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Discovery of new materials and improved experimental as well as numerical techniques have led to a renewed
interest in geometrically frustrated spin systems. However, there are very few exact results available that can
provide a benchmark for comparison. In this work, we calculate exactly the perpendicular susceptibility x for
an Ising antiferromagnet with (i) nearest-neighbor pair interaction on a kagome lattice where strong frustration
prevents long-range ordering and (ii) elementary triplet interactions on a kagome lattice which has no frustration
but the system remains disordered down to zero temperature. By comparing with other known exact results with
and without frustration, we propose that an appropriately temperature-scaled x, can be used as a quantitative

measure of the degree of frustration in Ising spin systems.
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I. INTRODUCTION

In a spin system on a lattice, frustration refers to the
inability of the spins to satisfy the lowest energy state for each
bond, which can result from either competing interactions or
the geometry of the lattice, thus inhibiting long-range order.
Frustrated spin systems can lead to novel phases like spin
glass [1], spin ice [2,3], or spin liquids [4]. Recent discovery
of various compounds that show novel effects of frustration
[5-8] has led to significant increase in efforts to explore
theoretical models that can lead to a better understanding
of frustration in both classical and quantum spin systems
[9-11].

While many numerical techniques have been developed to
understand the properties of various theoretical models like
the spin-1/2 Heisenberg model or the asymmetric or extended
Hubbard model on a geometrically frustrated lattice [12-26],
very few exact results are available which can be used as a qual-
itative guide or as a quantitative benchmark for comparison.
The simplest theoretical model of geometrical frustration is
the antiferromagnetic Ising model with nearest-neighbor pair
interactions on a two-dimensional triangular lattice, which we
will refer to as the triangular Ising antiferromagnet (TTIA). The
ground state of TIA is highly degenerate, with a finite value
of the residual entropy per site at zero temperature given by
S /Nkg = 0.3231 - - -, where N is the number of lattice sites
and kp is the Boltzmann constant [27,28]. A second theoretical
model of geometrical frustration is the antiferromagnetic Ising
model on a two-dimensional kagome lattice, shown in Fig. 1,
which we will refer to as the kagome Ising antiferromagnet
(KTIA). Similar to TIA, the ground state of KIA is also highly
degenerate, with a zero-temperature residual entropy per site
given by SX"/Nkp = 0.5018 - - -, which is larger than that
of TIA [29]. This suggests that the ground state of KIA is
more frustrated than that of TIA. This is expected since the
kagome lattice contains corner-sharing triangles in contrast
to edge-sharing ones in the triangular lattice. Both remain
disordered down to zero temperature.

The zero-temperature residual entropy is a quantitative
measure of the degree of disorder, and in geometrically
frustrated systems it can quantify the “degree of frustration”
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as well. However, in this work we will make a distinction
between two types of disorder, with or without frustration, both
of which can lead to disordered ground states. We will explore
two exactly solvable models that exemplify the two types of
disorder and show that the residual entropy does not distinguish
between disorder with and without frustration. Alternatively,
the temperature dependence of the longitudinal susceptibility
x1(T) has been used as an experimentally accessible quantity
to characterize disorder with frustration in real physical
systems. This phenomenological characterization involves
the mean-field (negative) Curie-Weiss transition temperature
®cw such that the system behaves like a paramagnet for
T > |Ocw|, as well as a “freezing” temperature 7Tr < |Ocw|
below which the inverse longitudinal susceptibility starts to
deviate significantly from a linear behavior, the measure of
frustration being given by the ratio [1] f = —Ocw/TF > 1.

Instead of relying on such a phenomenological char-
acterization, in this work we evaluate the perpendicular
susceptibility x, (T) exactly for two different models: (1) the
KIA, which has a high degree of geometric frustration, and
(2) a triplet interaction model KIA-T with zero frustration. We
emphasize that x, involves response to a field perpendicular
to the Ising spin axis and hence probes quantum fluctuations.
By comparing the results for KIA and KIA-T evaluated in
this work with the known exact results for TIA [30] as well
as kagome Ising ferromagnet with long-range order [31], we
propose that an appropriately temperature-scaled x; can be
used as a quantitative measure of the degree of geometrical
frustration in systems with or without long-range order. The
measure suggests that we distinguish between two types of
systems that remain disordered down to zero temperature:
One is geometrically frustrated as in KIA and TIA, and
the other is disordered with no frustration, as in KIA-T. In
order to explore the difference between the two types of
disordered ground states further, we compare the longitudinal
susceptibilities x; for KIA and TIA with that of KIA-T. We find
that while frustrated systems have a finite negative Curie-Weiss
temperature ®cw, nonfrustrated KIA-T has Ocw = 0. In
contrast, the residual entropy remains finite in all three models
whether or not the disorder arises from frustration.
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FIG. 1. Kagome lattice. Seven sites are specifically enumerated
for use throughout the paper. Lined area is a “bow-tie” unit used in
Sec. III.

