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We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise
a procedure for reconstructing the decision function of an artificial neural network as a simple function of the
input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by
which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge
theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions
of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except
Monte Carlo–sampled configurations.
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I. INTRODUCTION

Machine learning enables computers to learn from expe-
rience and generalize their gained knowledge to previously
unseen problems. The development of better hardware and
algorithms, most notably artificial neural networks, propelled
machine learning to one of the most transformative disciplines
of this century. Nowadays such algorithms are used to classify
images [1], to recognize language [2] or to beat humans in
complex games [3]. Recently, machine learning has even been
successfully employed to tackle highly complex problems
in physics [4–15] and in turn physics has also inspired
developments in machine learning [16–24]. It is now possible
to classify phases of matter in the context of supervised
learning [25–31] only from Monte Carlo samples. Phases can
also be found without any information about their existence
by unsupervised learning [32–35].

These algorithms suffer from a huge drawback: there is no
comprehensive theoretical understanding of what they actually
learn [36–40]. Without knowing if the neural networks base
their decision on physical quantities one has no reason to trust
the results if applied to an unknown system. Previous works
suggest that machine learning discriminates phases of the Ising
model by the order parameter [25,41]; others use the weights
of the neural network to formulate a new order parameter [30].

In this paper (a) we propose a method to fully interpret neu-
ral networks, provided their decision function is sufficiently
symmetric, (b) we explain this method at the Ising model and
demonstrate its power at SU(2) gauge at theory, (c) we thereby
justify the use of neural networks to classify phases, (d) this
method yields such a clear interpretation that it can be used to
determine the nature of the ordered phase.

To this end we introduce the correlation probing neu-
ral network. It can reduce the complexity of sufficiently
symmetric decision functions. Since physical quantities are
typically highly symmetric, this network is ideal for probing
whether a physical quantity is responsible for the learned
decision function. After reducing the complexity, we show
that it is possible to fully reconstruct the explicit mathematical
expression of the decision function in a simple form. From this
expression one can extract the quantities by which the neural
network distinguishes between phases.

This procedure is introduced at the Ising model, where we
show that neural networks at distinguish between phases by
the expected energy per spin (dominant) and the magnetization

(subleading). We apply our method to SU(2) lattice gauge
theory, where we find that the decision function is based on a
nonlocal order parameter, the Polyakov loop.

II. ARTIFICIAL NEURAL NETWORKS

In this work we employ feed-forward artificial neural
networks as a tool to distinguish between two classes in
the context of supervised learning. After being successfully
trained, the algorithm is able to predict the class of unseen
test samples with high accuracy. We consider a neural network
as an approximation of the decision function D. The decision
function assigns to each sample S a probability P ∈ [0,1]
to be in class 1. The decision boundary is a hyperplane in
the space of the parameters of sample configurations defined
by D(S) = 0.5, where the neural network is most unsure
about the correct label. If there exists an explicit quantity
Q(S) which is learned by the neural network, and which is
responsible for the distinction between phases, we expect
that a change in the quantity Q is always related to a
change in the prediction probability, hence ∇Q||∇D in the
vicinity of the decision boundary. In our neural networks
the output can be written as D(S) = sigmoid(ξ (S)), where
sigmoid(x) = 1/[1 + exp(−x)] maps the latent prediction
ξ (S) to a probability. It follows that ∇Q||∇ξ and thus Q can be
expressed as a linear function of ξ in a linearized regime close
to the decision boundary ξ (S) = w Q(S) + b. The decision
function of neural networks is encoded in a highly elusive and
highly nonlinear way. In order to decode the decision function,
we present a type of neural network that is tailored to probe
if specific correlations between different variables contribute
to the decision function of the neural network. We call it the
correlation probing neural network; see Fig. 1. The neural
network architecture can be found in Appendix B.

