � 1 and
arbitrary β. In the zeroth-order approximation in δθ0, the
condition n(ε,−0) = 0 reduces to finding the root of the
equation (1 − β2ε2

0 )(1 − ε2
0 ) = 2βε2

0 (1 − ε2
0 )1/2. This yields

the following explicit dependence of β on ε0:

β = 1

ε0

(
1 − ε0

1 + ε0

)1/2

. (57)

As β increases the minigap ε0 decreases as shown in Fig. 5.
The behavior of ε0(β) in two limiting cases is

ε0 � 1 − 2β2, β � 1, (58)

ε0 = β−1, β 
 1. (59)
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FIG. 5. Minigap ε0 in the N layer as a function of β calculated
from Eq. (57).

Expressing Eq. (59) in dimensional units shows that the
minigap ε0 in a weakly coupled layer (β 
 1) is independent
of superconducting parameters:

ε0 = h̄

4e2NndRB

, β 
 1. (60)

The N layer affects the DOS in the S region as shown
in Fig. 4(b) where n(ε) calculated from Eq. (56) at ε > ε0,
α = 0.05, and � = 0, and different values of β is plotted.
Insets show the respective behaviors of n(ε) at small ε in a
model with a finite � independent of energy.

The effect of a finite quasiparticle lifetime on the DOS is
calculated by replacing ε → ε + i� in Eqs. (54) and (56).
Taking � into account smears out the cusps in Fig. 4 and
causes a finite density of subgap states at ε = 0, as shown
in Fig. 6. In the most interesting case of α � 1, the zero-
energy values of nN (0) and nS(0) at the N and S sides of
the interface can be evaluated from Eqs. (54) and (56) in the
zero-order approximation in δθ0 � 1 at arbitrary transparency
parameter β:

nN (0) = �(1 + β
√

1 + �2)

[(1 + β2�2)(1 + �2) + 2β�2
√

1 + �2]1/2
, (61)

nS(0) = �√
1 + �2

. (62)

As β increases, nN (0) approaches the normal density of states
for a fully decoupled N layer at β 
 1.

IV. SURFACE IMPEDANCE

Here we use the results of previous sections to calculate
the effect of an imperfect surface on the surface impedance
Z = Rs + iX, where the reactive part X = μ0ωλ is expressed
in terms of the global London penetration depth λ. The
impedance is calculated by expressing the complex con-
ductivity σ = σ1 − iσ2 in the current density J = σE in
terms of retarded Green’s functions [8,42] as summarized
in Appendix D. The surface impedance Z = E(0)/H (0)
can be presented in an alternative form using the Fourier
transform of the Maxwell equation E′ = −iωB, so that
E(0) = iωμ0

∫ ∞
0 H (x)dx, where ω is the frequency of the
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FIG. 6. Densities of states at (a) N side and (b) S side of the
interface calculated for α = 0.05, � = 0.05�, h̄� = 11�, and β =
0.1,1,10. Inset in (b) shows N (ε) at ε � �.

applied field H (t) = Hae
iωt :

Z = iμ0ω

Ha

∫ ∞

0
H (x)dx. (63)

Comparing Eq. (63) with Z = iωμ0λ + Rs , it is convenient
to define the quasistatic global penetration depth λ of a
superconducting bilayer in terms of the in-phase component
of the magnetic field H (x),

λ = 1

Ha

∫ ∞

0
H (x)dx. (64)

In what follows we limit ourselves to the local London
limit λ 
 ξS in a dirty superconductor. A general case of dc
magnetic screening in N-S bilayers with an arbitrary mean-free
path was addressed in Ref. [49].

A. Surface reactance and global penetration depth

Using the temperature Green’s functions, we calculate here
the quasistatic penetration depth λ for (1) a superconductor
with an ideal surface but with a finite �, and (2) a supercon-
ductor with N surface layer and � = 0.
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1. Effect of bulk subgap states

For a superconductor with an ideal surface but finite �, the
penetration depth is given by

1

λ2
= 4πμ0kBT

h̄ρs

∑
ωn>0

�2

(ωn + �)2 + �2
, (65)

where ρs is the resistivity of a superconductor in the normal
state. Equation (65) is a generalization of the expression for
λ in the dirty limit [8] with the replacement ωn → ωn + �.
The sum in Eq. (65) can be expressed in terms of a digamma
function ψ(z):

1

λ2
= 2μ0�

h̄ρs

Imψ

(
1

2
+ �

2πkBT
+ i�

2πkBT

)
. (66)

Since Imψ(1/2 + ix) = (π/2) tanh πx, Eq. (66) at � = 0
reproduces the well-known result [8]

1

λ2
= πμ0�

h̄ρs

tanh
�

2kBT
. (67)

If � > 0 and T � Tc we use the asymptotic expansion ψ(z) =
ln z − 1/2z − 1/12z2 and obtain

1

λ2
= 2μ0�

h̄ρs

[
tan−1 �

�
− π2k2

BT 2��

3(�2 + �2)2

]
. (68)

At � = 0 the penetration depth described by Eq. (67) has
the BCS exponential temperature dependence, λ(T ) − λ(0) ∝
exp(−�/kBT ) at kBT � �. However, as follows from
Eq. (68), the subgap states in the Dynes model can change
this BCS behavior of λ(T ), resulting instead in a quadratic
temperature dependence of λ(T ) at T � Tc in an s-wave
superconductor. This may be essential for the interpretation of
experimental data as observations of a power-law temperature
dependence of λ(T ) has been usually attributed to a nodal-
pairing symmetry.

