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Starting from high-level ab initio calculations, we present ultrafast spin dynamical effects and all-spin-based
nanologic elements on a Ni4 cluster. The predominant underlying mechanisms for our operations are optically
induced coherent � processes, the optimized parameters of which are obtained from a dedicated genetic algorithm
search. The geometry of the cluster exhibits a high degree of spin localization. Thus, maneuvering the spin
localizations we construct a pure-spin OR gate. Additionally, functional intramolecular cooperative effects such
as spin bifurcation and spin merging are introduced that facilitate the setup of the latter. In the which-path
information effect the phase of the final spin state is exploited to reveal the path traveled by the spin in a
two-step spin transfer scenario. This is beneficial for both classical and quantum computations on small spatial
and temporal scales.
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I. INTRODUCTION

Modern spintronics aims at miniaturizing all-spin-based
devices to the atomic scale. Researchers are constantly in
search of novel schemes for high-performance computing.
One successful approach harnesses the spin degree of freedom
of the nuclei, electrons, atoms, and molecules to perform
computations [1–4]. The magnetic moment of the spin can
be used to read/write information and in this way improve the
performance and energy efficiency of computer hard drives
and magnetic random-access-memory (MRAM) [5,6]. All
electronic circuits require logic gates to perform mathematical
operations. Thus, magnetic nanologic appears to be ideal due
to its nonvolatile character, minimal surface area requirement,
and high-speed processing.

Previously, logic operations have been performed exper-
imentally with small molecules using input cation concen-
trations, and CO molecules in cascades [7,8]. Soe et al.
developed a NOR gate using a single molecule and gold atoms
to encode logical values as inputs [9]. Wang et al. reported
quantum logic gates with a single trapped ion which eventually
enhances the performance of quantum computations [10].
Logic operations have also been realized on quantum wires
with external voltages as inputs and the high/low output current
as the output [11]. Khajetoorians et al. showed that NOT
and OR gates can be built by combining spin frustration and
indirect exchange coupling [2]. NOR and NAND gates have
been developed using three quantum states with a distance
and frequency controlled approach [12]. Sequential logic
operations have been reported exploiting quantum interference
effects and stimulated Raman adiabatic passage on n-level
(n = 2,3) systems [13]. Theoretically quantum logic has been
developed using polarized photons as information carriers
[14]. In thermal logic gates, the information carriers are mainly
the phonons [15].

While conventional spintronics relies on spin currents,
optical spin-based nanologic employs ultrafast spin dynamics
and as such uses elementary excitations with large energy
and small linear momentum transfer. As it is based on ultrafast
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laser induced � processes from the outset this type of magnetic
logic acts on the femtosecond timescale. In order to enhance
spatial resolution, restricted by the optical diffraction limit,
one needs to resort to the specific resonance structure of the
different active magnetic sites (i.e., either different species
or same species atoms in slightly different local geometry).
Magnetic-logic operations [16–20], as well as spin processes
in three-magnetic-center structures [21–23] have already been
proposed. In the latter ones, however, a variable external
magnetic field was used as one of the input bits [21]. This
substantially slows down the operation speed.

The structural aspects of realistic magnetic systems with
few magnetic centers which give rise to magnetic nanologic
scenarios have already been investigated. Among others the
role of correlations on the � processes, the role of the different
species (Ni, vs Co, vs Fe [24–26]), the role of bridging atoms
(O, vs Mg, vs C, etc. [24,27]), of the geometry (linear vs
bent molecules, triangles, fullerenes, planar and nonplanar
geometries [28,29]), and of attached ligands (CO, ethanol,
methanol, etc. [30,31]) have been studied.

In the present paper, rather than looking into those aspects,
we explore the functionalities arising from using a prototypic
system with four rather than three magnetic centers and
develop logic elements with spins as the only information
carriers. The infinitesimal static magnetic field used in the
calculations only defines the easy axis in space. Since it
has been shown that small planar structures can be stable
in particular on surfaces [32–34], we concentrate here on the
fundamental underlying physics and do not consider further the
environmental details of such structures (studied previously,
e.g., stabilizing ligands [30], attached small organic molecules
like MeOH [26] and EtOH [31], or temperature [35,36]),
for which it typically turns out that although the resonances
might get slightly shifted, the basic physics remains the same.
Especially the presence of a substrate does not alter the optical
selection rules, as long as the total symmetry remains the same
[37,38]. The correlations, on the other hand, open additional
excitation paths and thus can give rise to further phenomena
[39,40]. Although our system is spatially small it is quite huge
electronically (112 electrons spanning a Hilbert space of 101
molecular orbitals and a Fock space of 24 197 many-body
configurations) and has a strong open-shell character (strong
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static correlations, which allow for spin-charge separation in
space, i.e., static geometry, and time, i.e., dynamics). Thus
high-level size-consistent quantum-chemistry methods, such
as coupled-cluster methods [41], are indispensable (as seen
from the following comparison with a biquadratic model
Hamiltonian, of which all the effects are intrinsically included
in our calculations).

In most molecular magnets the localization and the direc-
tion the magnetization can be coherently altered with laser
pulses, and one can therefore use the latter ones to develop
nanologic elements. In the quest for all-spin based logic
elements, i.e., without the need for the active participation
of a magnetic field as information carrier, a bare planar
rhombic Ni4 cluster is a promising candidate because of the
disparate interatomic distances which facilitate the dedicated
localization of the spins on each of the four magnetic centers.
Tetranuclear Ni clusters and complexes have been a subject
of investigation for the last decade. Kirchner et al. showed
that the antisymmetric exchange interaction is a result of the
mixing of the pseudoangular momentum and the ground state
spin multiplet in Ni4 clusters [42]. The electronic and magnetic
properties, and the stability of different Ni4 clusters, have also
been investigated in the presence of other impurity atoms [43].

The rest of the paper is organized as follows. In Sec. II our
theoretical results regarding the structure and its electronic-
level scheme are presented (Sec. II A contains the full ab initio
results and Sec. II B the results of a spin Hamiltonian).
Section III contains our three suggested ultrafast-dynamics
results, namely the elementary processes spin-bifurcation and
spin-merging (Sec. III A), the all-spin OR gate (Sec. III B),
and the which-path-interference effect (Sec. III C). Section
IV summarizes our findings. Finally, the Appendices pro-
vide some additional information on the spin Hamiltonians
regarding the formula for the biquadratic exchange interaction
(Appendix A), some details of the diagonalization process
(Appendix B), and the results for two electrons per site
(Appendix C).

