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Magnetism of a four-center transition-metal cluster revisited
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We propose a surprisingly efficient procedure to map a sophisticated treatment of electronic correlations to a
few-parameter model Hamiltonian. By pushing first-principles coupled-cluster methods to the limit we get a lucid
picture of the electronic excitations responsible for the magnetic interactions in a paradigm Ni4 cluster. Using an
extended Hubbard model, we demonstrate that the magnetism in this system cannot be explained solely on the
basis of spin models but additionally requires consideration of the indirect mechanism involving hopping and
on-site repulsion. We present a protocol to extract the corresponding parameters from experiment or calculations.

DOI: 10.1103/PhysRevB.96.184432

I. INTRODUCTION

Spin models are a fundamental paradigm of condensed-
matter physics, yielding a rich family of magnetically ordered
phases [1,2] and playing an important role in the description
of high-temperature superconductivity and phases with topo-
logical order [3,4]. However, it is rather the exception than
the rule that, physically, they are realized as actual spins on
a periodic lattice. On the contrary, magnetic interactions can
have a number of underlying mechanisms and be realized
in physically very different systems such as atoms in optical
lattices [1,5,6].

A more microscopic description in which each transition-
metal atom is associated with an effective spin can potentially
be very accurate in reflecting relevant physical properties;
however, the extraction of appropriate magnetic interaction
parameters [7] is neither experimentally [8,9] nor theoretically
[10–12] trivial.

The problem of determining the exchange coupling con-
stants is mathematically ill posed as there is no unique solution
and very often a number of very different models can be
attributed to a given system depending on the energy scale of
interest. Ruiz et al. [10,13,14] circumvent this ambiguity by
considering n + 1 single-determinant energies corresponding
to different spin distributions in order to determine n different
exchange constants (an overcomplete system). This method
can be traced back to the discussion of the broken-symmetry
states [15–18]. Once the exchange and other interactions
are determined, the spectrum of magnetic excitations can be
numerically computed [19–21] or solved analytically [22–25]
in simpler cases, or the model can be reduced to a giant spin
model [26–28].

Also periodicity is not required [29], and the most inter-
esting magnetic states are those with broken translational
symmetry [4] or forming an incommensurate lattice [30].
In this work we focus on the realization of spin models in
finite systems [7]. Since the first observations of the quantum
tunneling of magnetization [31,32] were faithfully rationalized
in terms of a giant spin model [33–36], the term single-
molecule magnet became common [37,38]. These experiments
stimulated a number of interesting theoretical observations
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[39] and, with a continuously growing list of nanomagnets
available for investigations [40], lead to the realization that
giant spin models are inadequate when different spin multiplets
are nested within the ground one [41].

Despite the great progress in the determination of spin
Hamiltonians from ab initio calculations achieved in recent
years [42–44], accurately determining the electronic energy
levels, computing their magnetic properties, and, finally,
interpreting the results in terms of exchange constants are
still difficult whenever more than two magnetic centers are
present [15]. The reason is the exponentially growing number
of relevant magnetic configurations [45–49].

There exists an enormous body of literature with re-
spect to magnetic order in the Hubbard and related model
Hamiltonians, particularly in the development of dynamical
mean-field theory [50–52]. However, there is still a lack
of knowledge about how to relate high-level quantum-
chemical-based calculations for small localized transition-
metal systems to sufficiently well suited minimal model
Hamiltonians. Therefore, in this work we propose a pro-
tocol to map results of ab initio calculations onto spin
models.

By starting from an extended Hubbard model with the
fewest necessary parameters to adequately describe the system
[three Hubbard U , three exchange parameters Ji , and two
hopping parameters ti ; see Fig. 4(b) below] and focusing
on the low-energy sector we show that the J are symmetry
dependent and strongly renormalized by the on-site Hubbard
repulsion. We also establish the importance of the screening
effects influencing the magnitude of the Hubbard U even in
small systems, an issue that is often speculated about in the
literature but, to the best of our knowledge, has never been
demonstrated explicitly. Moreover, we convey the message
that our protocol can be used to perform calculations in more
general geometries and in the presence of ligands. To this
end, we focus on the scenario where competing energy scales
are set by the crystal-field splitting and exchange interactions
between transition-metal atoms.