2. Effect of a normal surface layer

Let us define partial field penetration depths λN and λS in
the N and S regions:

1

λ2
N

= 4πμ0kBT

h̄ρn

∑
ωn>0

sin2 θ−, (69)

1

λ2
S

= 4πμ0kBT

h̄ρs

∑
ωn>0

sin2 θ∞, (70)

where θ− is given by Eq. (35). Here we assume that α � 1
and neglect the small correction δθ (x) in the S region. Next
we solve the London equations λ2

NH ′′
N = HN and λ2

SH
′′
S = HS

in the N and S regions with the boundary conditions HN (0) =
Ha , HN (d) = HS(d), and λ2

SH
′
S(d) = λ2

NH ′
N (d), which yields

[58,59]

HN = Ha[(1 − c)e−x/λN + cex/λN ], 0 < x < d, (71)

HS = Habe(d−x)/λS , x > d, (72)

where c = k/(k + e2d/λN ), b = (1 + k)/(ke−d/λN + ed/λN ),
and k = (λN − λS)/(λN + λS). Using Eqs. (64), (71), and (72),

we calculate the global penetration depth:

λ = (ed/λN − 1)(ed/λN + k)λN

k + e2d/λN
+ (1 + k)ed/λN λS

k + e2d/λN
. (73)

Equation (73) yields the obvious limits λ = λN if d 
 λN ,
and λ = λS if λN = λS or d → 0. Here we are interested in
the case of d � λN where λ is close to λS and the surface layer
results in a small correction which is calculated by expanding
Eq. (73) in the first order in d:

λ = λS + d

(
1 − λ2

S

λ2
N

)
. (74)

Here the temperature dependence of the ratio λ2
S/λ

2
N can

be determined by the small minigap ε0 if the interface
transparency parameter β is large. We illustrate this effect
in the weak-transparency limit of β 
 1 at � = 0 for which
the ω summation in Eqs. (69) and (70) can be done exactly
using Eq. (35) where the term βω cos θ0 in the denominator
can be neglected. Hence,

λ = λS + d − dε0σn

�σs

[
tanh(ε0/2kBT )

tanh(�/2kBT )
− ε0

�

]
, (75)

where the minigap ε0 is given by Eq. (60). The first term in the
brackets gives the main temperature dependence at kBT �
� where the BCS contribution ∝ exp(−�/kBT ) becomes
negligible. If β 
 1, we have θ− � θ∞, so that λN 
 λS ,
and λ → λs + d because the decoupled N layer provides no
screening. Calculations of λ(T ) in an S-N bilayer model at
� = 0 were performed in Ref. [57].

B. Surface resistance

In the case of d � ξS � λ and h̄ω � � considered in this
work, the RF field is constant in the N region (−d < x < 0)
and attenuates at x � 0, so the amplitude of a low-frequency
vector potential A(x,t) = A(x)eiωt follows the quasistatic
Meissner distribution:

A(x) =
{−λB0 (x < 0),
−λB0e

− x
λ (x � 0).

(76)

The Fourier components of electric field and the current
density are then E(x) = −iωA(x) and J (x) = −iωσ (x)A(x),
respectively, where σ = σ1 − iσ2 is the complex conduc-
tivity. The surface resistance Rs can be expressed in
terms of σ (ω) using the power generated by the RF cur-
rents per unit surface, (1/2)RsH

2
0 = (1/2)

∫
Re[EJ ∗]dx =

(1/2)ω2
∫

σ1A
2dx. Hence,

Rs = ω2μ2
0λ

2

[∫ 0

−d

dxσ N
1 (x) +

∫ ∞

0
dxσ S

1 (x)e− 2x
λ

]
. (77)

Here the local dissipative conductivities σ
N,S
1 (ω,x) are ex-

pressed in terms of the respective Green’s functions as follows
(see Appendix D):

σ i
1(ω) = σn,s

h̄ω

∫ ∞

−∞
dε[f (ε) − f (ε + h̄ω)][ni(ε,x)

× ni(ε + ω,x) + mi(ε,x)mi(ε + ω,x)], (78)

184515-8



SURFACE IMPEDANCE AND OPTIMUM SURFACE . . . PHYSICAL REVIEW B 96, 184515 (2017)

where i = N,S, f (ε) = (eε/kBT + 1)−1, n(ε,x) =
Re cosh θ (ε,x), and m(ε,x) = Re sinh θ (ε,x). Using Eqs. (77)
and (78), we present Rs in the form

Rs = ω

h̄
(eh̄ω/kBT − 1)μ2

0λ
2(σnIN + σsIS), (79)

IN = d

∫ ∞

−∞

cosh(uN + uN
+ ) cos vN cos vN

+
[1 + e−ε/kBT ][e(ε+h̄ω)/kBT + 1]

dε, (80)

IS =
∫ ∞

0
dxe−2x/λ

∫ ∞

−∞

dε cosh(uS + uS
+) cos vS cos vS

+
[1 + e−ε/kBT ][e(ε+h̄ω)/kBT + 1]

.

(81)

Here u(ε,x) and v(ε,x) are defined by the real-frequency
solutions of the Usadel equation, θ (ε,x) = u(ε,x) + iv(ε,x),
u+ = u(ε + h̄ω,x), v+ = v(ε + h̄ω,x), and the factors IN

and IS represent contributions from the N and S regions,
respectively. In Eq. (80) we neglect a weak variation of θ (x)
across a thin N layer, assuming that θN = θ− at α � 1, where
θ− is defined by Eq. (50).

Equations (79)–(81) determine the surface resistance at
h̄ω < �, taking into account the significant variation of the
local DOS due to proximity and pair-breaking effects at the
surface considered above. Here Rs turns out to be quite
sensitive to low-energy tails of the DOS in both the N and
S regions, so Eqs. (79)–(81) should be solved numerically
together with Eqs. (31)–(33), (53), and (55) which describe
self-consistently the relevant superconducting properties at a
nonideal interface. In the following, we calculate Rs for several
characteristic cases.

1. Ideal surface with bulk subgap states

For an ideal surface with no pair-breaking layers (IN =0)
but subgap states in the bulk (� > 0), Eqs. (77)–(81) in
dimensional units become

Rs = ω

2h̄

∫ ∞

−∞

(eh̄ω/kBT − 1)μ2
0λ

3σsdε

(1 + e−ε/kBT )[e(ε+h̄ω)/kBT + 1]

× [n(ε)n(ε + h̄ω) + m(ε)m(ε + h̄ω)], (82)

n(ε) = Re
ε̃√

ε̃2 − �2
, m(ε) = Re

�√
ε̃2 − �2

, (83)

where ε̃ = ε + i�. Consider first the case of � = 0 and h̄ω �
� in which the integration in Eq. (82) can be restricted to � <

ε < ∞, the regions of negative and positive ε giving equal
contributions. At T � Tc the main contribution to the integral
in Eq. (82) comes from a narrow range of energies, ε − � ∼
kBT � �, so that the denominators of n(ε) and m(ε) can be
replaced with

√
2�(ε − �), and the integration yields [1]:

Rs = 2μ2
0ωλ3�

h̄ρs

sinh

[
h̄ω

2kBT

]
K0

[
h̄ω

2kBT

]
e−�/kBT , (84)

where ρs = 1/σs is the normal-state resistivity, and K0(x) is a
modified Bessel function. At low frequencies h̄ω � kBT such
as ω/2π ∼ 1 GHz and T � 2 K, we have h̄ω/2kBT ∼ 10−2

so that Eq. (84) simplifies to [38]:

Rs � μ2
0ω

2λ3�

ρskBT
ln

[
C1kBT

h̄ω

]
e−�/kBT , (85)
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FIG. 7. Arrhenius plots for Rs(T ) calculated from Eqs. (82) and
(83) for h̄ω = 0.01� and �/�0 = 0.01, 0.03, and 0.06. Here R1 =
μ2

0λ
3ω�/2h̄ρs , the temperature dependencies of � and λ at T < Tc/2

are neglected, and �(�) is given by Eq. (20).

where C1 = 4e−γE ≈ 9/2. The factor ln(kBT /h̄ω) in Eq. (85)
results from a logarithmic singularity in σ1(ω) at h̄ω → 0 as
two square root singularities in the integrand of Eq. (78) merge
into a pole. This feature of the DOS in the idealized BCS model
disappears if the realistic broadening of the gap singularities in
N (ε) is taken into account, resulting in a finite σ1(ω) at ω = 0.

Equation (82) describes both the exponential BCS contribu-
tion Rs ∝ exp(−�/kBT ) and an additional term Ri(T ) that is
not exponentially small at T � Tc. Here Ri can be evaluated
at � 
 h̄ω, and kBT � � for which f (ε) − f (ε + h̄ω) in
Eq. (78) is a sharp peak of width kBT at ε = 0, so n(ε) and
m(ε) can be expanded up to quadratic terms in ε � kBT . Then
Eq. (78) yields a finite conductivity, resulting in a residual
resistance in Eq. (82) at kBT � �:

Ri(T ) = μ2
0ω

2λ3�2

2ρn(�2 + �2)

[
1 + 4π2k2

BT 2�2

3(�2 + �2)2

]
, (86)

where �(�) is given by Eq. (20), and the temperature-
dependent correction in the brackets was obtained for h̄ω �
kBT . From Eq. (86), it follows that Ri � 10 n� observed on
large-grain Nb cavities at 1.5 GHz [9,11], λ = 40 nm, and
ρn = 1 n� m corresponds to � � 0.05�.

Shown in Fig. 7 is the Arrhenius plot of Rs(T ) calculated
from Eqs. (82) and (83) for different ratios of �/�0. Here
ln[Rs(T )] at higher T follows the linear dependence on 1/T

expected from the BCS model, but at lower temperatures
ln[Rs(T )] levels off, which would be usually attributed to
a residual resistance. Here Ri is a part of the BCS surface
resistance including a realistic broadening of the gap peaks
in N (ε). Moreover, Fig. 7 shows that increasing � reduces
Rs(T ) at higher temperatures for which the residual resistance
is negligible.

The finite Ri in Eq. (86) results from a nonzero DOS at the
Fermi level in the Dynes model, while a reduction Rs with �

at higher T comes from the reduction of the logarithmic factor
in Eq. (85). If � > 0, the square root gap singularities in n(ε)
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FIG. 8. Minimum in the surface resistance Rs(�p) as a func-
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Eqs. (87)–(93) at h̄ω = 0.005� and kBT /� = 0.1,0.12,0.15. Inset
shows N (ε) = Ns cosh u cos v calculated from Eqs. (90)–(92) at
�p/� = 0.001,0.02,0.05.

and m(ε) in Eq. (83) turn into finite peaks of width ∼�. At
� > h̄ω but � � kBT integration of these peaks in Eq. (82) at
ε � � yields a logarithmic term similar to that of Eq. (85) but
with energy cutoff � instead of h̄ω. Therefore, the smearing
of the gap peaks in N (ε) on Rs can be qualitatively taken into
account by the replacement ln(kBT /h̄ω) → ln(kBT /�). Such
broadening of the DOS peaks reduces Rs(T ) at temperatures
T 
 h̄ω/kB at which Ri is negligible, as it is clearly seen in
Fig. 7. Moreover, Rs(T ) can also be reduced by pair-breaking
mechanisms which suppress superconductivity, as will be
shown below.

2. Ideal surface with paramagnetic impurities in the bulk

It is well known that spin-flip pair-breaking scattering
on paramagnetic impurities broadens the peaks in N (ε) and
reduces the quasiparticle gap [60]:

εg = (
�̃2/3 − �2/3

p

)3/2
. (87)

Here �p = 4πnpNsS(S + 1)J 2 is the spin-flip pair-breaking
parameter in the Born approximation, where np is the volume
density of paramagnetic impurities with spin S, and J is the
exchange integral. The quasiparticle gap εg in Eq. (87) is
smaller than the order parameter �̃ given by [60]

�̃ = � − π

4
�p, �p � �. (88)

Here � is the order parameter in the absence of paramagnetic
impurities. The behavior of N (ε) at different values of �p is
shown in the inset of Fig. 8.

To calculate Rs and the factors n(ε) = Re cosh θ and
m(ε) = Re sinh θ in Eq. (79), we solve the uniform Usadel
equation which takes into account spin-flip scattering on
magnetic impurities:

ε sinh θ + i�p cosh θ sinh θ = �̃ cosh θ. (89)

Writing θ = u + iv, we find that the imaginary part of Eq. (89)
yields a quadratic equation for sin v which allows us to express

v in terms of u:

sin v = [−�̃ + (
�̃2 − �2

p sinh2 2u
)1/2]

/2�p cosh u. (90)

The real part of Eq. (89) yields the cubic equation
�2

p sinh3 2u + (ε2 − �̃2 + �2
p) sinh 2u − 2ε�̃ = 0 which has

the following Cardano solution [61]:

sinh 2u = [(r + ε�̃�p)1/3 − (r − ε�̃�p)1/3]/�p, (91)

r = [
ε2�̃2�2

p + (
ε2 + �2

p − �̃2
)3

/27
]1/2

. (92)

Equations (90)–(92) which define the spectral density
cosh(u + u+) cos v cos v+ in Eq. (79) are supplemented by the
self-consistency equation for �̃ which reduces to Eq. (88)
at �p � �. The spectral density vanishes at −εg + h̄ω <

