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Tuning the frequencies of the normal modes of a nanopillar oscillator through
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A detailed analytical and numerical study of the spin wave modes of the free layer of a nanopillar spin torque
nano-oscillator (STNO) has been performed as a function of the magnetostatic interaction between the free and
the fixed magnetic layers. Results for higher frequency normal modes show that the magnetostatic interaction
does not appreciably affect the spin wave frequencies and the critical current densities, due to more relevance of
the exchange interaction in these modes. For lower frequency normal modes we observe a decrease in frequency
and in the critical current density for auto-oscillations when the strength of the magnetostatic interaction between

the layers increases, an effect that may be appreciable.
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I. INTRODUCTION

During the last decade there has been strong interest in the
control of the magnetic behavior of nanostructures. One of the
ways to control the magnetization of a nanomagnet is through
the transfer of angular momentum from a spin polarized
current by the spin transfer torque (STT) effect [1,2]. Several
experiments and theoretical and numerical studies [3-5]
have been performed since the experimental confirmation
of such an effect [6]. The attention has been placed on the
potential applications in magnetic data storage technology
and spintronics devices where, by using a spin polarized
current, it is possible to write information by switching the
magnetization in a STT device [7]. Therefore, in the last years
STT RAM has emerged as an efficient memory technology
with a nonvolatile character and a reduced power consumption
[8]. Nowadays an interesting application of STT devices, i.e.,
spin torque nano-oscillators (STNOs), occurs in the area of
neuromorphic computing. The STNOs may emulate neuron
and synapse networks behavior through their characteristic
nonlinear oscillator dynamics and their coupling [9,10].

Some STT devices such as nanopillars with metallic spac-
ers, point contacts, or magnetic tunnel junctions are composed
of two ferromagnetic layers separated by a nonmagnetic
spacer. The first ferromagnetic layer is magnetically fixed
while the magnetization of the second ferromagnetic layer
is free to move in response to an external stimulus. When
a current is injected into the system, electrons pass through
the fixed layer and become spin polarized. Then this spin
polarized current reaches the second ferromagnetic layer
whose magnetization in general is not collinear with the first,
and thus some current angular momentum is transferred to
the free layer. If the current density is large enough, a stable
precession of the magnetization of the free layer may be
reached in the microwave range [11]. In most works the
nonmagnetic spacer is considered sufficiently wide to neglect
both the magnetostatic and the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions between the two ferromagnetic
layers. Besides, only a few papers address the influence of
the fixed layer thickness. For example, Urazhdin et al. [12]
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made experimental measurements of the dynamics induced
by a polarized current across a thin spin valve device. They
considered that the dimensions of the free layer are fixed and
the thickness of the reference layer is comparable or smaller
than the free layer thickness. For the fixed layer thickness the
authors considered 2, 5, and 8 nm. The coupling between both
ferromagnetic layers results in a reduction of the precession
onset current. Also Hou ez al. [13] studied the stability of the
reference layer given by a mutual STT effect considering the
macrospin approximation for both ferromagnetic layers. They
concluded that the consideration of that effect is important
to understand the spin-torque switching. We also mention a
recent experimental-theoretical study [14] on the influence of
interlayer coupling on the spin torque driven excitations of a
spin torque oscillator.

As already mentioned, nanopillars have a nonmagnetic
spacer between the ferromagnetic layers. The thickness of this
spacer is generally from 1 to 100 nm [15-24]. The spacer
thickness must be smaller than the spin diffusion length,
usually 100 nm, to keep the spin polarization of the current
[25]. However, from another side, the spacer should be thick
enough to avoid RKKY interaction between the ferromagnetic
layers of the nanopillar. In this case, magnetostatic interaction
between the free and the fixed layers can play an appreciable
role. There are several experimental systems in which both
conditions are satisfied [18-24]. Therefore, in this work
we focused on the effect of the magnetostatic interaction
between the ferromagnetic layers of a nanopillar with a circular
cross section using a standard Hamiltonian formalism. We
studied the normal modes of the free layer as a function of
the fixed layer thickness neglecting the RKKY interaction.
Specifically, we have studied the normal modes, its frequency
dependence, shape, and critical current to induce stable auto-
oscillations. We also studied the normal modes dependency
on nonmagnetic spacer thickness and magnetic material of the
fixed layer. We found that for lower frequency normal modes,
the frequency and critical current density decrease when the
fixed layer thickness increases or the nonmagnetic spacer
thickness decreases. In this scenario, the shape of the lower
normal modes is not affected by the magnetostatic interaction
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FIG. 1. Geometry and parameters of the cylindrical nano-
oscillator considered. A current is injected into the structure, and
its spin direction is polarized as it passes through the fixed layer.

between the layers. On the other hand for higher normal modes,
the frequency and the critical current density are not affected
by the magnetostatic interaction between the layers. Thus STT
nanopillar oscillators can be controlled in terms of frequency
range or current density by material engineering and geometry
design.

This paper is organized as follows: in Sec. II we describe
the model and formalism used to determine the equilibrium
magnetization, the spin wave modes, and the critical current
densities; in Sec. III we present and discuss our results; and
finally in Sec. IV conclusions are presented.

II. MODEL

We consider a nanopillar device composed of two ferro-
magnetic layers separated by a nonmagnetic metallic spacer
with a circular cross section of radius R, as shown in
Fig. 1. The bottom layer has its magnetization fixed while the
magnetization of the top layer is free. The free (fixed) layer has
a thickness L (I') and a saturation magnetization M; (Mjsy).
The nonmagnetic metallic spacer has a thickness D, smaller
than the spin diffusion length (/;5), and large enough to neglect
the RKKY interaction between the two ferromagnetic layers.
For example, if the spacer is copper, the spin diffusion length
islyy =350 nmat T = 293 K [25]. When we study the effect
of D on the normal modes of the free layer, we choose the
minimum D equal to 2 or 3 nm depending on the material
magnetization of the fixed layer. On the other hand, when we
study the normal modes with constant spacer thickness, we
consider D =5 nm. The latter value was chosen to be sure
that the RKKY interaction does not affect our calculations
[26].