II. THEORY

Our system of choice is Ni4 in planar geometry. Generally,
depending on the immediate local environment, Ni4 can exist
as a chain [44], a planar [45,46], or of course a tetrahedral
object [42]. In order to exploit femtosecond spin dynamics to
devise magnetic nanologic elements, it is important to consider
not only the geometry of a bare cluster in the vacuum but a
physical situation suitable for technological applications. We
accomplish this by assuming the most probable conformation
of the cluster when deposited on a surface, namely a two-
dimensional one. Surface deposition is a way of technically
tackling the challenge of the molecular orientation and
geometrical stability at room temperature, present in the gas
phase. From a methodological point of view before quantum
mechanically describing the entirety of such systems (i.e.,
including surface, geometry-stabilizing ligands, and possible
other air-borne adsorbents), we are interested in the proof of
principles for our suggested functionalities. Therefore, in our
model system we include the minimum ingredients necessary,
namely a flat molecule and spin-orbit coupling for the spin
dynamics, hence the choice of a bare planar structure. We

FIG. 1. Optimized structure of Ni4 at the Hartree-Fock level, for
which a planar geometry is imposed (see text).

treat our system in two different ways: (i) fully quantum
mechanically (which we later use for our suggested ultrafast
spin dynamics), in order to accurately include static and
dynamic correlational effects in an ab initio way, and (ii) with
the help of a spin Hamiltonian for comparison reasons.

A. Ab initio results

Our computations are performed in four steps:
(i) Structural optimization (Fig. 1) at the Hartree-Fock (HF)

level with the Los Alamos basis set with scalar relativistic
effective core potentials (Ni[8s5p5d/3s3p2d]) [47]. In the op-
timization process we restrain ourselves to a planar geometry
to mimic a surface deposited cluster.

(ii) The correlated ground and 70 many-body excited
electronic states comprised of 10 singlets, 30 triplets, and
30 quintets (Fig. 2, left panel, and Table I) are computed
with the symmetry-adapted cluster configuration interaction
(SAC-CI) [48] method as implemented in GAUSSIAN09 [49],
which includes both static and dynamic correlations [50]. The
ground state is a triplet state. Table I also gives the charge
and the spin density of each state, as calculated by a gross
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FIG. 2. Levels of the optimized Ni4 as calculated with the SAC-CI
method for states up to 4 eV. Left: without spin-orbit coupling, triplet
states are given with the solid black lines, singlet states with the red
dashed lines, and quintet states with dotted-dashed green lines. Right:
after the inclusion of spin orbit coupling and restricting only to the
singlet and the triplet channel (there can be no distinction between
singlets and triplets after spin-orbit coupling).
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TABLE I. Multiplicities, energies, charge and spin densities of all calculated electronic states of Ni4 before the inclusion of spin-orbit
coupling, as calculated with the SAC-CI method (see also Fig. 2, left panel). The states are organized in multiplicites first and in ascending
energy then. The ground state is a triplet state. The spin density refers to the substate with the highest positive Ŝz eigenvalue.

energy Charge density Spin density

Multiplicity (eV) Ni1 Ni2 Ni3 Ni4 Ni1 Ni2 Ni3 Ni4

1 1.915 0.021 0.025 0.108 −0.154 0.000 0.000 0.000 0.000
1 2.179 −0.065 0.137 0.252 −0.324 0.000 0.000 0.000 0.000
1 2.418 −0.156 0.426 0.023 −0.292 0.000 0.000 0.000 0.000
1 2.548 0.036 −0.131 0.202 −0.108 0.000 0.000 0.000 0.000
1 2.696 −0.280 0.090 0.262 −0.072 0.000 0.000 0.000 0.000
1 3.124 0.219 −0.029 0.128 −0.318 0.000 0.000 0.000 0.000
1 3.175 −0.530 0.007 0.311 0.212 0.000 0.000 0.000 0.000
1 3.434 −0.215 −0.149 0.401 −0.037 0.000 0.000 0.000 0.000
1 3.486 0.125 −0.116 0.334 −0.343 0.000 0.000 0.000 0.000
1 3.633 −0.265 0.168 0.292 −0.194 0.000 0.000 0.000 0.000
3 0.000 0.016 0.076 0.125 −0.217 1.736 0.096 0.120 0.048
3 0.097 0.034 0.072 0.126 −0.232 1.765 0.077 0.110 0.047
3 0.194 −0.052 0.104 −0.000 −0.052 0.005 0.069 0.207 1.719
3 0.254 −0.069 0.062 0.027 −0.020 0.031 0.077 0.179 1.713
3 0.519 −0.055 0.169 0.175 −0.289 0.037 0.321 0.448 1.194
3 0.778 −0.092 0.113 0.329 −0.350 0.111 0.079 1.487 0.324
3 0.921 0.050 0.147 0.067 −0.263 1.403 0.332 0.186 0.079
3 1.022 −0.044 0.141 0.292 −0.389 0.160 0.039 1.552 0.249
3 1.036 −0.176 0.468 −0.025 −0.267 0.155 1.511 0.230 0.104
3 1.204 −0.144 0.271 0.117 −0.244 0.107 1.510 0.208 0.176
3 1.262 −0.429 0.289 0.308 −0.167 1.015 0.468 0.443 0.074
3 1.332 −0.174 0.365 0.118 −0.309 0.518 1.235 0.130 0.117
3 1.832 −0.084 0.178 0.248 −0.342 0.081 0.075 1.219 0.625
3 2.072 −0.025 0.077 −0.108 0.056 −0.017 0.086 0.521 1.410
3 2.254 −0.051 0.181 0.068 −0.197 0.055 0.621 0.423 0.902
3 2.364 −0.055 0.004 0.230 −0.179 0.567 0.805 0.244 0.384
3 2.702 0.020 −0.027 0.191 −0.184 0.241 0.533 0.355 0.871
3 2.842 −0.386 0.119 0.157 0.111 0.465 0.365 0.467 0.703
3 3.274 −0.068 0.046 0.077 −0.055 0.279 0.402 0.599 0.721
3 3.349 −0.050 0.063 0.266 −0.279 0.247 0.788 0.482 0.483
5 1.846 0.267 0.045 −0.066 −0.246 0.333 0.901 1.358 1.407
5 2.163 −0.215 0.334 0.133 −0.253 0.818 0.739 1.093 1.350
5 2.544 −0.239 0.161 0.188 −0.110 0.955 0.817 0.720 1.508
5 2.791 0.325 0.066 −0.191 −0.201 0.370 1.083 1.090 1.457
5 2.990 0.346 −0.097 0.302 −0.550 0.854 1.397 0.946 0.802
5 3.331 −0.101 0.280 0.134 −0.313 0.756 0.532 1.039 1.672
5 3.519 −0.284 0.273 0.133 −0.122 0.780 0.710 0.870 1.640
5 4.056 0.166 −0.113 −0.111 0.058 0.495 1.010 1.335 1.160
5 4.202 0.175 −0.187 0.167 −0.155 0.519 1.175 0.979 1.327
5 4.282 −0.140 0.262 0.340 −0.462 0.954 0.915 0.793 1.339
5 4.410 −0.223 0.222 0.137 −0.136 1.055 0.864 0.861 1.220
5 4.416 −0.248 0.265 0.153 −0.170 1.118 0.903 0.893 1.086
5 4.555 0.043 0.203 0.230 −0.476 0.950 0.911 1.003 1.136
5 4.595 −0.269 0.243 0.380 −0.354 1.215 0.958 0.745 1.082
5 4.694 −0.322 0.181 0.266 −0.125 1.004 0.905 0.730 1.361
5 4.901 0.261 −0.048 −0.103 −0.110 0.345 0.962 1.391 1.302
5 5.074 −0.389 0.032 0.301 0.055 1.126 1.102 0.904 0.868
5 5.231 −0.091 0.288 0.150 −0.347 0.748 0.870 0.900 1.481
5 5.363 −0.206 −0.100 0.286 0.020 0.999 1.140 0.876 0.986
5 5.561 −0.328 0.197 0.388 −0.257 1.310 0.852 0.713 1.126
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population analysis of the reduced one-electron density matrix,
in which the Slater-Condon rules are taken into account [51].