The idea is to construct a tunable neural network which
is able to interpolate between a traditional feed-forward
neural network in one limit and an optimal minimal neural
network, that still yields a similar classification performance,
in the other limit. A neural network is an algorithm that
excels in identifying hierarchical structure on data. These
hierarchical functions can in principle be decomposed into
simpler subfunctions. To this end the correlation probing
neural network is decomposed into subnetworks of which each
can only learn a specific function. The subfunctions are unique
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FIG. 1. The correlation probing neural network consists of three
types of neural networks stacked on top of each other. The localization
network is a fully convolutional neural network which prohibits
connections outside of the receptive field of each output neuron and
thus only recognizes correlations in the receptive field. The averaging
layer averages over the input from the localization network, similarly
to how the magnetization averages over all spins. The prediction
network is a fully connected neural network, which transforms the
output of the averaging layer to a prediction probability.

up to a linear transformation. The procedure for finding the
optimal minimal neural network is to reduce the capacity of
each of these subnetworks in an ordered manner until the neural
network experiences a significant drop in the classification
performance. The decision function of the optimal minimal
neural network can then be written in a simplified form. If the
quantity by which the neural network classifies the input is
highly symmetric it is often possible to read off the quantity
from the decision function. This is the case in the classification
of phases in many physical systems.

III. ISING MODEL

The Hamiltonian of the ferromagnetic nearest-neighbor
Ising model on the square lattice with vanishing external
magnetic field is

H (S) = −J
∑

〈i,j〉nn

sisj , (1)

with J = 1, S = (s1, . . . ,sN ) denotes a spin configuration,
where si ∈ {1,−1}. It is a simple, well studied, and exactly
solvable model from statistical physics that undergoes a
second-order phase transition at Tc = 2/[kBln(1 + √

2)] [42].
At Tc the specific heat CV = ∂〈E〉/∂β diverges, as does the
temperature derivative of the expectation value of the absolute
value of the magnetization 〈M〉, where M(S) = |1/N

∑
i si |.

The existence of different phases in the Ising model in the
low- and high-temperature limit is known from unsupervised
learning [32,33,35]. Using this knowledge we train the
correlation probing neural network to predict phases of Monte
Carlo–sampled configurations of size 28 × 28 below T = 1.6
in the ordered phase and above T = 2.9 in the unordered
phase. More information about Monte Carlo simulation can
be found in Appendix A. Using the full receptive field of
28 × 28, we allow the neural network to learn all possible spin
correlations to approximate its decision function. In this case,
the correlation probing network is equivalent to a standard
convolutional neural network. Training and validation losses
close to zero indicate that the neural network has found all

TABLE I. Ising model: Losses of neural networks with different
receptive fields of the neurons in the localization network. Smaller
numbers mean better performance. The baseline classifier is a random
classifier which predicts each phase with a probability of p = 0.5.

Receptive field size Train loss Validation loss

28 × 28 6.1588 × 10−4 0.0232
1 × 2 1.2559 × 10−4 1.2105 × 10−7

1 × 1 0.2015 0.1886
Baseline 0.6931 0.6931

necessary information it needs to reliably classify the phases.
By successively lowering the receptive field size, we do not
observe a drop in performance, except from 1 × 2 to 1 × 1 and
from 1 × 1 to the baseline classifier; see Table I. In each of
these steps the neural network loses important information
about the samples. In Fig. 2(c) we can see the average
classification probability, as a function of the temperature,
of both networks. The phase-transition temperature can be
found where P = 0.5. This is at T = 2.5 ± 0.5 for the 1 × 1
network and T = 2.25 ± 0.25 for the 1 × 2 network. An
accurate estimation can be found in [25]. We however focus
on examining what information got lost while lowering the
receptive field size.

By construction, the decision function D of the 1 × 1 neural
network can be expressed as

D(S) = F

(
1

N

∑
i

f (si)

)
= sigmoid

[
ξ

(
1

N

∑
i

f (si)

)]
,(2)

where F is the function approximated by the prediction
network and f is the function approximated by the localization
network. The function f can be Taylor expanded:

f (si) = f0 + f1 si + f2 s2
i︸︷︷︸
1

+f3 s3
i︸︷︷︸
si

+ · · · . (3)

Since s2
i = 1, all higher-order terms can be neglected. The

constants f0 and f1 can be absorbed by the bias and the weights
of the prediction network approximating F . Thus, the decision
function reduces to

D(S) = F

(
1

N

∑
i

si

)
. (4)

In order to determine the function F , we compare the latent
prediction ξ of the neural network, with the argument of
F : 1/N

∑
i si , in the vicinity of the decision boundary; see

Fig. 2(a). This knowledge allows us to construct the decision
function

D(S) ≈ sigmoid

(
w

∣∣∣∣∣ 1

N

∑
i

si

∣∣∣∣∣ + b

)
, (5)

with weight w and bias b of the prediction neuron. The perfect
correlation between the latent prediction ξ (S) and |1/N

∑
i si |

further reinforces that our above deduction was correct. Until
this point we have not used any information about the Ising
model except Monte Carlo configurations. We have found that
the decision function determines the phase by the quantity
Q(S) = |1/N

∑
i si |. This function is the magnetization.
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FIG. 2. Results of the correlation probing neural network applied to the Ising model. The latent prediction ξ is the argument of the sigmoid
function in the last layer of the prediction network. (a) The latent prediction is perfectly correlated with the absolute value of the average of
spins, i.e., the magnetization in the 1 × 1 network, for all sampled configurations. (b) The latent prediction of the 1 × 2 network is perfectly
correlated with the average product of neighbors, i.e., the expected energy per site.