ε < εg , so the integration in Eq. (79) can be restricted to
εg < ε < ∞, the regions of negative and positive ε giving
equal contributions. If h̄ω � kBT and exp(−�/kBT ) � 1
the surface resistance is then

Rs = R0

∫ ∞

εg

dεe−ε/kBT cosh(u + u+) cos v cos v+, (93)

where R0 = ω2μ2
0λ

3/2ρskBT , u+ = u(ε + h̄ω), and v+ =
v(ε + h̄ω). Shown in Fig. 8 is Rs(�p) as a function of the
pair-breaking parameter �p calculated from Eqs. (88)–(93)
at different temperatures. There is a clear minimum in Rs(�p)
which results from a competition of the broadening of the DOS
peaks which reduces Rs as �p increases, and the reduction
of the quasiparticle gap εg which increases Rs with �p. The
position of the minimum in Rs(�p) shifts to larger �p as the
temperature increases. These results show that a small density
of magnetic impurities can noticeably (by ∼30%–40%) de-
crease the surface resistance at low temperatures. To evaluate
the conditions under which the minima in Rs(�p) occur, we
notice that in the Abrikosov-Gor’kov theory of weak magnetic
scattering used here, Tc vanishes at �p = h̄/2τs = �0/2, that
is, ls ∼ ξ0 where τs and ls are the spin-flip scattering time
and the mean-free path, respectively, and ξ0 = h̄vF /π�0 is
the clean limit coherence length at T = 0. The values of
�p � (0.01–0.02)� in Fig. 8 thus correspond to ls ∼ 102ξ0,
assuming no low-energy bound states on magnetic impurities
[27].

3. Reduced BCS coupling constant at the surface

The surface resistance is given by

Rs =
∫ ∞

0
dx

∫ ∞

−∞

ω(eh̄ω/kBT − 1)μ2
0λ

2σsdε

(1 + e−ε/kBT )[e(ε+h̄ω)/kBT + 1]

× [n(ε,x)n(ε + h̄ω,x) + m(ε,x)m(ε + h̄ω,x)]e−2x/λ.

(94)

Here n(ε,x) and m(ε,x) are obtained using Eqs. (31)–(33):

n(ε,x) = Re

[
ε̃(1 + 6t2 + t4) + 4t(1 + t2)�

(1 − t2)2
√

ε̃2 − �2

]
, (95)

m(ε,x) = Re

[
(1 + 6t2 + t4)� + 4ε̃t(1 + t2)

(1 − t2)2
√

ε̃2 − �2

]
, (96)

t(x) = tanh

(
θ0 − θ∞

4

)
e−kεx, ε̃ = ε + i�, (97)

184515-10



SURFACE IMPEDANCE AND OPTIMUM SURFACE . . . PHYSICAL REVIEW B 96, 184515 (2017)

4 8 12 16 20 24
/k

B
T

10-4

10-3

10-2

10-1

100
R

s/R
1

 = 0.01

 = 0

 = 0.4

FIG. 9. Rs(T ) calculated from Eqs. (94)–(97) and (30) for � =
0.01�, λ = 5ξS , and � = 0,0.4. Here R1 = ω2μ2

0λ
3σs/2.

where θ0 is a solution of the self-consistency Eq. (30) with
kε = [�2 − ε̃2]1/4(2/h̄Ds)1/2.

Shown in Fig. 9 are the Arrhenius plots of ln Rs(T ) versus
1/T calculated from Eqs. (94)–(97) and (30) for different
values of the surface pair-breaking parameter �. At � � 1
the curves Rs(T ) reproduce the residual resistance determined
by bulk subgap states which was calculated in the previous
subsection. As � increases, the apparent high-temperature
slope of ln Rs(T ) (commonly used to extract the gap parameter
� from the experimental data) decreases, and the plot of
ln R(T ) becomes curved even before it reaches the residual
resistance plateau, which also increases with � (by a factor
∼2 for the case shown in Fig. 9). These features of Rs(T ) are
manifestations of the broadening of the gap peaks in N (ε) at
the surface shown in Fig. 2.

4. Thin normal layer

For a superconductor with a thin N layer, the surface
resistance can be written in the form

Rs = δR + Rs0, (98)

where the bulk contribution Rs0 is given by Eqs. (94)–(97),
and the contribution from the N layer is

δR = d

h̄

∫ ∞

−∞

ω(eh̄ω/kBT − 1)μ2
0λ

2σn

(1 + e−ε/kBT )[e(ε+h̄ω)/kBT + 1]
[nN (ε)

× nN (ε + h̄ω) + mN (ε)mN (ε + h̄ω)]dε, (99)

nN (ε) = Re

[
� cosh θ0 − iβε̃√

�2 − β2ε̃2 − 2iβε̃� cosh θ0

]
, (100)

mN (ε) = Re

[
� sinh θ0√

�2 − β2ε̃2 − 2iβε̃� cosh θ0

]
, (101)

where θ0 satisfies Eq. (53) which takes into account pair-
breaking and proximity effects (we assumed no magnetic
impurities in the N layer [62]). The ratio δR/Rs0 at β = 0
is determined by the parameter

α̃ = 2dσn

σsλ
= 2α

DnξS

Dsλ
. (102)

We evaluate the contribution of the N layer to the residual
resistance in the same way we did to derive Eq. (86). At kBT �
�, the factor f (ε) − f (ε + u) in Eqs. (80) and (81) has a sharp
peak with width kBT at ε = 0, so that n(ε,x) and m(ε,x) in
Eqs. (94)–(101) can be replaced by their respective values at
ε = 0:

nN (0) = �(1 + β
√

1 + �2)√
(1 + β2�2)(1 + �2) + 2β�2

√
1 + �2

, (103)

nS(0) = �√
1 + �2

, mS(0) = mN (0) = 0. (104)

Hence, we obtain in dimensional units

Ri = 1

2
μ2

0ω
2λ3σs

[
�2

�2 + �2

+ α̃�2(� + β
√

�2 + �2)2

(�2 + β2�2)(�2 + �2) + 2β�2�
√

�2 + �2

]
.