To find the normal modes of the free layer as a function
of the magnetostatic interaction between the ferromagnetic
layers, we analyze the magnetization dynamics through the
Landau-Lifshitz-Slonczewski equation (LLS) [27] and the
Hamiltonian formalism [28] to solve it. This section is
organized into three subsections: a brief explanation of the LLS
equation, the Hamiltonian formalism, and a final subsection
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that describes how the equilibrium magnetization, spin wave
normal modes, and critical current densities are obtained.

A. Magnetization dynamics of the free layer
The magnetization dynamics of the free layer induced by
a spin polarized current is described by the Landau-Lifshitz-
Slonczewski equation
dm . S S
Ir = —m X hegg —am X (m X hegr) + BJIm X (m X p),
T

6]

where m = M /M is the normalized magnetization vector of
the free layer. « is the damping parameter, and the time is nor-
malized by t = |y |4w M,t, with |y| = 1.76 x 107 Oe~!'s~!
being the gyromagnetic ratio [29]. J is the applied current
density and p is the spin polarization direction. The coefficient
B is defined as follows [1]:

B h (1+Py371"

where / is the Planck constant, e is the electron charge, P is the
polarization, and 6 is the angle between the magnetization and
the spin polarization direction. Eeff is the normalized effective
field, where it is equal to hep = Hefr/4w My = —8Ue /S,
where Uess = Uz +Up + U + U; is the normalized free
layer magnetic energy. In the U expression, Uz is the
energy associated with the external applied field, U/ is the
demagnetizing free layer energy averaged over the layer
thickness, Ug is the exchange interaction energy, and U is
the energy related to the magnetostatic interaction between
the two ferromagnetic layers. The magnetic anisotropy energy
for the free layer was neglected because we consider a soft
magnetic material, permalloy. The last term in Eq. (1) is the
normalized spin transfer torque term. We neglected the out-of-
plane spin transfer torque due to the nonmagnetic spacer is a
metal [30].

B. Hamiltonian formalism

The LLS equation conserves the magnitude of the mag-
netization (|m?| = 1). Then, the three components of the
magnetization are not independent of each other, and only
two of them are necessary to describe the dynamics. For this
reason and because the normalized equilibrium magnetization
is almost saturated, 7% ~ m, %, it is convenient to introduce
the complex variable a(p,7) through the classical Holstein-
Primakoff transformation, as used by Mancilla-Almonacid and
Arias in Ref. [31]. That is,

m, =1-—aa*

S

m, =[a—a")2iV2 —aa*} o a=T2TM

myz = [(a + a*)/2]v/2 — aa* V1+my
3

where a and a* are small perturbations of the equilibrium
saturated state. They correspond to the classical analog of
the magnon creation and annihilation operators. Using this
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transformation, Eq. (1) is transformed into the following
equation for a:
N
dt da*
where the nonlinear terms of the dissipation and spin transfer
torque have been neglected, as we are interested in the linear
dynamics. The expressions for the energies as a function
of a and a* are found in Appendix A [see Eq. (A3) for
Uz(a,a*), Eq. (AS) for Ug(a,a*), Eq. (A11) for Up(a,a™), and
Eq. (A16) forU;(a,a™)]. To describe the free layer dynamics by
appropriate variables, we introduce a change of variables from
a(p,7) to a,, (), which are the coefficients of an expansion in
Bessel functions as follows:

+iBJa, )

00
. ) XmiP\
11(,0’7) = NOOQOO(I) + ijamj(t)Jm( ﬂ;; )ezm¢’

m=—00
j=1

®

where p and ¢ are the radial and polar coordinates, and J,,
are the Bessel functions of the first kind of order m. Since
we consider free boundary conditions at the edges of the free
layer, that is 8171/8,0|sz = 0, thus the constants y,; must
satisfy J, (xm;) = 0, i.e., they are the zeros of J;,. In writing
Eq. (5) we have considered that the free layer is very thin, that
is L ~ lg, where [ is the exchange length of the free layer
material. Then, its magnetization does not depend on z and
thus we can average the fields and energies over this variable.
Finally, the magnetization dynamics in the variables {a,,;,a,,;
reads (the transformation {a,a*} — {an;,a,,;} is canonical for
the conservative equations, i.e., it maintains the Hamiltonian
form of those equations)

idamj

1 0l
~(l —ia)—
ar U miyas

mj

+iBJay;, ©)

with V = wR?L the free layer volume. The coefficients
Ny =1land N,; =1/ \/ —Jn(Xmj)J(Xmj) are normalization
constants with da/da,,; = V(Sa:;lj /8a*. Expressions for the
energies as a function of the variables a,,; and a,,; are found
in Appendix B.

C. Equilibrium magnetization, spin waves,
and critical current density
Before studying the dynamics of the system, we obtained

the equilibrium magnetization state for the free layer. There-
fore, we solved

U
u*ff —0. 7

amj eq

This equation represents a system of nonlinear equations
that can be solved numerically by using an extension of
the Newton-Raphson method [32]. The solutions of these
equations are the values of ‘1;3' that represent the equilibrium
configuration of the free layer magnetization.

To study the magnetization dynamics we write a,; =
eq ~ ~ .
a,,; + amj, Where d,; represent small perturbations around

the equilibrium values a:g.. Then, at linear order Eq. (6) can be
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approximated by using an expansion in Taylor series around
the equilibrium state, i.e.,

5 w'j' mj 5
i (amj) (A B ) (G
x| = ' j! m'j 5
dt amj _ij _Amj amrj/

_ [
= M(a*, ) ®)
m'j
where AZ;j "and B::,'/ are
AT (1 = ey e | iBJsms,,  (9a)
m = V 0a" 3y m %)
mj eq
BV = (1—ia) 1 U 9b)
" V da,,;day,
eq