The remainder of the paper is organized as follows.
In Sec. II, we consider the kagome Ising antiferromagnet
(KTA) with nearest-neighbor pair interaction and obtain the
perpendicular susceptibility exactly for all temperatures using
the relevant spin correlations. Although the high-temperature
expansion of the parallel susceptibility required for the evalua-
tion of the Curie-Weiss temperature @g\l{é is available [32], we
use an alternative method using the pair spin correlations to
obtain OF} that agrees with the high-temperature expansion.
In Sec. III, we evaluate both perpendicular and parallel
susceptibility as well as the entropy exactly at all temperatures
for a triplet-interaction model KIA-T. In Sec. IV, we define a
parameter that provides a systematic description of the degree
of frustration in models with or without long-range order. In
Sec. V, we summarize the results and discuss possible future
directions.

II. KAGOME ISING ANTIFERROMAGNET WITH
PAIR INTERACTION (KIA)

The Hamiltonian of the two-dimensional kagome Ising
model with nearest-neighbor pair interactions is given by

E : z,.Z
Hpair: —J 0,05,
(i)}

2.1

where o, o; are the z-component Pauli spin operators

localized on sites i and j of a given lattice, the symbol (i, j)
representing a sum over all distinct nearest-neighbor pairs, and
J» < 0 is an antiferromagnetic pair-interaction parameter. For
a triangular lattice there are six nearest-neighbor sites, while
for the kagome lattice there are only four as shown in Fig. 1;
both contain elementary triangles that lead to frustration when
the interaction is antiferromagnetic. The triangular lattice
contains edge-sharing triangles whereas the kagome lattice has
corner-sharing triangles. From this geometrical pattern, one
expects that KIA is more geometrically frustrated compared
to TIA. Next, we calculate the perpendicular susceptibility of
KIA as a function of temperature.

A. Perpendicular susceptibility

In the presence of a perpendicular (transverse) magnetic
field h, and associated supplementary Hamiltonian Hy =
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—mh, ) _; 0 where m is the magnetic moment, Ising models
are designated quantum Ising models since their Hamiltonians
contain noncommuting operators and theoretical investiga-
tions require use of the Pauli spin algebra. As mentioned
earlier, the perpendicular susceptibility x [ for the triangular
Ising antiferromagnet has been calculated exactly by Stephen-
son [30]. Here we will calculate XEIA for the kagome Ising
antiferromagnet exactly on the non-Bravais kagome lattice.
Both are models with strong geometrical frustration and both
lead to disordered ground states. A comparison will provide
us with some insight into the response, to a transverse field,
of strongly frustrated systems that do not order down to zero
temperature.

In order to calculate xXA we follow the theoretical
techniques introduced in [31], where an exact formula for the
zero-field perpendicular susceptibility was obtained for simple
quantum Ising models on regular (all sites equivalent, all bonds
equivalent) or irregular lattices of arbitrary spatial dimensions.
For regular lattices that include triangular and kagome, the
initial isothermal perpendicular susceptibility per site, x, (T),
reads [31]

q
hy,—0 8hx Qz rr=1 0,

Here g is the number of nearest-neighbor sites, the sum is over
all nearest neighbors, and we have defined a dimensionless
interaction parameter

X q z
A (T) = m lim 200 _ m2ﬂ<tanh L2 Z,lezor/] > 2.2)

0,=8J,<0, (2.3)

where 8 = 1/kgT. Since (oj)z” =1, (of)z"+l = oj for all
integers n, it then follows that for kagome ferromagnetic or
antiferromagnetic interactions, one can express the reduced
perpendicular susceptibility as

M
;0 = q|Q2|[AT + 2A%(x01 + Xos + Xo06) + A X1234],
2
2.4)
with
i l|:tanh(4Q2) L ,lanh20) | 3}
8L (402 (202)
Aozl[w_l} (2.5)
8L (40w ' '