(iii) Perturbative inclusion of spin-orbit coupling (SOC) and
a static external magnetic field, which defines the magnetic
easy axis (Zeeman splitting). The latter is necessary both for
physical and numerical reasons.

ĤSOC =
n∑

i=1

Z
eff

a

2c2R3
i

L̂ · Ŝ +
n∑

i=1

μLL̂·Bstat +
n∑

i=1

μS Ŝ·Bstat,

(1)

where Ŝ and L̂ are the spin orbital angular momentum opera-
tors, respectively. μL and μS are their respective gyromagnetic
ratios. Z

eff

a denote the relativistic effective nuclear charges
which account for the two-electron contributions to the SOC.
Bstat is the static external magnetic field, and c denotes the
speed of light.

In the absence of a Zeeman splitting the spin-up and
spin-down states are degenerate, and therefore any linear
combination of them is an eigenstate of the total Hamiltonian,
thus rendering the distinction between majority and minority
spins arbitrary. This problem persists also after the inclusion
of spin-orbit coupling (in which case, of course, the role of
the spin Ŝ is taken over by the total angular momentum Ĵ).
Although analytically an infinitesimal magnetic field would
suffice, numerically a non-negligible magnitude is needed
(however, below the Paschen-Back effect limit).

Although strictly speaking, after the inclusion of spin-orbit
coupling the wave functions are no longer eigenstates of the
spin operator Ŝ, it is still possible to calculate the expectation
value 〈Ŝ〉. If the electronic states are energetically isolated (that
is they do not strongly interact with other electronic states),
then the expectation value of the spin for these states is still
close to the value without the inclusion of spin-orbit coupling.
Thus we still loosely refer to them as “singlets” and “triplets.”

(iv) Propagation of the wave functions under the influence
of a suitably tailored laser pulse. The laser parameters are
optimized with a dedicated genetic algorithm [25,52]. This
heuristically searches and finds the best electronic population
transfer paths within the Fock space (i.e., the many-body
Hilbert space) spanned by many-body states found with our
quantum chemical calculations. Although we do not impose
any restriction on the order of the transitions (one-photon,
two-photon, etc.) it turns out that in most relevant cases due to
the selection rules the genetic algorithm suggests a � process
rather than direct transitions, especially whenever a spin flip
is involved [53–55]. In fact there are cases in which even
four-photon processes are necessary [22].

Numerically the propagation of the wave function under
the influence of a sech2-shaped laser pulse is performed in the
interaction picture. The time-dependent Hamiltonian used is

Ĥ ′(t) = D̂ · Elaser(t) + μS Ŝ · Blaser(t) + μLL̂ · Blaser(t), (2)

where Elaser(t) and Blaser(t) are the electric and magnetic
fields of the laser pulse, respectively, and D̂ the electric-
dipole-transition operator. Within the interaction picture the
many-body wave function can be written as

�(t) =
∑

n

cn(t)e−iEnt/h̄�n (3)

in which the coefficients cn(t) are given by the set of differential
equations

∂cn(t)

∂t
= − i

h̄

∑
k

〈�n|Ĥ ′(t)|�k〉ck(t)e−i(Ek−En)t/h̄ (4)

which are solved numerically with an embedded fifth-order
Runge-Kutta method and implementing the Cash-Karp adap-
tive step control [56].

It is interesting to note that the structural anisotropy of the
cluster in combination with spin-orbit coupling is enough to
yield spin anisotropy (and hence partial or full spin localiza-
tion) despite the fact that the spin-orbit coupling term itself
is isotropic. The reason is that the orbital angular momentum
strongly depends on the symmetry of the whole molecule [57].
Furthermore, due to the correlations in the cluster, the wave
function of each electronic state is a superposition of more
than one configuration, and therefore the spin density of each
atom is not a multiple of 1/2 Bohr magnetons. Here the spins
are treated fully quantum mechanically and are calculated as
the expectation values of the spin operators.