In the previous equations, M is a diagonalizable matrix that
can be decomposed as M = PDP~!, where D is a diagonal
matrix constructed from the corresponding eigenvalues of M,
and P is an invertible matrix composed of the eigenvectors of
M. Since the variables d,,; do not represent the normal modes
of oscillation, we performed a Bogoliubov transformation to

obtain the normal modes:
0)- (i ) ) o
~ % - no* n % - .
<amj _'umj )‘mj b:; b;
Replacing this transformation in Eq. (8), one obtains the

following linear diagonal equations for the dynamics of the
amplitudes b, and b} of mode n, given by

i bn _ wn+iyn 0 bn
Yar\br) T 0 —w, + iy )\ b
by
:DQQ’

where w, and y, are real variables. The solutions of Eq. (11)
are b, (1) = ble ') with the dimensionless quantity w,
the angular frequency of oscillation of mode 7. Then, the os-
cillation frequency of this mode is ¥ = 2M;|y |w,, where the
superindex N represents that the frequencies are obtained by
numerical calculations. The linear decay coefficient of mode
n is y,, and it depends on the applied current density y,(J).
The critical current density, i.e., the minimum current density
to induce self-oscillations on the free layer magnetization for a
normal mode, can be obtained by equating yn(JL?Yn) = 0, where
the superindex N represents that the critical current density is
obtained by numerical calculations. Then, if y,,(J) > 0 it is
possible to excite self-oscillations of the normal modes, while
if y,(J) < O these are not induced. It is important to mention
that for y,,(J) > 0, there is not necessarily only one mode that
is auto-oscillating, that is, several normal modes can coexist.
Moreover, this condition can generate an incoherent dynamics
or even the magnetization can be reversed depending on the
current magnitude. In our case, we will study only the current
density that satisfies y,(J) = 0 for a certain n mode, that is,
the critical current density J, obtained gives us the current
density where the n mode begins to auto-oscillate.

an
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III. RESULTS AND DISCUSSIONS

The system we have considered consists of a free layer of
permalloy, a copper spacer, and a fixed layer of permalloy or
cobalt. For our calculations we considered as fixed the geo-
metrical parameters R = 50 nm and L = 5 nm. For permalloy
we have used M, = 800 emu/cm?, exchange stiffness constant
A = 1.3 x 107%erg/cm, and an exchange length [z = 5.7 nm.
With respect to the calculation of the magnetostatic interaction
between the magnetic layers, we have used two materials
for the fixed layer: cobalt with Mz, = 1400 emu/cm3 and
permalloy with Mg, = 800 emu/ cm?, see Refs. [19-24,33,34].
The thickness of the fixed layer was variated from 0 to 10 nm
for cobalt and from 0 to 20 nm for permalloy. For values bigger
than I' = 10 nm for cobalt and I' = 20 nm for permalloy,
the magnetostatic interaction field becomes greater than the
external applied field. Both fields are opposed to each other,
so the parallel state is no longer stable and the free layer
could revert its magnetization generating an antiparallel state.
In the same way, the change of variable m, = 1 — aa™ is not
valid anymore. In order to saturate the magnetization of the
fixed layer with a large thickness, an external field can be
applied or also this layer can be placed in contact with an
antiferromagnetic layer. To solve the LLS equation and to
describe the magnetization dynamics of the free layer, we have
used the following parameters: « = 0.01, the spin polarization
of permalloy P = 0.3 (see Ref. [35]), & = 0, and the spin
polarization direction is chosen as p = x. In all the cases we
used an applied external field H, = 1 kOe. The limits of the
summation in Eq. (5) are given from m = —4 to m = 4 and
from j =1to j =4.

The following three subsections contain our results and
discussions. In the first subsection we focus on the equilibrium
magnetization configuration of the free layer as a function of
the fixed magnetic layer. In the second part we discuss how
the shape and frequency of the normal modes change when
we consider a fixed magnetic layer with different parameters.
Finally, we study the variation of the critical current density
when taking into account changes of the fixed magnetic layer.

A. Equilibrium magnetization

In this subsection we will show how the equilibrium mag-
netization of the free layer is modified when the magnetostatic
interaction with the fixed layer is taken into account. This
equilibrium magnetization is obtained from Eq. (3) as a
function of the complex variable a(g,t) defined in Eq. (5). The
variable a(p,7), in the equilibrium configuration, is obtained
by solving Eq. (7). Our results for the equilibrium magneti-
zation of the free layer in the absence of an applied current
are illustrated in Fig. 2. The vectors represent the in-plane
magnetization, i.e., the normalized magnetization components
m, and m,, while the out-of-plane normalized magnetization
m, is represented by a color scale. Figure 2(a) illustrates the
case where the system does not interact with a fixed layer, thus
the equilibrium magnetization in the free layer is completely
in-plane with m, = 0. Figure 2(b) illustrates results for an
interacting system defined by a fixed permalloy layer with
I' =20 nm and a spacer of D = 5 nm. The interaction field
in the free layer is in opposite direction to the external applied
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FIG. 2. Equilibrium magnetization of the free layer. (a) The
magnetostatic interaction between the free and the fixed layers is
neglected. (b) The magnetostatic interaction between the free and
the fixed layers is considered. The vectors are associated with the
in-plane components of the magnetization m, and m,, and the color
is associated with the out-of-plane component of the magnetization
m,.

field. To consider the change of variables of Eq. (3) properly,
the absolute interaction field must be smaller than the absolute
applied field. In Fig. 2(b) the absolute normalized average
interaction field corresponds approximately to 0.08, which is
less than the absolute normalized applied field (0.1). From this
figure, we observe that there are regions where the value of
the m, is different from zero, then the equilibrium state of
the magnetization is different from the case without the fixed
layer.

B. Frequencies and shapes of the normal modes

In this section we discuss how the frequencies of the normal
modes are modified by the magnetostatic interaction between
the layers. These frequencies fN are calculated following
the procedure explained before Eq. (10), i.e., it involves the
diagonalization of the matrix M in Eq. (8) for the dynamic
perturbations around the equilibrium configuration. Figure 3
illustrates the first three frequencies of the normal modes as a
function of the fixed layer thickness. In this figure we observe
that the frequency of each mode decreases when the fixed layer
thickness increases.

(@ 1 Permalloy Cobalt
- a—, . - e
— T — e,
N 10 [ S N 10 e,
= s *
. .
g ....,,_.‘,‘:”1‘:1\ g ._}\hi 1
R i S en=2
%, M| w0
oen=1 g, ..
-n =2 * K
«n=3
) 5 10 15 20 ) 5 10 15 20
T (nm) T (nm)

FIG. 3. Frequencies of the first three modes as a function of
the fixed layer thickness. (a) The free and fixed layers are made of
permalloy. (b) The free layer is made of permalloy and the fixed layer
is made of cobalt. The thickness of the metallic spacer is D = 5 nm.
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FIG. 4. Frequencies of the first three modes as a function of the
nonmagnetic spacer thickness. (a) The free and fixed layers are made
of permalloy and the thickness of the fixed layer is I' = 20 nm. (b)
The free layer is made of permalloy and the fixed layer is made of
cobalt with a thickness equal to I' = 10 nm. The horizontal dashed
lines represent the frequencies of the normal modes without the effect
of the fixed layer.