Here x;; = (ofa;) = (ij) are the pair spin correlations with
i=0 and j=1,5,6, and we have defined the unit of

susceptibility in terms of the interaction parameter J,,

2
0 m
2

VAR

normalized by the lattice coordination number g. The four-spin
correlation x1234 = (o{0;y0505) = (1234) is the correlation of
the nearest-neighbor cluster around site O (see Fig. 1 for site
labels). The pair correlations have been obtained earlier in [33];
here we obtain the exact solutions for the quartet correlation
(1234) using the same techniques developed in [33]. Figure 2
shows the quartet as well as the pair correlations which we
include for the sake of comparison and completeness. We also
include three additional pair correlations (15), (16), and (26)

X (2.6)
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FIG. 2. Exact solution curves of spin correlations for KIA as a
function of reduced temperature [Eq. (2.7)], used in the calculation
of x, in Sec. IIA as well as the high-temperature limit of x; in
Sec. II B. The four-spin correlation (1234) is shown by the solid
(magenta) curve. The pair correlations at distances farther apart decay
faster with increasing temperature, with correlations farther than (15)
becoming negligible beyond 1/|40,| > 2.

that will be used in our calculation of the high-temperature
parallel susceptibility in Sec. I B.

Using the exact spin correlations, we use Eq. (2.4) to obtain
xXTA /. Figure 3 shows the exact inverse reduced suscepti-
bility [x¥A(T)/x217! as a function of reduced temperature

I kgT
1402 4%l

Q2.7)

Comparing with TIA [30], we find that both xX* and '
diverge as 1/T as T — 0, but with different amplitudes. As
we will argue later, this divergence is a signature of geo-
metrical frustration, the amplitude characterizing the measure
of strength or degree of frustration. It is important to note
that Fig. 3 contains reduced scales on both axes, such that
the high-temperature asymptotic limit of the reduced inverse
perpendicular susceptibility as a function of the reduced
temperature is a straight line with unit slope that goes through
the origin, regardless of the strength of the interaction. (This
is different from the inverse parallel susceptibility which has a
finite intercept, as will be shown in Sec. II B.) The initial slope
is larger than unity, but the undulation that smoothly changes
the slope to unity as 7 — oo seems to be a characteristic
feature of a frustrated system.

B. Parallel susceptibility

The parallel susceptibility x; for both the kagome (KIA)
and the triangular (TIA) lattices have been obtained very
precisely using low- and high-temperature expansions by
Sykes and Zucker [32]. From the high-temperature expansion
of the inverse parallel susceptibility one can extract the
Curie-Weiss temperature for both cases as

(2.8)
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FIG. 3. Inverse of the exact reduced perpendicular susceptibility
[Eq. (2.4)] of KIA as a function of reduced temperature [Eq. (2.7)].
The dashed (black) line with slope 1 is the extrapolation from the
high-temperature limit. The zero-temperature limit corresponds to a
1/T divergence of the perpendicular susceptibility which is similar to
TIA [30] and can be considered a signature of geometrically frustrated
magnetic systems.

where the lattice coordination number ¢ = 6 for TIA and
q = 4 for KIA.

There exists an alternative method to obtain the parallel
susceptibility x| . Since x| is a thermodynamic response func-
tion, it can be represented in terms of magnetic fluctuations,
more particularly for the problem in hand, as an infinite series
of solely pair correlations. The fluctuation representation will
again be used to obtain x; for the triplet interaction model
in Sec. III B. Such representations have the potential to obtain
accurate parallel susceptibility for the entire temperature range
with only a limited number of pair correlations within a single
framework. Indeed, the six already known pair correlations
give an essentially exact limiting behavior of XlFIA(T) for

sufficiently large 7', which allows an evaluation of ®g,{? that
agrees exactly with Eq. (2.8). For the sake of completeness,
we will derive it here and use it to verify the results of the
high-temperature series expansion.