This paper is organized as follows. In Sec. II we introduce
the model and the full quantum-chemistry results. In Sec. III
we introduce the model spin Hamiltonian and the way to
downfold it to an analytically manageable size, while in Sec. IV
we use our procedure on our ab initio results. Finally, we
summarize our conclusions in Sec. V.
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II. SYSTEM AND AB INITIO CALCULATIONS

As a paradigm system we choose Ni4. This cluster may
exist in different conformations (chain [53], planar [54],
or tetrahedral structure [55]). Although in the gas phase
the energetically most favorable geometry is probably the
tetrahedral structure, the planar one is of utmost interest for
applications, where Ni4 is brought on surfaces [56]. In this
study we assume a planar square geometry with a side length
of 2.28 Å, where the onset of electronic band contributions
can be observed. While it can be synthesized as a part of
larger magnetic molecules involving ligands [57,58] or be
deposited on a surface [59], which in both cases leads to a
planar geometry, here we consider the bare magnetic cluster.
Our system lies in between two extremes: the gas-phase atomic
Ni, which can be, up to a point, described with a simple
Hubbard Hamiltonian, and the extended ferromagnetic bulk
and surface Ni, which can be described with a one-particle,
band-structure model.

It is well known that in both solids and molecular sys-
tems indirect mechanisms are important. The Goodenough-
Kanamori rules, which were originally derived for bulk
systems [60–63], allow us to predict the sign of exchange
constants based on the population (filled vs half filled) of the
d orbitals and their overlap with the ligand p states. Although
the magnetic interactions mediated by the ligand atoms are
neglected, the competing excitations on the d shells are still
fully taken into account. An unexpected finding of the present
work is that indirect mechanisms are also present in pure
transition-metal systems, as will be demonstrated below based
on the form of an effective exchange interaction.

In Ni4 the strong static correlations cannot be neglected,
and at the same time the molecular symmetry must be taken
into account. Considering the competing virtual excitations on
the d shells is a formidable task since correlated calculations
with 24 valence orbitals (one s and five d for every Ni atom)
are at the very limit of current computational capabilities. In
fact, we cannot even rely upon the broken-symmetry approach
because of the large number of open electronic shells. Thus,
the calculation requires careful analysis of dominant electronic
configurations.

Our calculations are performed with a Sapporo
full-electron basis set of double-zeta quality in
(16s13p9d2f )/[6s4p3d1f ] contraction [64]. They yield a
Hartree-Fock energy of −6026.7698266 hartrees, whereas
the subsequent coupled-cluster (CCSD) calculations with
18 frozen-core electrons on each Ni atom lower this value
by −1.6604878 hartrees. Both the Hartree-Fock and the
post-self-consistent-field calculations are well converged
(10−7) using the GAMESS [65] and verified by the ORCA [66]
quantum-chemistry packages. Both packages yield identical
energy values. The ground state consists of doubly occupied
dxy , dxz, dyz, and/or dz2 molecular orbitals, localized on
each of the Ni atoms. The dx2−y2 molecular orbitals remain
unoccupied. Furthermore, there are four bonding occupied
states of hybridized s-p character both below and above the
gap.

With preliminary unrestricted-Hartree-Fock (UHF) calcu-
lations on a slightly distorted square planar geometry (D2h)
we identify the ground state as a quintet. This is consistent
with the competing s2d8 and s1d9 valence configurations

of the Ni atoms (also evident in the natural-bond-orbital
analysis). However, due to spin contamination of UHF results,
it is impractical to use this state as a starting point for
correlated calculations. Instead, we start from the closed-shell
singlet reference state and calculate 57 many-body states (24
singlets and 33 triplets; see Fig. 1) with the state-of-the-art
equation-of-motion coupled-cluster method with single and
double excitations [68]. Since all excited many-body states are
mainly formed through single excitations from the reference
state (additionally corrected by double, triple, and quadruple
excitations), one would naively expect that all the singlet-
triplet splittings result from magnetic exchange interaction
with some constant J . This conclusion would support the
use of the giant spin model and yield an identical splitting
proportional to J in all symmetry classes. However, as a quick
glance at Fig. 1(d) reveals, this is generally not the case: The
splittings vary too much to be unified with a single J .

Our first finding is that we can clearly divide 34 of our states
into three categories by individually inspecting their dominant
virtual excitations with respect to their d → d character: (a)
dxz/dyz → dx2−y2 , (b) dz2 → dx2−y2 , and (c) dxy → dx2−y2

(Fig. 1); the other states are too mixed. As it turns out, it
is possible to match our first-principles results with model
Hamiltonians if we use different parameter sets for each of the
three categories.