We also studied the dependency of the frequency of each
mode on the nonmagnetic spacer thickness. From Fig. 4
we observe that the frequency decreases when the spacer
thickness diminishes, due to the concomitant increase of the
magnetostatic interaction between the layers. Additionally, it
is possible to see that the nature of the magnetic material also
affects the frequency changes of the normal modes. This effect
is evidenced in Figs. 3 and 4 where, for the harder magnetic
material, the change in frequencies is more significant. In
Fig. 4 the smaller thickness for the nonmagnetic spacer is
2 nm for permalloy and 3 nm for cobalt. This, since the
different saturation magnetizations of cobalt and permalloy
require different thicknesses of the spacers to prevent that the
demagnetizing field generated by the fixed layers could reverse
the magnetization in the free layer. We could access to smaller
thicknesses if we increase the external field, as explained in
Appendix C.

In order to better understand these results, we did a
theoretical analysis considering two approximations. The first
one assumes that the demagnetizing field of the free layer can
be approximated by H p = —4m M_Z, an approach frequently
known as the thin film limit (L < R) [36]. In the absence of
magnetostatic interaction between the free and the fixed layers,
the free layer eigenfrequencies are

AT =0)= 2Ms|y|\/(hx + W) (he + By + 1), (12)

see Ref. [31]. In this equation, the superindex A represents that
the frequencies are obtained by analytical calculations, /i, =
H, /(4 M) is the normalized external applied field, iy’ =
(Xmjle/ R)? is the normalized exchange field, and Ig is the
exchange length [see Eq. (A2)]. The second approach averages
the normalized magnetostatic field induced by the fixed layer
over the free layer volume. In this case only the x component
of this normalized average field is different from zero, (h}‘)v,
and it is given by

) = M [~ L@ e ) (1 e ) ¥
Iy = Ms 0 2612%

13)
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FIG. 5. Normalized average magnetostatic field as a function of
the fixed layer thickness for D =5, 10, and 20 nm. (a) The free and
fixed layers are made of permalloy. (b) The free layer is made of
permalloy and the fixed layer is made of cobalt.

where the subindex indicates the average over the volume
of the free layer. Our analytical model includes these two
approximations, and therefore the frequencies of the normal
modes in the analytical model can be rewritten as follows:

£ = 2Ll (o + 04 (3) ) (14 e+ B+ (15),)

j =
YA
hy + hY’ 1+ h, + hY’

(14)

Figure 5 illustrates the normalized average magnetostatic
field (hy ), as a function of the fixed layer thickness. We
considered in the calculation different values for the spacer
thickness and magnetic materials, as shown in Figs. 5(a) for
permalloy and 5(b) for cobalt. First, we observe that the
strength of (h}) ~depends on the magnetic material of the
fixed layer and the spacer thickness. With the same geometrical
parameters the fixed layer of cobalt produces a stronger field
than permalloy. This is the reason why we only plot up to
I' = 10 nm as displayed in Fig. 3(b), since for values greater
than I' = 10 nm, the normalized average magnetostatic field
can be greater than the normalized external applied field, and
Eq. (3) will not be valid. In addition, we observe that the
normalized average magnetostatic field is negative and goes
to zero when the fixed layer thickness decreases. In this way
one may understand why the frequencies obtained in Fig. 3
decrease when the thickness of the fixed layer increases or
the nonmagnetic spacer thickness decreases. These results are
confirmed in Fig. 6 where the oscillation frequency of the
uniform mode or macrospin mode in the analytical model fol?)
and the frequency mode previously obtained numerically for
the mode n = 1 also called quasiuniform f}" are depicted [see
Fig. 3(a) for permalloy and Fig. 3(b) for cobalt]. Although
differences in oscillation frequencies are observed, the decay
is similar. The analytical model exhibits the same behavior as
our numerical results, and a better agreement for large values
of I". The frequency differences between the analytical and
numerical models are due to the thin film limit approximation
of the demagnetizing field that we use in our analytical model.
A better agreement between theory and numerical analysis
is obtained when I' increases, because the magnetostatic

= fo (I =0) <1+
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FIG. 6. Frequency of the uniform mode as a function of the fixed
layer thickness for D = 5 nm. (a) The free and fixed layers are made
of permalloy. (b) The free layer is made of permalloy and the fixed
layer is made of cobalt. The blue line corresponds to the analytic
formula obtained by the analytical model, see Eq. (14). The black dots
correspond to the numerical solution previously found from Eq. (11)
for n = 1 [see Fig. 3(a) for permalloy and Fig. 3(b) for cobalt].

interaction field increases correspondingly, making, in the
comparison, the demagnetizing field less relevant.

From Eq. (14) we observe that the effect of the fixed layer on
the free layer is limited for higher normal modes. If [{A7}) , | <

|hy 4+ B |, then f, & f,A.(T' = 0). Therefore, the fixed layer
does not affect the higher normal mode frequencies. In the
analytical model we calculated the condition for which the
frequencies are not affected by any fixed layer thickness and
any nonmagnetic spacer thickness when || > |(h),‘)v |. Then

we have f2 ~ fA(I' = 0)if

mj mj
> X | A (15)
Xmi Z 0N

Replacing the parameters used in our calculations in Eq. (15),
we have the next condition yx,; > 2.77. To understand
Eq. (15), we need to observe Fig. 7. This figure illustrates the
numerical and analytical frequency variations as a function of
the normal modes, where the numerical frequency variation is
defined by

AfN@,D) =100 x [N T =0)— £N]/fN T = 0), (16)

(@

=

Permalloy (b)

Cobalt
60: 60:
; g
= 50 s 50:
= « numerical = i « numerical
< & L
g 40 = analytical > 40 h" hY = analytical
> > LN
c 30 e 30
! g
g 20 g 20
ot S N i -
= ol I ges
10; Ra= 10 80
o o
2 4 6 8 10 0 2 4 6 8 10
n n

FIG. 7. Frequency variation from Eqs. (16) and (17) as a function
of the normal modes. (a) The free and fixed layers are made of
permalloy with I' = 20 nm and D = 5 nm. (b) The free layer is made
of permalloy and the fixed layer is made of cobalt with ' = 10 nm
and D = 5 nm. The dotted black line corresponds to Af;¥(I', D). The
dashed blue line corresponds to A ,jl‘l.(F, D).
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TABLEI The table shows the values of ,,; necessary to calculate
A ,,f‘j(F,D) for the lower normal modes. n corresponds the normal
mode.

ij

0
1.84
3.05
3.83
4.20
5.31

W W

N=JIS o N N R
rLWoOoOMNM~O| S
— e (D ~.