B. Spin Hamiltonian

Although for our logic functionality we exclusively use
the full quantum mechanical calculations, in order to better
understand the level scheme of our system Ni4 we also
perform a series of calculations using the augmented bilinear-
biquadratic Heisenberg-Dirac-van-Vleck model Hamiltonian

Ĥ = −
∑
m>n

JmnŜm · Ŝn +
∑
m>n

λmn(Ŝm · Ŝn)2

+
∑
m>n

Dmn · (Ŝm × Ŝn) + γ B ·
∑
m

Ŝm, (5)

where Ŝm is the spin operator acting on the mth electron of our
system (i.e., the spin of the mth position), Jmn and λmn are the
phenomenological linear and quadratic exchange interactions
between electrons m and n, respectively. The second summand
describes the crystal shape anisotropy (similar to the zero-field
splitting of spin-orbit coupling), while the third summand
is the Dzyaloshinskii-Moriya interaction, which arises from
the combination of superexchange interaction and spin-orbit
coupling [58]. The pseudovectors Dmn phenomenologically
describe the antisymmetric part of the exchange interaction.
All Dmn’s point perpendicular to the molecular plane and
are nonzero only when the interacting electrons are along
one side of the quadrilateral (almost rhombic) molecule. A
symmetry-consistent way of mediating such an interaction
could be through the superexchange interaction with an oxygen
placed at the center [58]. B is an external magnetic field and γ

the gyromagnetic ratio.
Our model wave function consists of four localized spins

(each on every Ni atom, see Fig. 1). The basis is

ψ1 = |↑↑↑↑〉
ψ2 = |↑↑↑↓〉

... (6)

ψ16 = |↓↓↓↓〉,
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TABLE II. Multiplicities, energies, and Dzyaloshinksii-Moriya
energy splittings (up to second order) of the states of the spin
Hamiltonian (5) for a perfect square with one electron per site. J1

and J2 are the interactions along the sides and the diagonals of the
square, respectively. If biquadratic terms are considered as well, then
J

(eff)
1 = J1 − 1

2 λ1 and J
(eff)
2 = J2 − 1

2 λ2 must substitute for J1 and J2

(see text). The numbers in the first column refer to the multiplicities
before the inclusion of the Dzyaloshinksii-Moriya interaction (since
after its inclusion the spins are not good quantum numbers anymore).
The degeneracies refer to the energies after the inclusion of the
interaction. The states are presented in energetic order (from higher
to lower), assuming that ξ and Jm’s are positive, and J1 is slightly
larger than J2 (due to the different interatomic distances).

Exchange Dzyaloshinksii-Moriya
Multiplicity energy Degeneracy energy

1 J1 + 2J2 1 − 1
2(J1−2J2) ξ

2

1 3J1 1 [ 1
6J1

+ 2
3(2J1−J2) ]ξ 2

3 J1 + J2 2 − J2
(2J1−J2)(J1+J2) ξ

2

1 + 3
4 ξ − J2

4
(
J 2

1 −J 2
2

) ξ 2

3 J1 + J2 2 − 3
4 ξ − J2

4(J 2
1 −J 2

2 ) ξ
2

1 0

3 2J1 2 [ 1
8J1

+ 1
4(J1−J2) ]ξ 2

1 1
2(J1−2J2) ξ

2

5 5 2 − 3
6

J1−J2
J1(J1+J2) ξ

2

2 − 3
8

J1−J2
J1(J1+J2) ξ

2

1 0

where each arrow represents an up or down electron. The
bilinear term of Eq. (5) can be easily calculated analytically
for the case of a perfect square. By setting J1 ≡ J12 = J24 =
J34 = J13 and J2 ≡ J14 = J23 one gets

Ĥ = −J1(Ŝ1 · Ŝ2 + Ŝ2 · Ŝ4 + Ŝ3 · Ŝ4 + Ŝ1 · Ŝ3)

− J2(Ŝ1 · Ŝ4 + Ŝ2 · Ŝ3) (7)

The numbering is according to Fig. 1. By coupling Ŝ1 and Ŝ4

to Ŝa , Ŝ2 and Ŝ3 to Ŝb, and then Ŝa and Ŝb to the total Ŝ, the
above equation becomes

Ĥ = −J1Ŝa · Ŝb − J2
(
Ŝ1 · Ŝ4 + Ŝ2 · Ŝ3

)

= −J1

2

(
S2 − S2

a − S2
b

) − J2

2

(
S2

a + S2
b − 3

)
, (8)

where we used (Ŝm + Ŝn)
2 = S2

m + S2
n + 2Ŝm · Ŝn for m �= n

and S2
m = S2

n = 3
4 for one electron per site.

For one electron per site one can get rid of the biquadratic
term by using an effective bilinear term J (eff)

mn = Jmn − 1
2λmn

(see also Appendix A and Ref. [59]). This reduction is possible
due to the specific dimensionality (three) of the SU(2) Lie
group. All in all, as it turns out, the biquadratic term does
not change the form of the solutions (see first two columns of
Table II).

For positive Jij ’s, Eq. (5) yields a quintet ground state, as
well as three triplet and two singlet excited states. In the case of
a square planar structure (i.e., symmetry point group C4v) two
of the triplets are degenerate. This degeneracy is lifted if the

diagonal couplings are not equal (J14 �= J23), as would be the
case for a rhombic molecule. These results differ substantially
from the ab initio ones, which yield a triplet ground state. The
reason is that in the latter the spatial part of the wave function
also contributes to the energies of the electronic states and, due
to the specific local geometry, the unpaired d electrons are no
longer degenerate.

An interesting fact is that the composition of the triplets is
not the same. While in the nondegenerate case both diagonal
pairs are triplets (i.e., S2

a = S2
b = 2), in the two degenerate

ones the one is a singlet and the other a triplet (i.e., S2
a = 0 and

S2
b = 2, or S2

a = 2 and S2
b = 0). This means that in the first case

the spin density is equally distributed among all four atoms,
while in the second one the spin density is distributed only
among two diagonally lying atoms. As it turns out in the real
quantum-chemistry calculations, those states are necessary for
the implementation of spin logic. The also necessary states, for
which the spin is localized on only one Ni atom do not exist,
unless the symmetry is further broken (going to a rhombic or
kitelike molecule is not enough).

Once we add the Dzyaloshinkii-Moriya term it is no longer
possible to diagonalize Eq. (5) analytically but only perturba-
tively (Table II, last column). The quintet subspace splits in
2 ⊕ 2 ⊕ 1 blocks, and the triplets in 2 ⊕ 1 blocks, as expected
due to the Kramers’ degeneracy theorem. It is interesting
that also the degeneracy between the two energetically lower
triplets gets lifted, since they interact with each other. In
fact, this is the only first-order Dzyaloshinskii-Moriya energy
correction (see Appendix B for details). The reader should bear
in mind, however, that this interaction is intrinsically different
from the pure spin-orbit interaction, in that it does not change
the dimension of the total Hilbert space like the latter one does
(which multiplies the dimension of the spin degeneracy with
the dimension of the orbital-angular-momentum degeneracy).