By adding a Hamiltonian Hy = —mh, ), o correspond-
ing to an applied longitudinal magnetic field %, to Eq. (2.1),
one can write

(O'S) =z Tr(,oée_ﬁy (2.9)

where H = Hp + Hp,ir and the partition function Z =
Trye PH . Then it follows that the initial isothermal parallel
susceptibility per site, x;(T), becomes

) 8<UZ>
x\(T) = m Jim 8—h° =m?p Z(agaf)o, (2.10)

where the subscript (---)o means the correlations are to be
evaluated at s, = 0. Thus, an exact calculation of x(T)
at all temperatures requires the knowledge of temperature-
dependent pair correlations at all distances. While this has not
been possible as yet, it is clear from Fig. 2 that pair correlations
that are farther in distance decay faster with increasing tem-
perature. Thus, e.g., the unknown pair correlations at distances
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TABLE 1. Characteristics of the six pair correlations (ij), in
increasing order of the distance between sites i and j given in units
of the lattice spacing a. Site numbers refer to Fig. 1. NEP refers to
the number of equivalent pairs obtained from Fig. 1 by keeping one
site fixed at the origin and counting all sites at the same distance that
are geometrically equivalent. Note that pairs (15) and (06) are at the
same distance, but their environments are different.

Pair Distance Neighbor NEP
(o1) a Ist 4
(05) V3a 2nd 4
(15) 2a 3rd 2
(06) 2a 3rd 4
(16) VTa 4th 8
(26) 3a Sth 4

larger than three lattice spacings will become negligible at
temperature 1/[4Q,| > 2. As far as the high-temperature
results are concerned, we can therefore expand x(7) in a
series with increasing distance between the sites so that the
reduced parallel susceptibility, using Eq. (2.6), is given by

KIA T
X”X—O() = gB|h|[1 + 4(01) 4+ 4(05) + 2(15)
2

+4(06) + 8(16) +4(26) +---1,  (2.11)

where the coefficients are the number of equivalent pairs at the
same distance, as shown in Table I. As Fig. 2 shows, this series
converges very rapidly since the correlations become smaller,
especially at high temperatures.

Figure 4 shows the inverse parallel susceptibility
O™/ x)~! for KIA as the number of pair correlations
included in the evaluation is increased from the nearest four
(up to the 3rd nearest neighbor) to the nearest six (up to
the 5th nearest neighbor) pair correlations. As Table I shows,

25

10
1/]4Q,|

FIG. 4. Inverse of the reduced parallel susceptibility [Eq. (2.11)]
as a function of reduced temperature [Eq. (2.7)] for KIA including
four, five, and six pair correlations. As the number of pair correlations
is increased from four to six, the low-T results fluctuate but the high-T'
behavior converges rapidly. The dashed (black) line extrapolated from

high temperature gives @&} = 4,/ kp.
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this corresponds to increasing the distance around the origin
from one lattice site up to three lattice sites. Clearly, the
low-T behavior keeps on changing with addition of further
correlations, but the high-7' behavior converges rapidly;
indeed, adding the sixth pair (26) to the series truncated at
the fifth pair (16) does not appreciably change the result
beyond 1/|4Q»| > 5; the fractional change at 1/]40;| =
10 is ~0.006%, and at 1/[4Q>| = 30 it is ~0.0002%, the
convergence being progressively better at higher temperatures.
However, to keep the low-T fluctuations clearly visible, we
show the results only up to 1/|4Q5| = 20 in Fig. 4. Thus
the high-7 limiting behavior shown in Fig. 4 is essentially
exact; the extrapolation of this high-T result gives the Curie-
Weiss temperature @g{,{? =4J,/kp, which agrees with the
high-temperature expansion of [32] given by Eq. (2.8) with
g = 4. For comparison, we note that for TIA, ©f% = 6J,/kp,
the difference being the lattice coordination number. As we
will see later, a finite (nonzero) x-axis intercept Ocw < 0 is
a signature of frustration, but the magnitude itself depends
on the lattice coordination number and is not necessarily a
measure of the strength or degree of frustration. As we will
show in the next section, the triplet interaction model leads
to ®cw = 0, implying zero geometrical frustration. Note that
for ferromagnets, the high-temperature extrapolation leads to
a positive ®cw which also corresponds to zero frustration.

III. KAGOME ISING ANTIFERROMAGNET WITH
TRIPLET INTERACTION (KIA-T)

The Hamiltonian of the two-dimensional Ising antiferro-
magnet KIA-T with triplet interactions around elementary
triangles on a kagome lattice is defined as

Hyipler = —J3 E 00 0%,

T

3.1)

where for notational simplicity we have omitted the superscript
z on the Pauli spin operators by replacing them with the
isomorphic Ising variables o, = £1. Here ) _ designates
summation over all elementary triangles and we consider the
antiferromagnetic case for the triplet interaction J3 < 0. This
is an example of a spin model on a lattice with elementary
triangles but without frustration. For example, each spin in a
(+,+,—) configuration on a triangle is “satisfied”; flipping any
one would increase the energy.