— 00

with £¥(I" = 0) as the frequency mode calculated numerically
in the absence of the magnetostatic interaction between the free
and the fixed layers, and the analytical frequency variation is
defined by using the analytical model, i.e.,

Afy(D.D) =100 x [f3(1 = 0) = £51/£,(F = 0).
a7

For Af,N(I',D) and Af,.(T, D) we have chosen I = 20 nm
and D = 5nm for permalloy andI' = 10nmand D = 5 nm for
cobalt. These geometrical parameters give the biggest drop in
frequency in our calculations. In the analytical model, each x,;
represents two normal modes if m # O (there is degeneracy),
and one normal mode if m = 0. The lower values of y,;
correspond to the lower normal modes. In our case, we count
the first ten normal modes denoted in Table 1.

From Fig. 7 we observe that the frequency variation starts
approximately at 60% for the first mode and decreases when
we increase the normal mode number n. The increment of
the normal mode number, in the analytical model, means an
increment of the value of ;. Therefore, if we take an n
that has a x,,; > 2.77, then the frequency variation goes to
zero, i.e., the higher normal modes are not affected by the
magnetostatic interaction between the layers.

In the second part of this subsection we discuss the
magnetostatic interaction effect on the shape of the normal
modes. In absence of dissipation and spin transfer torque effect,
the magnetization dynamics of the component m, is plotted in
Fig. 8, which at linear order is

a+a 1 o
1= Y= = —F= bNm'Jm mj R
m; ﬁ ﬁ Xn:% n j (X ],0/ )
X [()»zje_""’"f - szei‘“”f)ei’”"’ +c.c.]. (18)

In this figure the fixed layer is made of permalloy and has a
thickness of I' = 20 nm and a nonmagnetic spacer thickness
equal to D = 5 nm. With these geometrical parameters, the
magnetostatic interaction between the permalloy layers is the
strongest in our calculations, see Fig. 5. The shape of the first
three normal modes are compared in the absence [Figs. 8(a),
8(c), and 8(e)] and in presence [Figs. 8(b), 8(d), and 8(f)] of the
magnetostatic interaction between the free and the fixed layers.
We observe that they are essentially very similar. Therefore, it
is possible to change the oscillation frequencies as a function
of the fixed layer thickness without changing the shape of the
normal modes.
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FIG. 8. Shape of the normal modes associated with the magneti-
zation dynamics of the component m for the first normal mode (first
row), the second normal mode (second row), and the third normal
mode (third row). This figure shows different systems at T = 0. The
left column does not consider the magnetostatic interaction between
the free and the fixed layers in the calculations. The right column
considers the magnetostatic interaction between the ferromagnetic
layers. The frequencies were set to show that there is a frequency
change, but no modification in the shape of the normal modes were
observed. In this case, both magnetic layers are made of permalloy.
We assumed that m, is in the range between [—1,1] (this is arbitrary
since these are linear modes).

C. Ciritical current density

When a current runs through the nanopillar, it is possible
to induce oscillations on the free layer magnetization if
the current exceeds a certain threshold, called the critical
current density Jé\f - Figure 9 illustrates the lowest critical
current density for n =1, Jé\f 1> as a function of the fixed
layer thickness for D = 5 nm and D = 20 nm. In the same
way as the oscillation frequencies are modified, the critical
current density is modified if the magnetostatic interaction
is considered, i.e., the critical current density decreases if
the fixed layer thickness increases or the nonmagnetic spacer

PHYSICAL REVIEW B 96, 184424 (2017)
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FIG. 9. Critical current density necessary to induce self-
oscillations in the lowest normal mode as a function of the fixed
layer thickness, at D =5 nm (dots) and D = 20 nm (squares).
(a) The free and fixed layers are made of permalloy. (b) The free
layer is made of permalloy and the fixed layer is made of cobalt.

decreases. In addition, while the harder it is the fixed layer
material, the greater it is the critical current density variation.

To understand the results plotted in Fig. 9 and obtain an
analytical expression, we have used the analytical model. The
critical current density without the magnetostatic interaction
between the layers, in the analytical model, is

I, (T =0)=a(h, + 1}y +1/2)/8, (19)

where the superindex A represents that the critical current is
obtained by analytical calculations. If we consider the mag-
netostatic interaction, where the normalized average magneto-
static field from the fixed layer is (h’,‘)v [see Eq. (13)], the crit-
ical current density in the analytical model can be rewritten as

afl ;
I = —(5 +hy ARy A+ (h}‘)v>

B
hx
%), (20)
2+ hy +hY

= I (T = 0)<1 -
2

where h, = H,/(4nM,) and h'%y’ = (x;lg/R)*. Equation
(20) explains the decrease observed in Fig. 9. It is because
(hy), is negative. This could be experimentally useful due
to the possibility of decreasing the critical current density
about 20% in both materials (permalloy and cobalt). If

[(h7), | < 11/24he +R), then JE, -~ Jd (T =0),
therefore the fixed layer does not affect the critical current
densities at higher normal modes. In the analytical model,
we can calculate the condition where the critical current
densities are not affected by any fixed layer thickness and any

nonmagnetic spacer thickness when | | > |(h’1‘)v |. Then, we

have J2,.; & J&,.(0 = 0)if 1/2+ iy > |h| or
R 2y LR @1
22 T s

In our calculation we get from Eq. (21) the next condition
38.47 + x,%j > 7.69. If we compare the expressions for the
conditions of Egs. (15) and (21), we observe that the critical
current density has less variation than the frequency for the
same normal mode, and the current density variation decreases
faster than the frequency variation. Figure 10 confirms the
predictions of the conditions of Egs. (15) and (21). This figure

184424-7
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FIG. 10. Critical current density variation (percentage) from
Egs. (22) and (23) as a function of the normal modes. (a) The
free and fixed layers are made of permalloy with I' = 20 nm and
D = 5nm. (b) The free layer is made of permalloy and the fixed layer
is made of cobalt with I' = 10 nm and D = 5 nm. The dotted black
line corresponds to AJé\f .(I', D). The dashed red line corresponds to