Figure 2 depicts two correlated many-body states. The one
in Fig. 2(a) (the energetically lowest B2g triplet and singlet
states) belongs to the absolutely nonproblematic ones. We can
easily identify all d → d virtual transitions (also compare with
the orbitals as expected from group-theory analysis; Fig. 3).
Furthermore, both the singlet and the triplet states have very
similar compositions (compare the numbers above and below
the arrows in Fig. 2), and thus, we can treat them approximately
as a singlet-triplet pair with the same spatial part of the orbital
function. Figure 2(b) depicts a many-body state which cannot
be treated with our model Hamiltonian. The reason is that
molecular orbital 61 clearly has a p and not a d character
(it does not correspond to any of the cases in Fig. 3) and
results from hybridization as well as correlations. Hence, we
do not consider it in the procedure of extracting the exchange
couplings J .

III. MODEL HAMILTONIAN

The scope of a spin Hamiltonian is to derive a relatively
uncomplicated (if possible, even analytically solvable) system
which has most of the characteristics of the real system to
be studied. The ingredients of a model can be experimentally
measured for an ensemble of molecules, e.g., by fitting T χ (T )
curves (where T is the temperature and χ (T ) is the magnetic
susceptibility). They can also be accessed for individual
clusters, e.g., with micro- and nanoscale superconducting
quantum interference devices (SQUIDs) [69,70].

One major complication with spin Hamiltonians is that they
do not take into account the spatial part of the electronic
wave function. Thus, although they may very successfully
describe some systems, they can fail if the spatial part leads
to bond building (even more so when correlations cannot be
neglected), which in turn, significantly changes the degeneracy
of the electronic states. In the case of Ni4 we are dealing
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FIG. 1. Many-body-state energies of the first-principles EOM-CCSD calculations in the Ni4 cluster. Pairs of singlet (in blue) and triplet (in
red) states built from the same dominant virtual one-electron excitations (shown in the insets): (a) (dxy, dyz) → dx2−y2 , (b) dz2 → dx2−y2 , and
(c) dxy → dx2−y2 . Note that optical selection rules are not relevant to virtual molecular excitations. (d) Summary of the singlet-triplet splittings
for the different singlet-triplet pairs as the symmetry of the cluster is gradually lowered (D4h → C2v → Cs). The colors refer to the irreducible
representations (see Fig. 4). Note that the doubly degenerate states Eg and Eu get split when leaving the perfect square geometry (D4h) [67].

with many-body states consisting of d-character unpaired
electrons, which, due to the local crystal field, get split into
five categories.

Even without a quantum-chemical calculation one can
identify them by applying group theory on the basis of the 20
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FIG. 2. Main virtual excitations building up the correlated many-
body states. The numbers below the Hartree-Fock molecular orbitals
indicate their ascending energetic ordering. The numbers above the
arrows are the excitation coefficients of the triplets, and those below
the arrow are the excitation coefficients of the pertinent singlet states.
(a) The energetically lowest B2g states [see also Fig. 1(b)]. (b) An
excited state in which the virtual excitations have a d → p character
and which is therefore excluded from our considerations for the spin
Hamiltonian.

d orbitals in the D4h point group. The resulting irreducible
representations are shown in Fig. 3. Although one cannot
tell beforehand which combinations will have which energies,
the actual calculations show that the combinations stemming
from the dx2−y2 atomic orbitals have the highest energy and
are thus the virtual orbitals, while the rest are occupied
orbitals. Ultimately, one can build four categories of correlated
many-body functions (by excitations starting from one of the
occupied orbitals to one empty dx2−y2 -character orbital). The
irreducible representation of the resulting many-body wave
function is the outer product of the irreducible representations
of all the occupied orbitals.