(105)

If d → 0, the second term in the brackets vanishes and
Eq. (105) reduces to Eq. (86) in which Ri is determined
by the bulk �. However, for a very high interface barrier
β 
 �/�, the parameter � � � in the second term in the
brackets cancels out, and Eq. (105) yields the surface resistance
Ri = μ2

0ω
2λ2σnd + μ2

0ω
2σsλ

3�2/2�2 of a decoupled N layer
plus the bulk subgap contribution.

Figure 10 shows the Arrhenius plots of ln Rs(T ) as functions
of �/kBT calculated from Eqs. (79)–(81) for a thin N layer
with α = 0.05, h̄ω < � and different values of the interface
barrier parameter β varying from β = 0.1 (weak resistive
barrier) to β = 30 (strong resistive barrier). Behaviors of
Rs(T ) for different values of � = 0.01 (top panel) and � =
0.05 (bottom panel) are qualitatively similar, so we focus on
the evolution of Rs(T ) as a function of the control parameter β.
As β increases, the surface resistance first decreases and then
starts increasing with β due to a subtle interplay of bulk and
surface effects which will be discussed in the next subsection.
However, at β � 1, the surface resistance strongly increases
with β, particularly at low temperatures �/kBT > 10, where
Rs(T ,β) can increase by 1–2 orders of magnitude. The latter
results from the RF dissipation in the N layer in which
the proximity-induced superconductivity gets more and more
suppressed with the increase of the interface resistive barrier.
At β = 4, a noticeable change in the slope of ln Rs(T ) around
�/kB � 8–10 results from switching from thermally activated
resistance controlled by the bulk gap � at high T to the
thermally activated Rs(T ) controlled by the minigap ε0 in
the thin N layer. As the temperature decreases further, the
thermally activated Rs(T ) approaches a residual resistance.
Weakening the proximity-induced superconductivity in the
N layer at larger β can significantly increase the residual
resistance, as shown in Fig. 10.

C. Engineering the optimal density of states to minimize Rs

The theory presented above suggests that the DOS at the
surface can be optimized to reduce Rs by tuning the parameters
of the N layer. Shown in Fig. 11 is an example of such
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FIG. 10. Arrhenius plots calculated from Eqs. (79)–(81) for α =
0.05, λ = 4ξS , h̄� = 11�, Dn = Ds/3, β = 0.1,2,4,30, and (a) � =
0.01�, (b) � = 0.05�. Here R1 = μ2
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2/2ρs .

optimization of Rs(T ,�,β) at different temperatures calculated
for a thin dirty N layer with Dn = 0.1Ds , α = 0.05, λ = 4λs

and different values of �/� = 0.01,0,02,0.03. Here all Rs(β)
curves are normalized to the respective values of Rs0(T ,�)
for an ideal surface without the N layer. The most noticeable
feature of these results is a minimum of Rs(β) which shifts to
larger β as T decreases. Moreover, for the case of �/kBT = 4
shown in Fig. 11(a), the minimum value of Rs at � = 0.01�

with the N layer drops below the corresponding Rs0 for an
ideal surface.

The minimum in Rs(β) mainly results from interplay of
two effects. The first effect which causes Rs to increase with β

is rather transparent: as the barrier parameter β increases the
proximity-induced superconductivity in the N layer weakens,
so the RF dissipation and Rs increase. The second effect
which causes the initial decrease of Rs with β results from
the change in the DOS around the N layer. As was pointed out
in Refs. [38,61] and discussed in the previous subsections, a
moderate broadening of the gap peaks in N (ε) due to either
a finite quasiparticle lifetime h̄/� or magnetic impurities or
current eliminates the BCS logarithmic divergence of σ1(ω) at
ω → 0 and reduces Rs . This mechanism also eliminates the
BCS gap singularity in the DOS around the N layer even at
� = 0, as illustrated in Fig. 12, which shows that the peak in
the DOS broadens and decreases in amplitude as β increases.
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FIG. 11. Minima in Rs(β) as a function of the interface barrier
parameter β calculated at �/kBT = 4,8,12,20, � = 0.01,0.02,0.03,
λ = 4ξS , Dn = 0.1Ds , α = 0.05, and h̄� = 11�. Here Rs(T ,β,�)
are normalized to their respective values Rs0(T ,�) for each � in the
absence of the N layer.

At the same time, the N layer produces low-energy peaks in
the DOS at ε ≈ ε0, as shown in Fig. 4. It is not immediately
clear whether the reduction of Rs due to the broadening of the
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FIG. 12. Behavior of N (ε) in a narrow energy range ε ≈ � at the
S side of the N-S interface calculated for β = 0.1,0.5,1 at α = 0.05,
h̄� = 11�, and � = 0.

DOS peaks at ε ≈ � would prevail over the increase of Rs

caused by the minigap peaks in DOS at ε ≈ ε0.
Here we present a qualitative argument that the increase of

the interface resistance RB not only produces a minimum in
Rs(β) but can reduce the overall surface resistance below Rs0

for an ideal surface. Indeed, the RF power in the proximity-
coupled dirty N layer which increase Rs is proportional to the
small thickness d � ξS and also the conductivity σn < σs . The
magnitude of low-energy tails in N (ε) in the S region shown in
Fig. 4(b) is also proportional to the small parameter α = d/ξS .
In turn, the decrease of Rs(β) comes from the broadening of
peaks in N (ε) at ε ≈ � in the bulk of the S region. As follows
from Eq. (56), the DOS disturbance δnS(x,ε) produced by the
N layer extends into the S region over the length L = ξS[1 −
(ε + i�)2/�2]−1/4 which can be much larger than both d and
ξS . Indeed, |L(ε)| is maximum at ε = √

�2 − �2 for which

δns(x) ∝ exp

[
− x

ξ−
S

(
�

�

)1/4]
cos

[
x

ξ+
S

(
�

�

)1/4

+ ϕ

]
,

(106)

where ξ±
S = ξS[2(

√
2 ± 1)]1/2, and ϕ is a phase shift. Hence,

the broadening effect responsible for the decrease of Rs is
produced by a long-range disturbance in the DOS in the S
region where the decay length L ∼ ξS(�/�)1/4 increases
as � decreases. This bulk contribution coming from a layer
of width ∼ L 
 d in the S region exceeds the short-range
contributions from the N layer, so that a thin dirty N layer on
the surface of the superconductor with � � � can reduce its
surface resistance. As � increases, δns(x,�) becomes more
short-range, and Rs(β) eventually exceeds Rs0 at all β, in
agreement with Fig. 11. This behavior is a manifestation of a
counterintuitive reduction of Rs by pair-breaking mechanisms
which normally reduce Tc but broaden the gap peaks in N (ε)
[38]. This effect demonstrated here for the Dynes model and
paramagnetic impurities (see Figs. 7 and 8) can also cause
a microwave reduction of the surface resistance, namely a
decrease of Rs(H ) with the amplitude of the RF field [61].