AJ4,(T.D).

shows the numerical and analytical critical current density vari-
ation as a function of the normal modes, where the numerical
critical current density variation (percentage) is defined by

AJY,(T,D) =100 x [J} (T =0)—J¥,]/7} (T =0),
(22)

with Jé\{n(F = 0) as the critical current density calculated
numerically in the absence of the magnetostatic interaction
between the free and the fixed layers, and the analytical
critical current density variation (percentage) is defined by
using the analytical model, i.e.,

AJémj(F,D) =100x [ngj(r :0)—]3,”]/13,"],(1“ =0).
(23)

For AJY,(T,D)and AJZ, (T, D) we have chosen " = 20 nm
and D = 5 nm for permalloy, and I' = 10 nm and D = 5 nm
for cobalt. These geometrical parameters give the biggest
drop in the critical current density in our calculations. From
this figure, we observe that for the first normal mode the
current density changes by 14%, and this variation decreases
when we increase the normal mode number.

The steps evidenced in Figs. 7 and 10, related to the
analytical results, occur because there is a degeneracy of
the normal modes in this approximation. The nonmonotonic
behavior of Fig. 10 comes mainly from the fact that the
magnetostatic interaction field does not couple equivalently
with each normal mode. In this way, this field significantly
affects certain normal modes.

In this work we have analyzed the “parallel state,” where
the magnetization of both the free and the fixed layer are
pointing in the same direction and sense. In this configuration,
the magnetostatic interaction field between the ferromagnetic
layers is pointing opposite to the applied field, for this reason
both the frequencies and the critical current decrease when the
interaction field increases. On the other hand, if the system is
in the “antiparallel state,” i.e, the magnetization of the free and
the fixed layer are pointing in the same direction and different
sense, the magnetostatic interaction field is pointing in the
same sense as the applied field. Therefore, Eq. (13) changes
its sign from minus to plus, and then the frequencies and the

PHYSICAL REVIEW B 96, 184424 (2017)

critical current increase when the magnetostatic interaction
field increases. The above can be understood directly from
Egs. (14) and (20).

IV. CONCLUSIONS

As a summary, by means of numerical calculations and an
analytical model, we have studied the modification of the free
layer spin wave modes of a nanopillar oscillator due to the
magnetostatic interaction between the free and the fixed layer.
For these modes we have studied both their frequencies and
shapes as a function of the fixed layer thickness, nonmagnetic
spacer thickness, and the magnetic material of the fixed layer.
It has been found that the frequencies as well as the critical
current density of the lower modes decrease when the fixed
layer becomes thicker or the nonmagnetic spacer becomes
thinner, effects that may be significant. We also observe that
the shape of the lower normal modes do not change in spite
of the fixed layer thickness changes. At higher normal modes,
the fixed layer does not affect the frequencies and the critical
current densities since in this case the exchange interaction
is more relevant than the magnetostatic interaction between
the layers. These results can be used to modify the natural
frequencies of oscillation or the critical current densities
necessary to induce the magnetization self-oscillations without
altering the shape of the lower modes for the free layer, which
from an experimental or practical point of view may be useful
for the study of the excitation of the spin waves and also for
the design of systems with lower power consumption.

ACKNOWLEDGMENTS

We acknowledge financial support in Chile from FONDE-
CYT 1161018, 1160198, 1170781, and 11160985, Finan-
ciamiento Basal para Centros Cientificos y Tecnoldgicos
de Excelencia FB 0807, and AFOSR Neuromorphics In-
spired Science FA9550-16-1-0384. S.O. acknowledges PAI-
CONICYT Grant No. 79140036.

APPENDIX A: EXPRESSIONS FOR THE FREE ENERGY
AS A FUNCTION OF a AND a*

The normalized free energy is given by

_ 1
=

/(Wz 4+ Wg +Wp + Wp)dV, (A1)

where Wz, Wg, Wp, and W, represent the Zeeman, exchange,
self-magnetostatic, and the interlayers magnetostatic interac-
tion energy densities, respectively. The integration is over the
free layer volume.

1. External field energy

A constant field is applied in the x direction, then the
associated Zeeman energy density is given by
Wy =—H-M=—HM, =—HM( —aa*). (A2)

The constant term does not affect the dynamics, so the
Zeeman energy associated with the applied magnetic field is

184424-8
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an expression of second order:

Uy = hx/aa*dV, (A3)

with h, = H, /(4w M) the normalized applied field.

2. Exchange energy

The exchange energy density in cartesian coordinates is
given by

ALV + (Vmy)* + (Ym.)’),

where A is the exchange constant. Thus, the energy expanded
until fourth order is

W = (A4)

. o 1, - 1, -
Up ~ th [w -Va* + ZaZ(Va*)z + Za*z(Va)2i| R*dV,
(AS)

with hg = A/(Qm M?R?) = (Ig/R)?, with [ the exchange
length.

3. Demagnetizing free layer energy

The self-magnetostatic energy density is given by

Wp = —L1Hp - M. (A6)

For the purpose of determining the demagnetizing field of the
thin disk, the free layer magnetization is assumed uniform in
its thickness and then does not depend on the z coordinate.
First, we calculate the magnetostatic potential ® and then the
demagnetizing field through the relation ﬁD = —V®. The
magnetostatic potential is given by

@) = /I 7 +/ v av,

where oy =4 - M (%) is the effective surface magnetic charge
density on the surface of the disk (top, bottom, and side), and
oM = -V-M (X') is the effective volumetric magnetic charge
density. The Green’s function can be written in cylindrical
coordinates as

(A7)

Z e f T (k) (kp'ye™ = dk.