The model (3.1) belongs to a class of Ising models
having specific multispin (“cluster”) interactions of only one
kind and whose partition functions are easily and exactly
calculable [34]. The calculational simplicity is recognized in
the diagrammatic expansion of the partition function in powers
of tanh Q (Q = BJ being an appropriate dimensionless
interaction parameter), where no finite length path consisting
exclusively of basic interaction clusters can totally close upon
itself, thus only the path of zero length contributes to the
partition function in the thermodynamic limit. Solutions for
multispin correlations can similarly be determined exactly in
these specific Ising models.

In Ref. [34], the partition function as well as all multisite
correlations of a four-spin interaction model in a three-
dimensional pyrochlore lattice were obtained by exploiting
the nature of lattice graphs of corner-sharing tetrahedra.
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Because the kagome lattice is also corner sharing, it is
possible to adapt the same graph-theoretic techniques for
a two-dimensional kagome lattice and obtain exact results
for the triplet interaction model (3.1). In both cases, due to
the facts that 3, . ;0" =0 and }°, _, 0," =2 for
n=0,1,2,..., the partition function sum over all possible
spin configurations yields only two terms associated with
simple complimentary lattice graphs, viz., totality of triangles
being “unshaded” and totality of triangles being “shaded” (see
Ref. [34] for three-dimensional analog). The resulting partition
function Zy for an N-site kagome lattice becomes

Zn = ZEQB Y. 0iojoy
o

= (cosh 03)*V/3 Z ]_[(1 + 0;0;0% tanh Q3)

= (cosh 03)*V/32N[1 + (tanh 05)*V/?], (3.2)

imposing periodic boundary conditions. Here the dimension-
less interaction parameter Q3 is defined in the same way as in
Eq. (2.3), namely,

Q03 = pJs. (3.3)

This partition function differs from the four-spin interaction
pyrochlore model [34] only by the exponent 2N /3, which is
the number of elementary triangles in a kagome lattice. Using
Eq. (3.2), it follows that for T # 0,

1
- Bf(Q3) = ngnoo N In Zx(03)

— % — 2/3
=3 Incosh Q3 + In2 = In[2(cosh 03)“/"],
(3.4

where f(Q3) is the magnetic Helmholz free energy per spin.
This will be used to calculate the entropy per site later in
Sec. 1II C.

A. Perpendicular susceptibility
Following [31], the exact perpendicular susceptibility per
site can be written as
, [ tanh[Q3(0107 + 0304)]
XL=m"p .
Q3(0102 + 0304)

3.5)

The argument within the thermal average can be expanded as

tanh[Q3(0102 + 0304)]

3.6)
03(01072 + 0304)

= BT + B 01020304,

where the parameters B* can be obtained as follows: Using
spin configurations where the spin products are all positive,
one obtains tanh[2Q3]/2Q3 = B + B~, while for spin con-
figurations in which the product o0, has opposite sign to the
product 0304 one finds 1 = BT — B~. The solutions are

Bt 1[tanh2Q3 :|:1:|.

==|——— 3.7
20, (3.7

2
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The thermal average of four spins in the “bow-tie” unit
(o1020304) (see Fig. 1) can be obtained as follows:

1 o
(01020304) = 7 E 01020304 €9 25 7171%
N

1
= Z—(COSh Q3)2N/3 Z 01020304
N o

x ]_[(1 + 0,00y tanh Q3). (3.8)

Again, the summation yields only two nonzero terms, and the
result is

1
(010,0304) = ——(cosh 03)*M32[(tanh Q3)?
N

+ (tanh Q3)*V/372)

= tanh? Qs, (3.9)

having substituted Eq. (3.2) and then letting N — oo. Hence,
using Eqgs. (3.5)-(3.7) and (3.9), the reduced perpendicular
susceptibility per site becomes

KIA-T

A = 2010311 — tanh? |Qa) + tanh | 3]).  (3.10)

X3

where we have defined the unit of susceptibility, similar to
Eq. (2.6), as

2

0 m
3

Al (3.11)

X

One observes that results (3.4) and (3.10) are independent of
the sign of Q3, and so are valid for ferromagnetic interactions
as well, an a posteriori justification for the absence of
frustration.