Introducing geometry distortions also lifts the triplet-triplet
degeneracy. The energy difference between the lowest triplet
and the lowest singlet (which is connected to the exchange
interaction) approaches 2.0 eV (the value computed with
the full ab initio SAC-CI method) for Jij ≈ 0.13 eV. A simple
approach to derive the exchange integrals is to calculate the
energies of the lowest singlet and the lowest triplet state of
Ni2 with the interatomic distances of Fig. 1, resulting in the
following matrix (all values are in eV)

J =

⎛
⎜⎝

0.00000 0.00570 0.00830 0.00000
0.00570 0.00000 0.01197 0.01197
0.00830 0.01197 0.00000 0.01140
0.00000 0.01197 0.01140 0.00000

⎞
⎟⎠. (9)

These values, however, deviate substantially from the empir-
ical value needed to even resemble the actual level scheme
(the values are in eV). The values needed are approximately
J1 = 1.9 eV along the side and J2 = 2.25 eV diagonally. As a
comparison we also mention the values of 0.99 eV for onsite
exchange interaction in ferromagnetic Ni [60] and 0.3 eV for
the exchange-split energy-band dispersion near the L edge
[61]. This discrepancy is attributed to the fact that the spin
Hamiltonian does not take into account the chemical bonds
built by the spatial part of the wave functions and thus assumes
faulty orbital degeneracies [62]. Another reason is the absence
of correlations (both static and dynamic).
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FIG. 3. Level scheme of the model Hamiltonian as a function of
an external magnetic field. There is one quintet (solid black lines),
three triplets (dashed red lines), and two singlets (dashed green lines).
(a) Only isotropic bilinear and biquadratic exchange interaction terms,
(b) isotropic bilinear and biquadratic exchange plus Dzyaloshinksii-
Moriya interaction terms, (c) anisotropic bilinear, biquadratic, and
Dzyaloshinskii-Moriya terms. The symmetry reduction (and hence
the level splitting) of the anisotropic bilinear and the Dzyaloshinksii-
Moriya term are similar in nature but significantly differ in magnitude.

A symmetry-conforming zero-field splitting can also be
achieved by introducing an anisotropic exchange interaction
J

(x)
ij = J

(y)
ij �= J

(z)
ij [compare Figs. 3(b) and 3(c)]. Then the first

summand of Eq. (5) becomes −∑
i>j

k=x,y,z
J

(k)
ij S

(k)
i S

(k)
j , which at

first glance yields a splitting similar to the Dzyaloshinskii-
Moriya. There are, however, two substantial differences: (a) the
anisotropic exchange, being a first-order effect yields a much
larger splitting, and (b) it has a predefined spatial direction,
in other words the magnitude of the splitting depends on the
angle of the applied B field (not shown here). This allows for
additional control of the magnetic properties of the system
through the external magnetic field and the derivation of
magnetic logic operations [21].

If we compare these results with the ones of the full ab initio
calculations, we see that there are substantial differences,
which cannot be bridged no matter what exchange parameters
are chosen. The one is the number of states (16 for the model
Hamiltonian vs 40 of the SAC-CI method). The second is that
the model Hamiltonian cannot yield correct energies, because
(i) it does not take electronic correlations into account, and (ii)
it assumes that the exchange integrals have the same values
for all electronic states regardless of their spatial composition,

something that is not the case as has been shown both
theoretically [63] and experimentally [64].

III. QUANTUM LOGIC

All the results in this section are based on the ab initio
calculations and not on the model Hamiltonian. Since we are
interested in states which exhibit strong spin localization, in
the following we focus on the triplets, since the singlets have no
spin density, while in the quintets, at least for the energetically
lower lying ones, the spin density is always equally divided
among all atoms. The reason is that the higher the multiplicity,
the stronger the tendency of the electrons to avoid each other
is (because high multiplicity implies electrons with parallel
spin). The basic block of our magnetic logic are laser-induced
� processes, in which a suitable laser pulse either transfers the
spin density from one atom to another or it flips it (spin-up to
spin-down and vice versa). [54,55,65,66]. The reader should
keep in mind that here the notions “spin localization” and
“spin orientation” do not refer to classical spins but to the spin
density localization and the relative magnitudes of the quantum
mechanical spin operators 〈Ŝx〉, 〈Ŝy〉, and 〈Ŝz〉, respectively.

A. Elementary processes

As it has already been shown before, logic operations must
at least include both spin flip and spin transfer between the
different Ni atoms [21,24,30,35]. The local symmetry of the
magnetic centers differs enough to allow for spin localization
and individual behavior but is similar enough so that they
exhibit combined spin dynamics [27]. For spin flip the initial
and final states are usually substates of the same triplet and thus
quasidegenerate. Being localized on the same atom, however,
they cannot be used for spin transfer. The obligatory choice of
substates of different triplets renders the relevant � processes
nontrivial [31,55]. Furthermore, an intermediate excited state
which is optically addressable from both triplet states is
needed. Intermediate states are generally spin mixed states
(although strictly mathematically speaking for spin transfer
this needs not be the case). The spin mixing mechanism is
SOC and the external B field. The degree of spin localization
is calculated with Mulliken population analysis of the reduced
one-electron density matrix. Table III summarizes the energies,
spin angular momentum components, as well as the spin
localization of the states considered here.

TABLE III. Energies and expectation values of the spin angular momentum components for the spin manipulation scenarios in Ni4 for the
relevant many-body states with spin-orbit coupling included.