By examining the 1 × 2 network, we require by construc-
tion that the decision function is of the form

D(S) = F

⎛
⎝ 1

N

∑
〈i,j〉T

f (si,sj )

⎞
⎠. (6)

Here the sum only goes over transversal nearest neighbors,
collecting each spin only once. The Taylor expansion,

f (si,sj ) =f0,0 + f1,0 si + f0,1 sj

+ f2,0 s2
i + f1,1 si sj + f0,2 s2

j + · · · , (7)

contains only three terms of note; all other terms can be reduced
to simpler ones by using s2

i = 1. The terms f1,0 si and f0,1 sj

represent the magnetization. From Table I and the analysis
of the 1 × 1 network, we know that these terms contain less
information than the quantity we are looking for. So the leading
term must be f1,1sisj . Thus, the decision function can be
written as

D(S) ≈ F

⎛
⎝ 1

N

∑
〈i,j〉T

sisj

⎞
⎠. (8)

In Fig. 2(b) we see the perfect correlation between the latent
prediction ξ (S) and 1/N

∑
〈i,j〉T sisj . This also means that

the correction from the subleading terms f1,0 si and f0,1 sj is
indeed negligible. Hence, we end up with the decision function

D(S) ≈ sigmoid

⎡
⎣w

⎛
⎝ 1

N

∑
〈i,j〉T

sisj

⎞
⎠ + b

⎤
⎦. (9)

By translational and rotational symmetry, the sum can be
generalized to all neighbors Q(S) = 1

N

∑
〈i,j〉nn

sisj . This
quantity is, up to a minus sign, the average energy per
spin site. It is worth noting that the energy per site can be
used to distinguish between phases more reliably than the
magnetization; see Table I.

IV. SU(2) LATTICE GAUGE THEORY

We examine SU(2) lattice gauge theory, which shows
confinement, one of the most distinct features of QCD. It
builds on the idea of discretizing the Euclidean path integral of
SU(2) Yang-Mills theory. Lattice configurations are defined by
a set of link variables Ux

μ ∈ SU(2). Each matrix connects two
sites on a four-dimensional x ∈ Nτ × N3

s space-time lattice
with Nτ = 2 (temporal direction) and Ns = 8 (spatial volume).
The direction is indicated by μ ∈ {τ,x,y,z}. A sample lattice
configuration collects all link variables on the lattice S =
({Ux

μ}). Each Ux
μ is parametrized by four real parameters,

Ux
μ = ax

μ1 + i
(
bx

μσ1 + cx
μσ2 + dx

μσ3
)
, (10)

where σi are the Pauli matrices; the coefficients obey (ax
μ)2 +

(bx
μ)2 + (cx

μ)2 + (dx
μ)2 = 1. The trace of Ux

μ is given by 2 ax
μ,

since the Pauli matrices are traceless. We employ the lattice
version of the Yang-Mills action, the Wilson action [43],

SWilson[U ] = βlatt

∑
x

∑
μ<ν

Re tr
(
1 − Ux

μν

)
, (11)

where βlatt is the lattice coupling. Here Ux
μν =

Ux
μUx+μ̂

ν U
x+μ̂+ν̂
−μ Ux+ν̂

−ν is the smallest possible closed
rectangular loop. The order parameter for the deconfinement

TABLE II. SU(2): Losses of neural networks with different
receptive fields of the neurons in the localization network (* no hidden
layers in the prediction net).