It is interesting that result (3.10) for a three-spin interaction
model on a kagome lattice in two dimensions is the same as for
the four-spin interaction model on a pyrochlore lattice in three
dimensions [34]. In Fig. 5, we show the inverse of the reduced
perpendicular susceptibility for KIA-T, [ XEIA’T(T) / Xé)]_] ,as
a function of the reduced temperature

1 kgT
4051 4151

(3.12)

In contrast to KIA shown in Fig. 3, it is finite at 7 = 0.
The kagome Ising ferromagnet, with long-range order below
a critical temperature 7., also has a finite value of the
perpendicular susceptibility at zero temperature [31] and looks
very similar to KIA-T. The signature for long-range order in
x1(T) is the presence of a vertical inflection point at T = T,.
As shown in Fig. 5, XEIA*T(T) is devoid of any vertical

inflection point.

B. Parallel susceptibility

As shown in Sec. II B, the parallel susceptibility per site
requires only pair correlations, but at all distances. However,
all pair correlations in the triplet model (3.1) vanish (see [34]
for analogous graph-theoretic reasonings), so that Eq. (2.10)
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FIG. 5. Inverse of the exact reduced perpendicular susceptibility
(3.10), solid (blue) curve, and parallel susceptibility [Eq. (3.13)],
dashed (red) line, as a function of reduced temperature [Eq. (3.12)] for
the triplet interaction model KIA-T. The absence of a 1/ T divergence
for xXA4°T as T — 0 as well as Ofy " = 0 implied by the zero
intercept of (x;/xY)~" are in clear contrast with the corresponding

results for KIA shown in Figs. 3 and 4, respectively.

gives, using Eq. (3.11),

KIA-T
X 4l

0 =T (3.13)
For comparison, we add the inverse of the reduced parallel
susceptibility as a function of the reduced temperature in
Eq. (2.7) in Fig. 5. The result is a straight line through the
origin, giving @g{,‘}’T = 0. This suggests a strong disorder,
but without frustration.

C. Entropy

The partition function (3.2) can be used to calculate the
entropy for the triplet model exactly. Using the expressions
for the magnetic Helmholtz free energy F' and the internal
energy U in terms of the partition function and the relation
F = U — TS, one obtains

0
In the thermodynamic limit N — oo, the entropy per site for
KIA-T then becomes, using
Eqgs. (3.4) and (3.14),
SKIA-T

d
_ 2
Nkg =B 8/3f(Q3)

=In2+ %[ln(cosh 03) — Osztanh Q3]. (3.15)

The zero-temperature residual entropy is given by the | Q3| —
oo limit leading to Sy T/Nkz =1In2—(2/3)In2 =
(In2)/3 = 0.231049 - - -, which is finite but less than KIA or
TIA. This is an example with no geometrical frustration but a
large ground-state degeneracy. Thus a finite residual entropy is
not necessarily a measure of the degree of frustration. We will
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FIG. 6. Proposed frustration parameter 7(7'), defined in Eq. (4.1),
as a function of reduced temperature 1 /| Q| = kgT/|J;|, wheres = 3
for triplet interaction model KIA-T and s = 2 for the other three cases
with pair interactions, as listed in Sec. IV. For kagome ferromagnet
shown by the dot-dashed (green) line, the transition temperature is
characterized by a vertical inflection point at 1/|Q,| = 2.14 - - -. The
others have no long-range order. The black crosses are calculated
using sample data points for TIA obtained digitally from Fig. 7 of
Ref. [30].

argue below that a more appropriate measure of the degree of
frustration arises from the consideration of the perpendicular
susceptibility.

IV. DEGREE OF FRUSTRATION

We now define a quantity n derived from the perpendicular
susceptibility as

kT
n(T) = (_32 )me. (4.1)
m

Figure 6 shows n(T') for four different Ising models:

(1) Kagome Ising antiferromagnet (KIA): A model with
strong geometrical frustration and no long-range order
down to zero temperature, with finite residual entropy [29]
SKIA/Nkp = 0.5018 - - -

(i) Kagome triplet-interaction Ising model (KIA-T): A
model with no geometrical frustration and no long-range
order down to zero temperature, with finite residual entropy
ST /Nkg = 0.2310- - -.