Spin density

State E (eV) 〈Sx〉 〈Sy〉 〈Sz〉 Ni1 Ni2 Ni3 Ni4 Localization Functionality

|14〉 0.79 0.33 −0.00 −0.41 0.032 0.307 0.685 2.541 Ni4 transfer
|15〉 0.79 0.33 0.05 0.42 0.033 0.311 0.654 2.724 Ni4 merging
|16〉 0.98 −0.39 −0.00 0.41 0.184 0.321 2.168 0.635 Ni3 transfer
|23〉 1.66 0.38 0.05 −0.30 0.263 1.387 1.623 0.481 N2i+Ni3 bifurcation/merging
|25〉 1.37 −0.44 0.01 −0.24 1.248 1.119 0.999 0.283 Ni1 bifurcation
|51〉 2.34 −0.76 0.00 −0.211 0.895 0.282 0.083 0.322 Ni1 transfer
|54〉 2.35 −0.76 0.00 −0.04 0.575 0.745 0.304 0.473 Ni2 transfer
|58〉 2.68 0.33 0.00 −0.71 0.317 0.800 0.514 0.289 Ni2 transfer
|61〉 2.82 −0.01 0.00 −0.82 0.562 0.385 0.491 1.088 Ni4 transfer
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FIG. 4. Schematic showing a series of spin transfer scenarios
between the magnetic centers along with the transition time for the
processes. The red and the green arrows indicate the initial and the
final states, respectively. The arrows do not refer to classical spins;
they merely visualize the spin-density localization of the quantum
mechanical spin operators 〈Ŝx〉, 〈Ŝy〉, and 〈Ŝz〉.

Once the spin-density localization is established, three
direct spin-transfer scenarios (Ni1 → Ni2, Ni2 → Ni4, and
Ni4 → Ni3) are obtained (Fig. 4). For brevity we only discuss
the Ni1 → Ni2 transfer process where |51〉 and |54〉 are
the initial and final states, with energies E|51〉 = 2.342 eV
and E|54〉 = 2.354 eV, respectively. There are two prominent
intermediate states, the ground state |1〉 and state |56〉 with
energy E|56〉 = 2.356 eV. The magnitude of the external B
field is 2.35 T and is directed along the x axis of the
molecule [Fig. 1(a)]. Optimization of the linearly polarized
pulse which drives the transfer yields: θ = 216.422◦, φ =
264.433◦, ξ = 90.088◦, I = 2.352 J/(sm2), FWHM = 109
fs, and Eω = 2.397 eV (Table IV). The details of the laser
parameters can be found elsewhere [26]. This spin transfer
finishes within 100 fs and is five times faster than the other
spin transfer scenarios in the molecule. Spin flips on each of
the four centers were also found.

In the present study we present two functional intramolec-
ular effects namely spin bifurcation and spin merging, which
require a minimum of four active centers. For brevity we
only discuss the dynamics for the former (Fig. 5) and list
the optimized laser parameters for the latter in Table IV.

In Fig. 5(a) a linearly polarized laser pulse induces a spin
transfer from Ni1 (|25〉) to Ni2 and Ni3 (|23〉). Almost 75% of
the total population can be transferred to |23〉 (final state), 15%
of the population remains in |25〉. The rest mainly remains
in states |26〉 and |27〉 (the prominent intermediate states
of the transfer process). An in-plane, static external B field
of 4.70 Tesla is applied (θ = 90◦ and φ = 30◦ in spherical
coordinates). The change in the expectation values of the

components of spin angular momentum is shown in Fig. 5(b),
and the optimized laser parameters are listed in Table IV.
The energy difference �E|25〉→|23〉 = 0.173 eV is off-resonant
with the laser pulse (0.169 eV), making the population transfer
highly oscillatory. A sketch of the spin bifurcation scenario is
shown in Fig. 5(d).

Spin merging is the reverse of spin bifurcation. In this case,
with proper choice of initial (|23〉) and final (|15〉) states the
spins localized on Ni2 and Ni3 are transferred to Ni4 when the
system is driven by a laser pulse. The energies and expectation
values of the involved states are summarized in Table III; the
laser pulse is given in Table IV.

B. All-spin OR gate

Utilizing the spin-transfer, spin-bifurcation, and spin-
merging scenarios we construct an all-spin OR gate. An active
center has the bit value 1 if it carries at least 50% of the total
spin density and 0 otherwise. Ni2 and Ni3 carry the input bits
while Ni4 is the output bit. Ni1 hosts an auxiliary (storage)
bit which, without itself taking part in the logic operation,
accommodates the spin when both input and output bits are 0 so
that the total spin remains conserved (since we are dealing with
reversible optical processes we can only construct entropy-
conserving, Toffoli-like gates [67]). Figure 6 and Table IV
summarize the four physical situations encoding the logical
operations of the OR gate. These spin-transfer scenarios are
necessary and sufficient for establishing a complete Boolean
logic and thus enabling digital information processing in future
optical computers.

In Fig. 6(a), the spin is localized on Ni1 in the state |51〉
(Table III). Since no spins are localized on Ni2 and Ni3, the
inputs bits A and B are 0 (Table V). A laser pulse can never
directly transfer the spin to Ni4, thus the output bit Q at Ni4
remains 0.

In Fig. 6(b) spin is localized on Ni2. Thus we assign
values of A=1 and B=0, respectively, to the initial state
(Table V). A linearly polarized laser pulse transfers the spin to
Ni4 (Table III) which then carries the output bit value Q=1.
Similarly, in Fig. 6(c) the spin is transferred from Ni3 → Ni4.
The respective logical values are A=0 and B=1 before, and
the output Q=1 at Ni4 after the pulse (Table V). This is the
opposite spin transfer process to the scenario shown in Fig. 4.

Lastly, Fig. 6(d) represents the spin-merging process. From
Table III, we see that the spin of state |23〉 is equidistributed
between Ni2 and Ni3. Therefore, we assign the value 1 to both
inputs A and B. A laser pulse can now transfer the spin to Ni4
yielding the output Q=1. Thus, the complete OR truth table
is established. We emphasize again, that here only spins carry

TABLE IV. The optimized laser parameters for the spin manipulation scenarios in Ni4.