As T decreases, the minima in Rs(β) shown in Fig. 11
shift to larger β, so the optimal value of the interface
boundary resistance RB at which Rs(β) is minimum is different
at different temperatures. For the calculations presented in
Fig. 10, the minimum Rs(β) can drop by � 3%–15% relative
to Rs0, depending on the particular values of T and �. At β � 1
the surface resistance increases strongly with β and exceeds
Rs0 by several orders of magnitude at β 
 1 (see Fig. 10).
Thus, optimization of RB by different materials treatments
can be very important for reducing the surface resistance.

V. DISCUSSION

Our results show that a nonideal surface can locally broaden
the gap peaks in the DOS, resulting in a a nonexponential tem-
perature dependence of the surface impedance Z(T ) at T �
Tc. Because the main broadening effect can occur in a layer
much thinner than the field penetration depth, tunneling sur-
face probes do not really give all information about the features
of the DOS on the relevant scales of the London penetration
depth which determine Z(T ). For instance Fig. 2 shows that the
broadening effect caused by reduction of the pairing constant
at the surface can be much stronger than in the bulk where N (ε)
has much sharper peaks. The broadening of the DOS at the sur-
face can become much more pronounced if a thin proximity-
coupled normal layer is present (see Figs. 4–6). Thus, fitting
the tunneling data with Eq. (2) and extracting the “effective”
� to describe the low-T surface impedance can be misleading,
but a combination of Z(T ) and tunneling measurements in a
sufficiently broad temperature range may offer a possibility to
separate the surface and bulk contributions to Z(T ).

Measurements of Z(T ) in a broad range of temperatures
is very important for getting the correct physical picture,
as opposed to fitting the experimental data with the phe-
nomenological Eq. (1) in a limited temperature window and
extrapolating the results to lower T . For instance, the behaviors
of Rs(T ) in Fig. 10(b) at 4 < �/kBT < 9 for β = 4 and
β = 30 are nearly the same, so using Eq. (1) would suggest the
residual resistance to be close to Ri at β = 30 in both cases.
However, the actual temperature dependencies of Rs(T ) at
�/kBT > 9 are markedly different: Rs(T ) at β = 30 reaches
the residual resistance plateau at �/kBT � 10, whereas Rs(T )
for β = 4 keeps decreasing exponentially with the Arrhenius
slope controlled by a smaller minigap ε0 in the N layer, so that
the residual plateau is reached at much lower temperatures
�/kBT > 20.

The “two-exponential” temperature dependence of Rs(T )
controlled by the bulk and the surface gaps � and ε0 can
mimic the low-temperature behavior of Z(T ) in multiband
superconductors with different gaps residing on different
sheets of the Fermi surface, as characteristic of MgB2
[16–18] or iron pnictides [19–22]. Because deviations from
the single-band s-wave exponential temperature dependence
of the London penetration depth λ(T ) has been often regarded
as evidence of unconventional pairing symmetry, be it the
d-wave pairing in cuprates [63] or s± pairing in pnictides
[64,65], the surface contribution and bulk subgap states may
complicate an analysis of experimental data. Indeed, Eq. (66)
shows that a thin N layer on the oxidized surface of a
conventional single-band s-wave superconductor can result
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in a “two-gap” temperature dependence of λ(T ), while the
subgap states in the phenomenological Dynes model can result
in a quadratic temperature dependence (68), similar to what
has been observed on pnictides where it was associated with
subgap impurity states for multiband pairing [64,65]. Surface
nonstoichiometry and interface strains in true multiband
superconductors can further complicate extracting the gaps
and revealing pairing symmetries. Yet the surface contribution
to λ coming from the disturbance of superfluid density in a
thin N layer is generally much smaller than its contribution
to Rs determined by long-range tails of N (ε,x) in the bulk at
ε ≈ �.

Although the minigap ε0 in Eq. (60) for a weakly coupled
N layer is independent of superconducting parameters, ε0(T )
can depend on T even at T � Tc if RB(T ) changes with
T , resulting in nonexponential temperature dependencies of
λ(T ) and Rs(T ). It is well known that the interface resistance
RB(T ) can either increase or decrease with temperature,
depending on the materials heat treatment which can change
RB by several orders of magnitude, as was, for example,
shown for the YBCO-Ag interface [66,67]. The complex
physics and materials science of the Schottky barrier between
different materials is not well understood [68], but the essential
dependence of Rs(T ) on the interface resistance could be used
to optimize Rs by tuning the properties of the N layer.

This work shows that a nonideal surface can significantly
contribute to the residual surface resistance, which becomes
an integral part of the surface resistance taking into account
realistic broadening of the DOS peaks. Clearly, a thin pair-
breaking layer or a weakly coupled normal layer at the surface
can radically (by orders of magnitude) increase Ri as compared
to an ideal surface with only bulk broadening mechanisms.
However, Rs(T ) can be reduced by optimizing DOS at the
surface by tuning the properties of a proximity-coupled N layer
at the surface. For weak bulk broadening � � �, the results
shown in Fig. 11 suggest that a thin N layer can surprisingly
reduce Rs as compared to an ideal surface, if the interface
contact resistance RB is within a sweet spot of the parameters
for which β � 0.2–1. Yet this theory also shows that there is
no universal value of RB which provides optimal Rs for all
T : an optimal RB for one temperature may not be as good for
another.

To estimate RB corresponding to β = 1 in Nb, we
assume Nn = Ns and present Eq. (12) in the form β =
16RBd/RKλ2

F ξ0, where RK = h/e2 = 26 k�, λF = h/m∗vF

is the Fermi wavelength, and ξ0 = h̄vF /π� is the coherence
length in the clean limit. Taking ξ0 = 40 nm, d = 1 nm,
λF = 5.3 × 10−10 m [69], we obtain that β � 1 corresponds
to RB � RKλ2

F ξ0/16d � 1.8 × 10−14 � m2, about one to two
orders of magnitude smaller than the lowest contact resistance
of the YBCO/Ag interfaces, RB ∼ 10−13 to 10−12 � m2 [67].