From our ab initio results we can identify 17 pairs of
singlet and triplet states with approximately the same spatial
configuration [Figs. 1(a)–1(c)] and thus use them to extract
phenomenological parameters for our spin Hamiltonian:

Ĥ = Ĥh + ĤU + ĤJ . (1)

The three terms denote the hopping, the on-site Coulomb, and
the exchange interactions, respectively:

Ĥh = −
∑

a,i,j,σ

ti,j,a ĉ
†
i,a,σ ĉj,a,σ + H.c.,

ĤU = U

2

∑
i,σ1,σ2

n̂i,a,σ1 n̂i,b,σ2 ,

ĤJ =
∑

i,j,σ1,σ2

Ji,j,a,b ĉ
†
i,a,σ1

ĉi,b,σ1 ĉ
†
i,b,σ2

ĉi,a,σ2 , (2)

184432-3



HÜBNER, PAVLYUKH, LEFKIDIS, AND BERAKDAR PHYSICAL REVIEW B 96, 184432 (2017)

B1g Eu
(a) Eu

(b) A2g

B2gEu
(a) Eu

(b)A1g

A1g Eu
(a) Eu

(b) B2g

A2u Eg
(a) Eg

(b) B1u

B2uEg
(b)Eg

(a)A1u

FIG. 3. Top view of the 20 d-character molecular orbitals,
combined to form irreducible representations of the D4h point group.
The top row (stemming from dx2−y2 ) shows virtual orbitals. The
dashed lines represent nodal planes, the number of which is connected
to the total energy of the molecular orbital within a group. The
depicted orbitals are predicted through group theory and, as such,
take into account neither p or s hybridization nor correlations.

where i and j indicate the sites, a and b indicate the
orbitals, and σi is the spin; n̂i,a,σ1 , ĉ

†
i,a,σ1

, and ĉi,a,σ1 are the
population, creation, and annihilation operators, respectively.
Since our first-principles calculations involve da → db virtual
excitations, we build our model with two spatial orbitals per
site (e.g., dxy and dx2−y2 ), giving rise to 16 spin orbitals in total.
In Ĥh we take into account only nearest-neighbor interactions
between the same spatial orbitals; in ĤU we account for only
on-site interactions with one common Hubbard U , while in ĤJ

we consider the on-site (J1), the nearest-neighbor (J2), and the
next-nearest-neighbor (diagonal, J3) contributions between da

and db [Fig. 4(b)].
As an illustrative example we examine the dxy → dx2−y2

case [Fig. 1(c)]. We start from a basic many-body function
|ψ0〉, in which all eight dxy orbitals are filled (both spin

up and spin down on all four atoms). The basis of our
spin-Hamiltonian is then constructed out of single excitations
from |ψ0〉: ∣∣ψj

i,σ

〉 = ĉ
†
j,dx2−y2 ,σ ĉi,dxy ,σ |ψ0〉, (3)

giving rise to 2 × 4 × 4 = 32 functions. Here i and j denote
the site, and σ is the spin. We can block diagonalize the Hamil-
tonian (1) if we move to a symmetry-adapted basis in which
the basis functions belong to the irreducible representations
of the system’s point group (D4h). The total Hilbert space is
2 ⊗ (A1g ⊕ 3A2g ⊕ B1g ⊕ 3B2g ⊕ 4Eu). The (unnormalized)
spatial parts of the basis functions are

φA1g/B1g = ψ2
1 ± ψ1

2 ∓ ψ3
2 − ψ2

3 + ψ4
3 ± ψ3

4 ∓ ψ1
4 − ψ4

1 ,

φ
A2g/B2g

1 = ψ1
1 ∓ ψ2

2 + ψ3
3 ∓ ψ4

4 ,

φ
A2g/B2g

2 = ψ2
1 ∓ ψ1

2 ∓ ψ3
2 + ψ2

3 + ψ4
3 ∓ ψ3

4 ∓ ψ1
4 + ψ4

1 ,

φ
A2g/B2g

3 = ψ3
1 + ψ1

3 ∓ ψ4
2 ∓ ψ2

4 ,

φ
E+

u /E−
u

1 = ψ1
1 ± ψ2

2 − ψ3
3 ∓ ψ4

4 ,

φ
E+

u /E−
u

2 = ψ2
1 ± ψ1

2 − ψ4
3 ∓ ψ3

4 ,

φ
E+

u /E−
u

3 = ψ3
2 ∓ ψ2

3 − ψ1
4 ± ψ4

1 ,

φ
E+

u /E−
u

4 = ψ3
1 − ψ1

3 ± ψ4
2 ∓ ψ2

4 . (4)

Both the A1g and B1g blocks are two-dimensional (including
spin), with energy eigenvalues 1