States θ φ ξ Intensity FWHM Energy Localization Process
|i〉 → |f 〉 (◦) (◦) (◦) (Js−1m−2) (fs) (eV)

|51〉 → |54〉 216.42 263.43 90.09 2.35 109 2.39 Ni1 → Ni2 spin-transfer
|58〉 → |61〉 0.00 64.05 25.69 0.59 300 2.67 Ni2 → Ni4 spin-transfer
|14〉 → |16〉 22.52 219.59 252.67 0.22 153 1.76 Ni4 → Ni3 spin-transfer
|25〉 → |23〉 104.52 212.90 52.43 0.57 53 0.17 Ni1 → Ni2+Ni3 spin-bifurcation
|23〉 → |15〉 77.77 351.55 73.55 0.15 63 0.37 Ni+Ni3 → Ni4 spin-merging
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FIG. 5. Spin bifurcation scenario in Ni4. (a) Population transfer
from the initial state |25〉 (solid black) to the final state |23〉 (dashed
red). (b) The time-resolved spin expectation values. (c) Envelope
of the optimized laser pulse. (d) Schematic of the spin-bifurcation
scenario. The arrows do not refer to classical spins; they merely
visualize the spin density localization of the quantum mechanical
spin operators 〈Ŝx〉, 〈Ŝy〉, and 〈Ŝz〉.

information (contrary to previous work where the external
magnetic field also coded an input bit [21]). This forms the
basis for classical computation.

A minor yet important detail is that the lifetime of the
relevant states must be longer than the gate operation time
[21]. According to the DiVincenzo critieria a fault-tolerant
error correction is possible if the decoherence time is four
orders of magnitude longer than the clock time [68]. In this
respect, molecular systems are clearly in advantage due to
the absence of conformational changes [69]. As an example,
we mention the Cr7Ni and Cr7Mn heterometallic wheels, the
experimentally measured spin relaxation times of which are of

FIG. 6. Schematic of the molecular OR gate. Logic values A and
B are the inputs at Ni2 and Ni3 and Q=A ∪ B is the logical output at
Ni4. The arrows do not refer to classical spins; they merely visualize
the spin density localization of the quantum mechanical spin operators
〈Ŝx〉, 〈Ŝy〉, and 〈Ŝz〉.

TABLE V. Truth table for the proposed molecular OR gate.

Laser Ni2 Ni3 Ni4 fidelity Figure
A B Q=A ∪ B

l1 0 0 0 Fig. 6(a)
l2 1 0 1 97% Fig. 6(b)
l3 0 1 1 60% Fig. 6(c)
l4 1 1 1 84% Fig. 6(d)

the order of microseconds [70]. Theoretical studies show that
the longitudinal relaxation time T1 and transverse relaxation
time T2 are calculated to be about 10 times slower if they
are mediated through phonons than through laser pulses in a
Ni3Na2 cluster [35], and some of the energetically lower-lying
electronic states have about two orders of magnitude longer
lifetimes than our � processes, because the relaxation relevant
transitions are either Laporte- or spin-forbidden [30].

TABLE VI. Multiplicities, degeneracies, and energies of the
states of the spin Hamiltonian (5) for a perfect square with two
electrons per site (for a comparison with other geometries see also
Ref. [72]). J0 is the intrasite interaction, J1 and J2 are the interactions
along the sides and the diagonals of the square, respectively. If
biquadratic terms are considered as well, then J

(eff)
0 = J0 − 1

2 λ0,

J
(eff)
1 = J1 − 1

2 λ1, and J
(eff)
2 = J2 − 1

2 λ2 must substitute for J0, J1,
and J2 (see text). The states are order first in ascending multiplicities
and then in ascending energies assuming J0 > J1 > J2.

Multiplicity Degeneracy Energy

1 1 10J1

1 1 6J1 − 4J2

1 1 4J1 − 6J2

1 4 J0 + 6J1 − 3J2

1 2 2J0 + 4J1 − 4J2

1 4 2J0 + 6J1 − 2J2

1 1 4J0 + 4J1 − 2J2

3 1 9J1

3 2 7J1 − 2J2

3 1 5J1 − 4J2

3 2 4J1 − 5J2

3 4 J0 + 7J1 − J2

3 4 J0 + 5J1 − 3J2

3 4 J0 + 4J1 − 4J2

3 2 2J0 + 4J1 − 3J2

3 4 2J0 + 5J1 − 2J2

3 4 3J0 + 4J1 − 2J2

5 1 7J1

5 2 5J1 − 2J2

5 1 3J1 − 4J2

5 2 4J1 − 3J2

5 4 J0 + 5J1 − J2

5 4 J0 + 3J1 − 3J2

5 2 2J0 + 4J1 − J2

5 4 2J0 + 3J1 − 2J2

7 1 4J1

7 2 2J1 − 2J2

7 4 J0 + 2J1 − J2

9 1 0
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C. Which-path interference

The combination of bifurcation and merging also gives rise
to one additional effect, which can be exploited for quantum
computations, namely the which-path-interference effect, in
which the path traveled by the spin can be traced back owing
to its phase. As an example we consider here the spin transfer
from Ni1 to Ni4, following two different paths: (a) via one
single atom Ni1 → Ni2 → Ni4, and (b) via two atoms Ni1
→ Ni2+Ni3 → Ni4 (bifurcation and merging). We look at
the phase of the final state after the two laser pulses, which
drive the spin along the two different paths. For path (a), i.e.,
|51〉 → |54〉 → |61〉 with fidelities 83.3% and 91.3% for the
two partial transfers, the spin of the final state gets phase shifted
by about π

4 with respect to the initial state. For path (b), i.e.,
|25〉 → |23〉 → |15〉 with fidelities 63.4% and 77.2% for the
bifurcation and the merging, respectively, the phase shift of
the final state is 3π

2 . The procedure is analogous to Young’s
two-slit type interference experiments where the relationship
between fringe visibility (phase essentially) and which-path
information can be traced back depending on the path traversed
by the photon [71].

IV. CONCLUSIONS

Summarizing our findings on Ni4 we find: (i) High-level
ab initio calculation indicates a quasirhombic structure.
(ii) Besides laser-induced local spin flip and spin transfer
between adjacent atoms, the four magnetic atoms give rise
to two functionalities, i.e., spin-bifurcation and spin-merging.
(iii) We were able to construct a pure-spin OR gate,
which means that four-center structures are sufficient
for ultrafast, magnetic, classical-logic elements. And (iv)
by using the different spin-transfer paths, we detect a
which-path-intereference effect, in which the total phase shift
of the final spin state reveals the exact path followed. The
present study serves as a proof-of-principles of the logic
functionalities arising from structures with four magnetic
centers and can help pave the way towards the design of
nanospintronics applications.
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APPENDIX A: BIQUADRATIC EXCHANGE INTERACTION

The biquadratic exchange interaction between two electrons m and n is proportional to