Tuning Rs(T ) by changing the properties of the surface N
layer is based on the fact that the idealized DOS with � = 0
does not produce the lowest Rs because the BCS conductivity
σ1(ω) diverges logarithmically at ω → 0. Thus, Rs can be
lowered by pair-breaking mechanisms which suppress Tc but
broaden the gap peaks in the DOS [38], for example, by
incorporating a small concentration of paramagnetic impu-
rities (see Fig. 8). Currently, the physics of subgap states
in the bulk is not well understood, so the materials’ means

of tuning the Dynes parameter � are unclear. However, tuning
the thickness and conductivity of the surface N layer and
the interface resistance RB by different materials treatments,
impurity managements, and surface nanostructuring appears
more technologically viable. Our calculations show that Rs

can indeed by optimized by tuning the interface resistance to
provide β � 0.2–1. These results may help us understand the
effect of low-temperature heat treatment on the reduction of Rs

observed on the Nb resonant cavities [9,11] and suggest ways
of reducing the RF dissipation in thin-film superconducting
structures and microresonators.
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APPENDIX A: DERIVATION OF EQUATION (23)

Equation (21) is solved by the Fourier transform δθ (x) =∑
k δθk cos kx and δ�(x) = ∑

k δ�k cos kx which automati-
cally satisfies δθ ′(0) = 0:

δθk = ωnδ�k

k2
ω

(
k2
ω + k2

) , (A1)

where kω = (1 + ω2
n)1/4. The Fourier transform of Eq. (22)

yields

δ�k = 2πTg

�∑
ωn>0

cos θ∞δθk + 2πT δgk

�∑
ωn>0

sin θ∞. (A2)

Substituting Eq. (A1) into Eq. (A2) and using the gap equation
1 = 2πTg∞

∑
n sin θ∞, we obtain

δ�k = δgk

g2S(k)
, (A3)

S(k) = 2πT

∞∑
ωn>0

k2
√

ω2
n + 1 + 1(

ω2
n + 1

)(
k2 + √

ω2
n + 1

) . (A4)

At kBT � �, the summation in Eq. (A4) can be replaced with
integration:

S(k) =
∫ ∞

0

(k2
√

ω2 + 1 + 1)dω

(ω2 + 1)(k2 + √
ω2 + 1)

=
{

π
2k2 − 2

k2

√
1 − k4 tan−1

√
1−k2

1+k2 (k2 < 1),
π

2k2 + 1
k2

√
k4 − 1 ln(k2 + √

k4 − 1) (k2 > 1).

(A5)

APPENDIX B: DERIVATION OF EQUATIONS (29) AND (30)

Consider the Usadel equation

θ ′′ = i[1 − �δ(x)] cosh θ − iε sinh θ (B1)

with the boundary conditions θ (+∞) = θ∞ and θ ′(∞) =
0. Another boundary condition at x = +0 is obtained by
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integrating Eq. (B1) from 0 to +0:

θ ′(+0) = −i� cosh θ0. (B2)

Multiplying both sides of Eq. (B1) by θ ′ and integrating it from
x = +0 to ∞, we obtain

θ ′2

2
= i sinh θ − iε cosh θ − i sinh θ∞ + iε cosh θ∞, (B3)

where the last two terms on the right-hand side provide
the boundary condition θ ′(∞) = 0. Dividing both sides
of Eq. (B3) by k2

ε = √
1 − ε2 and using there sinh θ∞ =

1/
√

ε2 − 1 and cosh θ∞ = ε/
√

ε2 − 1, Eq. (B3) can be re-
duced to θ ′2 = 2k2

ε [cosh(θ − θ∞) − 1]. Hence,

θ ′ = −2kε sinh
θ − θ∞

2
, (B4)

where the minus sign was taken to provide the solution which
approaches θ∞ at x → ∞. The self-consistency equation for
θ0 is obtained by taking the limit x → +0 in Eq. (B4) and
expressing θ ′(+0) using Eq. (B2):

i� cosh θ0 = 2kε sinh
θ0 − θ∞

2
. (B5)

Integration of Eq. (B4) with the boundary condition θ (+0) =
θ0 yields θ (x) in the form

tanh
θ (x) − θ∞

4
= tanh

[
θ0 − θ∞

4

]
e−kεx . (B6)

APPENDIX C: DERIVATION OF EQUATIONS (39) AND (40)

The thermodynamic Usadel equation

θ ′′ = −[1 − �δ(x + 0)] cos θ + ωn sin θ (C1)

is solved in the same way as in Appendix B. Integration of
Eq. (C1) from 0 to +0 gives

θ ′(+0) = ωn� sin θ0 + � cos θ0. (C2)

Next, we multiply both sides of Eq. (C1) by θ ′ and integrate
it from x > 0 to ∞ with the boundary conditions θ (∞) = θ∞
and θ ′(∞) = 0:

θ ′2

2
= − sin θ − ωn cos θ + sin θ∞ + ωn cos θ∞. (C3)

Dividing both sides of Eq. (C3) by k2
ω =

√
1 + ω2

n and using
cos θ∞ = ωn/k2

ω, sin θ∞ = 1/k2
ω yields

θ ′(x) = −2kω sin
θ (x) − θ∞

2
. (C4)

The self-consistency equation for θ0 is obtained by taking the
limit of x → +0 in Eq. (C4) and expressing θ ′(+0) in terms
of θ0 using Eq. (C2):

ωn� sin θ0 + � cos θ0 + 2kω sin
θ0 − θ∞

2
= 0. (C5)

Integration of Eq. (C4) with the boundary condition θ (+0) =
θ0 then yields θ (x) in the form

tan
θ (x) − θ∞

4
= tan

[
θ0 − θ∞

4

]
e−kωx. (C6)

APPENDIX D: EVALUATION OF �(T )

We evaluate � and � for a thin N layer, for which α � 1
and the sums for SD and SN in Eq. (43) converge at ωn 
 1
so that kω = (1 + ω2

n)1/4 → √
ωn. However, at ωn 
 1 which

gives the main contribution to the sums (44) and (45), we have
cos θ0 → cos θ∞ → 1, and

� � α

1 + βωn

, ωn 
 1. (D1)