2J2 and − 1
2J2 for the singlet

and the triplet, respectively. Due to strong correlations,
however, the lowest singlet-triplet pairs with these irreducible
representations that our ab initio calculations yield do not have
the same spatial wave functions [therefore, they are absent in
Fig. 1(c)]. The A2g and B2g blocks are six-dimensional, while
the E+

u and E−
u blocks are eight-dimensional. The A2g and B2g

blocks can be further split into two three-dimensional blocks
by separating singlet and triplet states (since the total-spin
operator Ŝ2 commutes with Ĥ ), yielding

Ĥ
A2g/B2g

S2 =

⎛
⎜⎜⎝

1
2 (gJ1 − U )

√
2t± 0

√
2t± 1

2gJ2

√
2t±

0
√

2t± 1
2gJ3

⎞
⎟⎟⎠, (5)

where g = ±1 for singlets (S2 = 0) and triplets (S2 = 2),
respectively. Here t± = ta ± tb for the A2g and B2g blocks,

respectively. Out of the three eigenstates of Ĥ
A2g/B2g

S2 , one
is an ionic charge-transfer state (also evident from its U

dependence). Ionic states lie energetically very high (several
eV) if they originate from d → d excitations and are therefore
not present in our first-principles calculations. They can be
projected out with the downfolding technique of the Feshbach-
Schur map [71]:

Ĥ → Ĥ eff = P̂ Ĥ P̂ + P̂ Ĥ Q̂
1

E − Q̂Ĥ Q̂
Q̂Ĥ P̂ . (6)

P̂ = P̂ 2 is the projection operator onto the relevant (desired)
subspace, and Q̂ = Q̂2 = 1 − P̂ is the projection operator
onto the complementary subspace (to be eliminated). E is
the energy of the eliminated state. Applying this formalism
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4 J1 + 1
2 J2 + 1

4 J3.

to the Hamiltonian (5), we eliminate the first row and the
first column (the element H11 contains the dependence on the
Coulomb repulsion U ). The new effective Hamiltonian is

Ĥ eff
± =

(
1
2gJ eff

2,±
√

2t±√
2t± 1

2gJ3

)
, (7)

with J eff
2,± = J2 + 8t2

±
g(2E (0)

± −gJ1+U )
. As a check, for vanishing ex-

change (J1 = J2 = J3 = 0), the lowest eigenvalues of Ĥ
A2g/B2g

S2

indeed reduce to those of Ĥ eff
± , with no singlet-triplet splitting

even in the presence of U . Thus, the on-site exchange J1 is
important only for small values of the Coulomb repulsion U ,
whereas for typically large U (i.e., U � 2ti and U � J1), J eff

2,±
gets a contribution proportional to 8t2

i

U
, a form representative

of the double-exchange mechanism.
Similarly, in the four-dimensional E±

u sectors we obtain

Ĥ eff
i =

⎛
⎜⎜⎝

1
2gJ eff

1,i teff
i t+

teff
i

1
2gJ eff

2,i t−

t+ t− 1
2gJ3

⎞
⎟⎟⎠, (8)

where J eff
1,i = J2 + 4t2

−
g(2E (0)

i −gJ1+U )
, J eff

2,i = J2 + 4t2
+

g(2E (0)
i −gJ1+U )

,

and teff
i = 1

2g(J eff
1,i − J eff

2,i )
t+t−

t2−−t2+
for i = 1 or 2.

Equations (7) and (8) exemplify our second finding: In every
symmetry subspace, one can construct similar model Hamilto-

nians in order to describe the lowest magnetic (nonionic) states
based on different sets of renormalized effective exchange and
hopping parameters, which incorporate (some) correlation and
spatial-symmetry effects.

IV. DISCUSSION

While it is our goal to determine these parameters either
from our ab initio calculations (or even experimental data),
it is instructive to compare them with the bare-integral,
noncorrelated values of the mean-field Hamiltonian and the
Coulomb repulsion over suitably chosen localized molecular
orbitals (Table I). Notably, the values of these integrals for
the Ni atom have also been discussed by Hubbard in his
seminal paper [74], as well as by Victora and Falicov in their
solution of the four-center tetragonal Ni4 cluster [72,75], and
are consistent with our data in Table I. Let us turn first to
the U = 0 limit, which is easy to analyze analytically. Using
values from Table I in Hamiltonians (7) and (8), we get a
qualitative disagreement with our ab initio calculations on
two marked features: (a) The predicted singlet-triplet splitting
is much larger than the exchange splitting (for U = 0 it is
given by the ta hopping constant; see discussion above), and
(b) the exchange splitting itself is equal for the A2g , B2g , and
Eu blocks.