(
Ŝm · Ŝn

)2 = (
Ŝ(x)

m Ŝ(x)
n + Ŝ(y)

m Ŝ(y)
n + Ŝ(z)

m Ŝ(z)
n

)2

= (
Ŝ(x)

m

)2(
Ŝ(x)

n

)2 + (
Ŝ(y)

m

)2(
Ŝ(y)

n

)2 + (
Ŝ(z)

m

)2(
Ŝ(z)

n

)2 + Ŝ(x)
m Ŝ(x)

n Ŝ(y)
m Ŝ(y)

n + Ŝ(x)
m Ŝ(x)

n Ŝ(z)
m Ŝ(z)

n

+ Ŝ(y)
m Ŝ(y)

n Ŝ(x)
m Ŝ(x)

n + Ŝ(y)
m Ŝ(y)

n Ŝ(z)
m Ŝ(z)

n + Ŝ(z)
m Ŝ(z)

n Ŝ(x)
m Ŝ(x)

n + Ŝ(z)
m Ŝ(z)

n Ŝ(y)
m Ŝ(y)

n

= 3
1

16
Î − 1

4

(
Ŝ(z)

m Ŝ(z)
n + Ŝ(y)

m Ŝ(y)
n + Ŝ(z)

m Ŝ(z)
n + Ŝ(x)

m Ŝ(x)
n + Ŝ(y)

m Ŝ(y)
n + Ŝ(x)

m Ŝ(x)
n

)

= 3

16
Î − 1

2

(
Ŝm · Ŝn

)
(A1)

In the above we used (Ŝ(x)
m )

2 = (Ŝ(y)
m )

2 = (Ŝ(z)
m )

2 = 1
4 Î and Ŝ(x)

m Ŝ
(y)
m = i

2 Ŝ(z)
m = −Ŝ

(y)
m Ŝ(x)

m (and all cyclic permutations). For n �= m

all spin operators as well as their components commute.

APPENDIX B: DIAGONALIZATION OF THE SPIN HAMILTONIAN INCLUDING DZYALOSHINKSII-MORIYA
INTERACTION

Once we include the Dzyaloshinksii-Moriya interaction it is no longer possible to analytically diagonalize Eq. (5). We proceed
as follows. First we diagonalize Eq. (5) including only the bilinear terms (be reminded that the biquadratic terms can be included
by using effective bilinear terms, see Appendix I). Then we transform the Dzyaloshinskii-Moriya matrix to the new basis.
Note that there are interactions only between electrons along the side of the square (or rhombus) and that the magnitude of all
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interactions is taken equal to ξ . The transition matrix elements are

H (DM) = ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 i

2 0 0 0 i

2
√

2
i

2
√

2
0 0 0 0 0

0 0 0 0 0 0 i√
3

0 0 0 0 i√
3

0 0 0 0

0 0 0 0 0 0 0 i
2 0 0 0 0 0 i

2
√

2
i

2
√

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − i

2 0 0 0 0 0 0 0 − i

2
√

2
i

2
√

2
0 0 0 0 0

0 0 − i√
3

0 0 0 0 0 − i√
6

0 0 0 0 0 0 i√
2

0 0 0 − i
2 0 0 0 0 0 0 0 0 0 − i

2
√

2
i

2
√

2
0

0 0 0 0 0 0 i√
6

0 0 0 0 −i

√
2
3 0 0 0 0

0 − i

2
√

2
0 0 0 i

2
√

2
0 0 0 0 − i

2 0 0 0 0 0

0 − i

2
√

2
0 0 0 − i

2
√

2
0 0 0 i

2 0 0 0 0 0 0

0 0 − i√
3

0 0 0 0 0 i

√
2
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − i

2
√

2
0 0 0 i

2
√

2
0 0 0 0 0 0 − i

2 0

0 0 0 − i

2
√

2
0 0 0 − i

2
√

2
0 0 0 0 0 i

2 0 0

0 0 0 0 0 0 − i√
2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

The blocks in the diagonal indicate groups of degenerate states. Since there are no diagonal elements we must use at least
second-order perturbation theory, which, however, is applicable only in the case of nondegenerate interacting states.

E(DM)
m =

∑
n�=m

∣∣〈m|Ĥ (DM)|n〉∣∣2

En − Em

, (B2)

where E(DM)
m is the Dzyaloshinskii-Moriya energy correction to the state |m〉, and Em and En are the zeroth-order energies of

states |m〉 and |n〉, respectively.
The 6 × 6 sub-block (the two degenerate triplet states with energies J1 + J2) is not a zero block (there are interactions among

degenerate states), so we must first diagonalize it. Doing so divides this 6 × 6 block into three 2 × 2 zero blocks with energies
J1 + J2 − ξ

2 , J1 + J2, and J1 + J2 + ξ

2 . Subsequently, we can safely apply second-order perturbation theory. Since we neglect
third-order terms, it makes no sense to include contributions higher than the ones quadratic in ξ , because some part of them
would not be taken into account. Therefore we perform a Taylor series expansion of the energy corrections up to ξ 2. The final
results are shown in the last column of Table II, where we see that terms linear to ξ indeed exist only within the subspace of the
two degenerate triplets. This procedure of diagonalizing within the 6 × 6 subspace is not necessary in rhombic structures, since
then the two triplets are not degenerate anymore.

APPENDIX C: SPIN HAMILTONIAN WITH TWO ELECTRONS PER SITE

For the sake of completeness in Table VI we also give the energies for a perfect square in the case of two electrons per site. The
intrasite coupling is J0. Although a Ni4 structure could in principle exhibit a similar level scheme (due to the d8 configuration
of the Ni atoms), it turns out that this is not the case. The reason is that the Ni atoms also build chemical bonds at distances
below 5 Å (or in a more solid-state parlance one sees the onset of electronic bands). Since a spin Hamiltonian does not take
into account the spatial degrees of freedom (there are altogether 4 × 5 = 20 d orbitals, not counting the spin), which lift the
orbital degeneracies, we end up with unphysically high spins (no net ground state). Note also that “two electrons per site” is not
tantamount to “a triplet state per site,” due to two reasons: (a) can also produce a singlet state (and hence a richer spectrum),
and (b) the triplet-relevant SU(3) Lie group has a higher dimension (eight) than the doublet-relevant SU(2) group (three), and
as a consequence it is not possible to simply map biquadratic terms on bilinear ones. This, in turn, means that the biquadratic
exchange interactions cannot be rewritten by means of effective bilinear interactions [73].
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