(A8)

In order to calculate the demagnetizing field averaged over the

thickness of the disk ((HD =7 fo HDdz) we separate the
calculation into two parts.

a. Surface magnetic charges at the top and bottom

The surface magnetic charges at the top and bottom of the
free layer disk give rise to a magnetic field along the z direction,
which normalized is given by

(np) = mz+— Z / FKL) T (kp)e™

m=—0o0

x [ / ds/Jm(kp/)mz(pwf)e-"'ﬂdk, (A9)

PHYSICAL REVIEW B 96, 184424 (2017)

with f(u) =exp(—u) — 1 + u, and the subindex indicates
average over z.

b. Volumetric and surface magnetic charges at the edge

The surface magnetic charges at the edge of the free layer
disk plus the volumetric magnetic charges give rise to a
magnetic field in the plane of the free layer, which normalized
is given by

(i), =~

f( D)5 k)]

2L Z

x {/ds/%[Jm(kp’)e—"mq”] .nzn(p’,(p’)}dk, (A10)

where 7 = m,% + m,3, and the subindex indicates average
over z.
Thus, the demagnetizing energy is given by

tp = =4 [ (5] + (i) -diav.

(Al1)

4. Magnetostatic interaction energy between the layers

The energy density associated with the interaction of the
free layer with the fixed layer magnetostatic field is given by

>

W, =—H, - M. (A12)

In order to calculate the magnetostatic field, the same
procedure as in Appendix A3 is used, that is, we first
determine the magnetostatic potential produced by the fixed

layer considering that it is uniformly magnetized, with Mﬁx =
Mg« x. Therefore this magnetostatic potential is given by

. i - M (%
D(¥) = / P M) (A13)
lx — x|
with 7 - Mﬁx = Mjx cos ¢’ we obtain

@1 ()(eF —1)e
q

d(X) = 2n M R cos(¢>)/ dq.
0

(A14)

If we define the following dimensionless quantities / = L/R,
h=T/R, d=D/R, and then averaging the normalized
magnetostatic field over the free layer thickness, i.e., (h) =

1 F+D+L &
— 4L Jrip Vo dz, we get
R Mgy

W)=~ m / fhl.d.q))i(q)

[0(%) - (%) s

(A15a)

y R Mgy .
). =30 /0 F(1.d.q)1(@))2( %) sin @e)dq.
(A15b)
R Mg, [
(i), = 51 Mﬁ /0 fh1.d.g) 3@ (22) cos (¢)dg.
(Al5¢)
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with f(h,l,d,q) = (1 — e 4")(1 — e~9")e~9% /q. Finally, the energy associated with the interaction between the ferromagnetic
layers is given by

U = —/ (hr) -mdV. (A16)

APPENDIX B: EXPRESSIONS FOR THE FREE ENERGY AS A FUNCTION OF THE a,,; AND a;,

In this Appendix we show the dependence of the energies as a function of the a,,; and a;, ; variables.

1. External field energy
The external field energy is simply
Uy = Vhe Y amjay;. (B1)

mj

2. Exchange energy

The exchange energy is composed of two terms, one of second and the other of fourth order, i.e., Uy /V = u}? + u};”:

2) _ 2 *
Ug’ =hg E XonjAmj o (B2a)
mj
4 _ hE z :z : ) L% * mi+m;  E
uE o _7 (am”'amzﬁam}j}a*mh + C'C')6m3+m4 Ly jima jams jsma ja° (B2b)
myjy m3j3
myjp mys
where
-E

1
Uiy jima joms jamajs — Xmiji szijmljl Nmzijmzijm4j4'/0 ‘Im1+1(Xmljlx)'lmzfl(szjzx)‘,rm(Xm3j3x)]m4(xm4j4x)x‘lx' (B3)

3. Free layer demagnetizing energy

The free layer demagnetizing energy associated with magnetization on the x axis and y axis will be composed of four terms
of orders one, two, three, and four, respectively, i.e., Uy /V = Uy W Z/lf)y(z) + Uy @4 Uy @ whose expressions are

xy(1) 1 .
uyt = Vel ;[(a,2 = @)+ cc* (Do) (B4a)

xy(2) - - .3 2 —mj -3 1
UD = Z {amljla:;lzjz Z [(811% " + 8;” m2)12jm1j1m2j21 (l)(0,0,j) - 2831] mlejmljlmzsz (l)(0,0,j)]

mJl J
my i

1 m * * m m
- g(_l) l[amljl - (_l)mla—mljl][amzjz - (_l)mza—mzjz][(s—é+ 212(1)(m1~j1qj2)

+ ng,-&-mz 13(1)(,7,],1‘1,]‘2) + 25(r)nl+m211 (l)(m1»j1~j2)] }’ (B4

xy(3) 1 2 : my+my—m my4+my—m .4 2

Z/{D =" {[amlfl - (_l)mlaimm]amz.iza;kns.lé (8—] - 82 ] 3) Z [12_/m1.i1mz.i2m3j31 (l)(0,0,j)]
42 = -

mzj:z

m3j3

1 m ms  xk * my—ma+m .
BV, LA GO R G A LT (6_; Y [ L) TR
Jj
- Sgﬂlfszrms Z [i3m3+2jm1j1mzjz13(1)(’"3’j3’j)]) }’ (B4C)

J
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xy(4 1 m. * m * *
Z/ID)( ) = g Z Z {[am4j4 - (=D 4a—m4j4][amlj1 - (=D la—mljl]amzjzamgjg

myji m3j3
myjy mg4jy
my+my—msz+my .4 2 my+my—m3+my .4 3
X <8—2 Z [lm4+2.fm1./1’”2./21713_73I (l)(nu,jmj)] +6; Z [lm4—2jm1_;|m2_72,713_73I (l)(m4,j4,j)]
J J
mi+my—ms3+my § : .4 1 o _ e L% E : .3
+ 280 [lm4jm1j1m2j2m3j31 (l)(m4,J4~J)]> amljlamzjzam313a;114j4 [lmlfmzj’mljlmzjz
j 3%
my—ma+ms3 .3 2 my—my+ms3 -3 3
X (8m4—2 lm17m2+2j”m3j3m4j41 (l)(mlfmij'qj”) + 5m4+2 lm17n1272j”m3j3m4j4[ (l)(m17m27j’7j”)
_ 28m1—m2+m3i3 Il(l) A )] (B4d)
my my—my j"m3 j3ma ja (my—ma,j’.j") :

The energy associated with the z component of the magnetization is composed of a term of order two and another of order
four, i.e., U5/ V = z,{f)@) + ug“”;