Our third finding is that turning on the on-site repulsion
improves the energy scheme in several aspects. Figure 4(a)
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TABLE I. The hopping, the Hubbard U , and the nearest-neighbor
exchange integrals between the states of Eq. (4) without correlations
[see also Fig. 4(b)]. The hopping between the dxz states differs for
the x and y directions (the same for dyz). Both numbers are given.

ta,b U1 J
(0)
1 U2 J2 U3 J3

Orbitals (eV) (eV) (meV) (eV) (meV) (eV) (μeV)

dxy 0.93 26.80 566 7.48 16 5.21 599
dz2 0.91 22.49 896 6.64 29 4.64 997
dxz/dyz 0.95/ − 0.22 25.06 987 7.19 12 5.04 119
dx2−y2 −2.33 26.37
Atomic dataa 16 1000
Estimatesb 20 6. 25

aTaken from Refs. [72,73].
bTaken from Ref. [74].

depicts the energy eigenstates of the respective effective
Hamiltonians for every irreducible representation for dxy →
dx2−y2 excitations as functions of U . Interestingly, for sym-
metry reasons, for A1g and B1g the energies do not depend
on U . Figure 4(c) shows the singlet-triplet splitting for two
different sets of exchange parameters for the three irreducible
representations for which we could clearly identify singlet-
triplet pairs as functions of U [see Fig. 4(c)], namely, B2g

(purple), Eu (green), and A2g (orange). The solid and dotted
lines correspond to two different sets of exchange parameters.

An immediately obvious fact is that the splittings within
every irreducible representation depend on U . The asymptotic
values, however, are the same: �E0 ≡ 1

4J1 + 1
2J2 + 1

4J3 in
the noninteracting case and �E∞ ≡ J1 for U → ∞. Despite
this improvement, the ordering of states based on the original
parameters [dotted lines in Fig. 4(c)] must be corrected. This
is further achieved by switching on the nearest-neighbor and
diagonal exchanges such that the condition �E0 > �E∞ is
fulfilled (solid lines) and by setting the on-site repulsion to
10 eV. Ultimately, the best match to the ab initio calculations
(the three colored triangles on the energy axis) is found
for J1 = 0.3 eV, J2 = 0.8 eV, J3 = 0.4 eV, and U = 10 eV
(solid lines). These values differ significantly from the ones
in Fig. 4(b), which are simply the values calculated as the
integrals between the d orbitals since the latter ones do
not include any electron screening, orbital relaxation, and
correlation effects (compare also with Table I).

The physical properties of molecular magnets are set by
the oxidation state of the constituent transition atoms and,

to a much lesser extent, by their mass. The oxidation state
determines the filling of valence electronic shells (typically,
s and d). In turn, they contribute to the magnetic properties
of the systems. The electronic configuration of Ni atoms is
not uncommon for molecular magnets and can typically be
associated with Cu II ions. Thus, isoelectronic counterparts of
Ni4 can be found among synthesized molecular magnets [76].

V. CONCLUSIONS

Summarizing, we propose a surprisingly efficient procedure
to map a sophisticated first-principles treatment of electronic
correlations to a few-parameter model Hamiltonian. For our
paradigm system Ni4 we find three things: (a) We can subdivide
the total Hilbert space in subspaces of irreducible representa-
tions and find several singlet-triplet pairs with approximately
the same spatial wave function in each subspace. (b) In each
subspace we can eliminate the nonmagnetic (ionic) states and
derive a set of five effective parameters (three exchange and
two hopping parameters) unique to each subspace. (c) Finally,
in order to better match the first-principles level scheme we
must switch on the on-site repulsion (Hubbard U ) as a sixth
parameter. Our procedure already represents a tremendous
advance in the theoretical treatment of finite, highly correlated
molecular magnets.

Exploration of these effects offers exciting possibilities for
further investigations in combination with well-established
experimental techniques such as measurements and fitting
of the magnetic susceptibility [77] or directly for individual
clusters (rather than in an ensemble) with the micro-SQUID
[69,70].

In a forthcoming publication we will discuss relativistic
(fine-structure) effects (anisotropy of exchange vs breakdown
of spin rotational invariance due to relativity).
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