(ii1) Kagome Ising ferromagnet (KIF, from [31]): A model
with no frustration which develops long-range order below a
finite critical temperature 7, and has zero residual entropy.

(iv) Triangular Ising antiferromagnet (TIA, from [30]): A
model with strong geometrical frustration (but weaker than
KIA) and no long-range order down to zero temperature.
The residual entropy is finite [27,28], with SgIA/NkB =
0.3231---.

As expected, all high-T results approach the
n(T — oo) =1 limit corresponding to free spins at
thermal energies k37 much larger than interaction strength
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parameters. We define the zero-temperature limit

no=n(T — 0) “4.2)

such that in the presence of a finite interaction between
the spins, the point g = 1 can be thought of as a limit of
“maximum possible frustration,” corresponding to all spins
remaining fully frustrated down to T = 0. The opposite case
of “no frustration” would correspond to ny = 0. This indeed
is the case for all systems with long-range order below a
finite T = T,, as exemplified by case (iii) and has been shown
exactly for the ferromagnetic kagome lattice [31] as well as
the antiferromagnetic plane honeycomb lattice [35], all having
a ground state with long-range order. For the three systems
with finite residual entropy at T =0, no is larger for the
kagome lattice (0.4458 - - - ) compared to the triangular lattice
(0.2900 - - - ); the triplet interaction model with no frustration
has 19 = 0. Thus a clear feature emerges: the limiting value
no decreases with decreasing frustration. In other words, the
parameter 7, derived from the perpendicular susceptibility can
provide a good measure of geometrical frustration in the state
at T = 0. It is worth emphasizing that 7 is essentially the
amplitude of the 1/T divergence of x,(T) as T — 0, so that
no = 0 implies the absence of any divergence.

We note that the two cases (ii) and (iii) with 9y = 0 both
have zero frustration, but not necessarily long range order at
zero temperature. The signature of long range order in (iii) is a
vertical inflection point for the kagome Ising ferromagnet (at
1/1Qs| = 2.14 - - ), which is absent in KIA-T. Thus ny =0
does not necessarily imply a disordered ground state, it
characterizes only the part of disorder due to geometrical
frustration.

Similarly, case (ii) exemplifies the fact that there can be
absence of long-range order down to zero temperature in
an Ising system not only due to geometrical frustration but
also due to, e.g., long-range or multiparticle interactions. This
suggests that we distinguish between a “geometrically frus-
trated disordered state” characterized by 1y # 0 with KIA and
TIA as examples and a “disordered state with no frustration”
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characterized by no = 0 with KIA-T as an example. Note that
the triplet model KIA-T has a finite residual entropy, as do KIA
and TIA, and therefore residual entropy does not distinguish
between the finite and zero frustration cases.

V. SUMMARY AND DISCUSSION

In this work we have calculated exactly the perpendicular
susceptibility of a KIA model and a triplet interaction model
KIA-T. Both models lead to disordered ground states, but we
make a distinction between disordered states with or without
geometric frustration. By comparing the exact results obtained
for KIA and KIA-T considered in this work with known exact
results for TIA and the kagome ferromagnet, we argue that
the quantity no defined in Eq. (4.2), which is the amplitude
of divergence of the perpendicular susceptibility at zero
temperature, can be used as a quantitative measure of degree
of frustration. We conclude that while geometric frustration
prevents long-range order in TIA or KIA, Ising spin systems
with no frustration can also lead, due to, e.g., multiparticle
interactions, to states that remain disordered down to zero
temperature. The longitudinal susceptibility provides an added
insight into the difference between the two types of disorder,
with the Curie-Weiss temperature being finite for disorder with
frustration and zero for disorder without frustration.

Finally, we have considered separately a pair interaction
model with geometrical frustration and a triplet interaction
model with no frustration. While each has finite residual
entropy implying large ground-state degeneracy, the nature
of low-energy excitations in the two models is very different,
as implied by the zero-temperature limits of the perpendicular
susceptibility. In a more general case where both pair and
triplet interactions are simultaneously present on a kagome
lattice, the interplay of disorder with and without frustration
may lead to more interesting possibilities. This is more than
a mathematical curiosity, since the presence of a weak triplet
interaction in addition to a dominant pair interaction is actually
quite ubiquitous [36—40] in nature.
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