Using Eq. (D1), the factor k3
ω + ω2

n� in the denominators of
SN and SD at ωn 
 1 can be written in the form

k3
ω + ω2

n� → ω3/2
n

(
1 + α

√
ωn

1 + βωn

)
. (D2)

If α � 1 and β > 1, the second term in the parentheses is
negligible at any ωn, but it may become essential at β � 1 and
ωn 
 1. This term cannot exceed α/2

√
β so ω2

n� in Eq. (D2)
can be neglected if

β > α2/4. (D3)

In the case of α � 1 considered in this work, the condition
(D3) is satisfied in a wide range of the parameters comprising
limits of both the strongly coupled (β � 1) and weakly
coupled (β 
 1) N layers. If Eq. (D3) holds, we can neglect
ω2

n� in the denominator of Eq. (45), so that

1 − SD = 1 − 2πTg

�∑
ωn>0

ω2
n(

1 + ω2
n

)3/2

= 1 − 2πT

�∑
ω>0

g√
1 + ω2

n

+ 2πT

�∑
ωn>0

g(
1 + ω2

n

)3/2 .

(D4)

The first two terms in the last line of Eq. (D4) cancel out as
they represent the BCS gap equation; thus

1 − SD = 2πT

∞∑
ωn>0

g(
1 + ω2

n

)3/2 . (D5)

Substitution of Eqs. (37) and (D5) into Eq. (43) yields

� =
�∑

ω>0

2πT αω2
n

ID

(
1 + ω2

n

)3/2√
1 + β2ω2

n + 2βωn cos θ∞
, (D6)

ID = 2πT
∑
ωn>0

(
1 + ω2

n

)−3/2
, (D7)

where g cancels out. Here we set cos θ0 → cos θ∞ =
ωn/

√
1 + ω2

n, which is a good approximation for a thin N layer,
as was shown in Sec. III B. Equations (D6) and (D7) combined
with the bulk BCS gap equation determine the temperature
dependence of �(T ). At T � Tc the summation in Eqs. (D6)
and (D7) can be replaced with integration, giving I = 1 and

� =
∫ �

0

αω2dω

(1 + ω2)3/2
√

1 + β2ω2 + 2βω cos θ∞
. (D8)

If β 
 1, the square root in Eq. (D8) becomes βω, and

� = α/β, β 
 1. (D9)
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If β < 1 the main contribution to the integral comes from the
region ω > 1 where cos θ∞ → 1, so that

� =
∫ �

0

αω2dω

(1 + ω2)3/2(1 + βω)
, β � 1. (D10)

Calculation of this integral yields Eq. (46) which also com-
prises the large-β limit (D9) and gives a good approximation
of � at β � 1. Temperature corrections to Eq. (46) are
exponentially small at T < Tc/2.

For a high-transparency NS boundary, β � α2/4, we can
set β = 0 and obtain

� = αgS

1 − gS
, β � α2/4, (D11)

S = 2πT

�∑
ωn>0

ω2
n(

1 + ω2
n

)3/4[(
1 + ω2

n

)3/4 + αω2
n

] . (D12)

If α � (�/h̄�)1/2 � 1, the term αω2
n in the denominator of

S can be neglected. Replacing the sum with the integral and
using the BCS gap equation yields

S =
∫ �

0

ω2dω

(ω2 + 1)3/2
= 1

g
− 1, (D13)

� = α

(
1

g
− 1

)
, α � (�/h̄�)1/2, (D14)

which reduces to Eq. (47). If (�/h̄�)1/2 � α � 1, the
convergence of the sum in Eq. (D12) is provided by αω2

n in
the denominator. Here we introduce an intermediate cutoff ωc

such as 1 � ωc � α−2, set � → ∞, and split S in Eq. (D12)
into two parts:

S =
∫ ωc

0

ω2dω

(1 + ω2)3/2
+

∫ ∞

ωc

dω

ω(1 + α
√

ω)

= − ωc√
1 + ω2

c

+ sinh−1 ωc + 2 ln
1 + α

√
ωc

α
√

ωc

. (D15)

In the limit of α
√

ωc � 1 and ωc 
 1 the auxiliary parameter
ωc in Eq. (D15) cancels out, giving

S � ln(2/α2) − 1. (D16)

For Nb, the parameter (�/h̄�)1/2 ≈ 0.3 is not particularly
small, so the condition under which Eq. (D14) is valid

overlaps with the condition of applicability of the thin-N layer
approximation of this work α � 1.

APPENDIX E: COMPLEX CONDUCTIVITY

Complex conductivity σ (ω) = σ1(ω) − iσ2(ω) of a dirty
superconductor in the local London limit can be expressed in
terms of retarded Green’s functions [7,8,45]:

σ1 = σs

h̄ω

∫ ∞

−∞
dε[f (ε) − f (ε + h̄ω)][ReGR(ε)ReGR

× (ε + h̄ω) + ReFR(ε)ReFR(ε + h̄ω)], (E1)

σ2 = σs

h̄ω

∫ ∞

−∞
dε tanh

ε

2kBT
[ReGR(ε)ImGR(ε + h̄ω)

+ ReFR(ε)ImFR(ε + h̄ω)], (E2)

where f (ε) is the Fermi distribution function. The surface
impedance in the local limit λ 
 ξ is then

Z = iωμ0λ + Rs =
[

iμ0ω

σ1 − iσ2

]1/2

. (E3)

At kBT � � and h̄ω � �, we have σ1 � σ2, so Eq. (E3)
defines the London penetration depth λ = (μ0ωσ2)−1/2.

A quasistatic λ can be obtained from the supercurrent
density J in the Matsubara representation:

J = −4πkBT

h̄ρs

Q
∑
ωn>0

|F (ωn)|2, (E4)

where Q = A + (φ0/2π )∇χ , and χ is the phase of the order
parameter. Since J = −Q/μ0λ

2, we have

1

λ2
= 4πμ0kBT

h̄ρs

∑
ωn>0

|F (ωn)|2. (E5)

Substituting here |F |2 = �2/(�2 + h̄2ω2
n) at � = 0 yields

Eq. (67) which also follows from Eq. (E2) in the limit of 0 <

h̄ω � � and � = 0 where the integrand is nonzero at −� −
h̄ω < ε < −�. Hence σ2 = (πσs�/h̄ω) tanh(�/2kBT ), so
that λ−2 = μ0ωσ2 reduces to Eq. (67).
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