UB(Z) = % Z [sz] o 21](1)(’”1,]'1,jz)][armjl + (_l)mlaimljl][(_l)mla_mlj2 +a;7kllj2]’ (B5a)
mijij2
1 m ny—m * m * m ES
U = =1 D D Ly + (1 M+ (1), )
2
.4 .4 1
X (l’"4j4m1j1mzj2m3j3 - Zzzmzmmlj]mzjzmzjal (l)(’”%j%ﬁ))’ (B5b)
Js
with
o fghq*J/ (g)*
"Dy iy = Nijy Nijo I, O i) I (i) f dgq ' , (B6a)
(s jisi2) J J2 1 1 1J2 o l[q2 _ (X]ljl )2][q2 _ (X]ljz)z]
o faha*J (@)} (@)
2 _ ) ) ) ) I L+2
(D, = Niyjy Niy+2i i, (le_/l)Jll+2(X11+2_/2)/0 dql[q2 I = Ol (B6b)
o0 f(ql)qu/ (Q)Jl/ _2(‘])
PDa, . =Nl'lez'Jl(Xl')1172()072')/ dq l : , (B6¢)
(1, ji2j2) it NG =2 YL\ XL j )Y 1—2j2 0 l[qz — (Xlljl)z][qz - (Xll—2j2)2]
with f(gl) = e 7 + gl — 1 and
1
il?)ijilijZ =N1]le_]] Nmzjz /(; Jl(lex)Jml(Xm]jlx)sz(szjzx)Xd-xv (B7)
1
s =Ny Ny N Nows /0 O I o 2 s om0 s G ). (B8)

4. Magnetostatic interaction energy between the layers

The magnetostatic interaction energy between the layers associated with the x component of the free layer magnetization is
composed of a term of order two:

1
x(2) * .3 m * .3 2
u’ = VZ Z [2am1j1 amzjzlojmljlmzjz(smzl Ioj(h’l’d) - (amljl Dy jo + C'C')lz.imljlmzjzgml—m2 Izj(h’l’d)]' (B9)

myjy
myJj2

The analogous interaction energy associated with the y component of the free layer magnetization is composed of a term of
. 1 ,
order one and another of order three, i.c., 1)/ V =" + 1

1
U}V(l) = — Z(a;] — a_zj + a2j - Clizj)IZj(h,lyd), (Bloa)
421 =
y(3) 1 2 -4 * my *
ul - _8_«/51 8m1+m2—mslem1jlm2,i2m3j3 [(am]jl — (=1 A—my ji )amzjzam3j3 + C'C']Izj(h’l’d)' (B10b)
myj
my jp

m3Jj3
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FIG. 11. Frequencies of the first three normal modes as a function
of the fixed layer thickness. The free layer is made of permalloy and
the fixed layer is made of CoFe. The thickness of the Cu spacer is
D =5 nm. (a) The normalized applied field is &, = 0.1. (b) The
normalized applied field is &, = 0.25.

The interaction energy associated with z component mag-
netization is composed of a term of order one and another of

order three, i.e., Ui/ V = UiV + U9

1
a _ Z % 0 N
U T 221 j(a” a’yj+ay; —aaphjhl.d),
(Blla)

z(3) _ _L 61 i4- ) ) ) [(a .
I - 4\/51 ;m: my+my—m3"1jmy jimy joms jz L\
mj
m3j3

+ (_l)mlatmljl )amzjza:z”g + C.C.]Ilj(h,l,d),

(B11b)
with
* (g,h,1,d)
Ly (h1.d) = NoyJu(ta)) / dg 1\ (@) q) ST
0 (6] _an)
(B12a)
glg.hld)y=(1—e 1)1 — e )44, (B12b)

APPENDIX C: EFFECT OF THE EXTERNAL FIELD

In addition to results showed in the main text, in this
Appendix we address the effect of the external field on the
normal modes and the critical current. For these calculations
we use a fixed layer of CoFe, which has a saturated magne-
tization of My, = 1800 emu/cm3 (see Ref. [37]). Figure 11
illustrates the first three frequencies of the normal modes as a
function of the fixed layer thickness for different normalized
external applied fields. From the figure we observe that the
frequencies increase when we increase the normalized external
field. In Fig. 11(a) the normalized applied field is 4, = 0.1,
while in Fig. 11(b) the normalized applied field is 4, = 0.25.
In the first case, we cannot consider a fixed layer thickness
bigger than 8 nm, since the magnetostatic field of the fixed
layer, which is opposite to the external applied field, could
revert the magnetization of the free layer. If we increase

PHYSICAL REVIEW B 96, 184424 (2017)
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FIG. 12. Frequencies of the first three normal modes as a function
of the nonmagnetic spacer thickness. The free layer is made of
permalloy and the fixed layer is made of CoFe. (a) The thickness
of the fixed layer is I' =8 nm. (b) The thickness of the fixed
layer is I' =20 nm. The horizontal dashed lines represent the
frequencies of the normal modes without the effect of the fixed
layer.

the normalized applied field to &, = 0.25, the magnetization
of the free layer is more stable than the previous case.
Therefore, it is possible to increase the magnetostatic field
due to the fixed layer by increasing the thickness of the fixed
layer.

We also study the dependency of the frequencies of the
first three normal modes on the nonmagnetic spacer thickness.
In Fig. 12 we observe that the frequencies decrease when the
nonmagnetic spacer thickness diminishes. In Fig. 12(a)
the normalized applied field is &, = 0.1 and the thickness of
the fixed layer is I' = 8 nm. In this case, the minimum value
of D is 4 nm. In Fig. 12(b) the normalized applied field is
h, = 0.25 and the thickness of the fixed layer is I' = 20 nm.
In this case the minimum value of D is 2 nm. Therefore, the
magnetization of the free layer is more stable for 4, = 0.25
than for 22, = 0.1, even if we increase the fixed layer thickness
from 8 to 20 nm.

Finally, Fig. 13 illustrates the lowest critical current density
for the first normal mode. We observe that the critical
current increases when the normalized external applied field
increases.

(@) s4 CoFe

CoFe
hY
— 52 .
LR -~
g | .‘\ b .,
~ 5.0 LY LY
= PR
N Y .
o ...
= a8 .
- ", « D=5 nm T
Z . .
=~ 46 =+ D=20 nm
. he = 0.1
.
44 i
4.4
5 10 15 20 0 5 10 15 20
I' (nm) I (nm)

FIG. 13. Critical current density necessary to induce self-
oscillations in the lowest normal mode as a function of the
fixed layer thickness, at D =35 nm (dots) and D =20 nm
(squares).
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