Receptive field size Train loss Validation loss

2 × 8 × 8 × 8 1.0004 × 10−4 2.6266 × 10−4

2 × 1 × 1 × 1 8.8104 × 10−8 6.8276 × 10−8

2 × 1 × 1 × 1∗ 2.2292 × 10−7 4.2958 × 10−7

1 × 1 × 1 × 1 0.6620 0.9482
Baseline 0.6931 0.6931
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phase transition is the expectation value of the Polyakov loop

L(	x) = tr

⎛
⎝Nτ −1∏

x0=0

Ux
τ

⎞
⎠ Nτ =2= tr

(
U 0,	x

τ U 1,	x
τ

)
= 2

(
a0,	x

τ a1,	x
τ − b0,	x

τ b1,	x
τ − c0,	x

τ c1,	x
τ − d0,	x

τ d1,	x
τ

)
. (12)

It is the trace of a closed loop that winds around time direction
using periodic boundary conditions. The expectation value of
the Polyakov loop is zero in the confined phase and finite in
the deconfined phase. More details on the simulations can be
found in Appendix A.

The existence of different phases in SU(2) lattice gauge
theory can be found by unsupervised learning; see Appendix D.
This knowledge allows us to train the correlation probing
neural networks with different receptive fields, to classify
phases on Monte Carlo–sampled configurations at lattice cou-
pling β ∈ [1,1.2] in one phase and β ∈ [3.3,3.5] in the other
phase. We test the neural network in β ∈ [1.3,3.2] to predict a
phase transition at β = 1.99 ± 0.10 (2 × 1 × 1 × 1 network)
and β = 1.97 ± 0.10 (2 × 8 × 8 × 8 network); see Fig. 3(c).
Our direct lattice calculation reveals β = 1.880 ± 0.025. By
successively lowering the receptive field size we lose important
information for classifying phases below 2 × 1 × 1 × 1; see
Table II. This means that crucial information about the phase
transition is contained in this specific structure.

The decision function of the 2 × 1 × 1 × 1 network is
constrained to

D(S) = F

(
2

N

∑
	x

f
({

Ux0,	x
μ

}))
, (13)

where the arguments of f are eight matrices at spatial location
	x. A general approach to find F and f is presented in
Appendix F. A simpler approach is based on the observation
that we do not need any hidden layers in the prediction network,
i.e., we only keep the output neuron; see Table II. Then the
decision function simplifies to D(S) = sigmoid[w Q(S) + b],

where

Q(S) = 2

N

∑
	x

f
({

Ux0,	x
μ

})
(14)

reduces to a sum of functions acting only on a single patch
of size 2 × 1 × 1 × 1 each. This allows us to split all samples
to a minimum size of 2 × 1 × 1 × 1. We train a new local
neural network to classify the phases of each local sample.
By performing a regression on the latent prediction of the
local neural network, we find that a second-order polynomial
performs best (a comparison of different algorithms is found
in Appendix E). The regression approximates the latent
prediction by a sum of 561 terms,

f
({

Ux0
μ

}) ≈ + 7.3816 a0
τ a

1
τ + 0.2529 a1

τ b
1
τ + · · ·

− 0.2869 d0
τ c1

τ − 7.2279 b0
τ b

1
τ

− 7.3005 c0
τ c

1
τ − 7.4642 d0

τ d1
τ . (15)

We only keep the leading contributions and assume that the
differences between the leading contributions originate from
approximation errors. Since overall factors and intercepts can
be absorbed in the weights and biases of the neural network,
we can simply rescale the above parameter to

f
({

Ux0
μ

}) ≈ a0
τ a

1
τ − b0

τ b
1
τ − c0

τ c
1
τ − d0

τ d1
τ = tr

(
U 0

τ U 1
τ

)
. (16)

This is the Polyakov loop on a single spatial lattice site (12).
We promote f ({Ux0

μ }) → f ({Ux0,	x
μ }) to act on the full lattice,

such that we can formulate the decision function of the neural
network with the full receptive field as

D(S) ≈ sigmoid

[
w

(
2

N

∑
	x

f
({

Ux0,	x
μ

})) + b

]
. (17)

Here Q(S) = 2
N

∑
	x f ({Ux0,	x

μ }) is the Polyakov loop on the
full lattice. A confirmation of this deduction can be seen in
the perfect correlation between the latent prediction and the
Polyakov loop in Figs. 3(a) and 3(b).

FIG. 3. Results of the correlation probing network applied to SU(2) lattice gauge theory. (a),(b) The latent prediction shows a strong
correlation with the Polyakov loop in both the 2 × 8 × 8 × 8 network and the 2 × 1 × 1 × 1 network. (c) The average prediction probability
of the two networks.
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TABLE III. Ising model neural network. A, B, C determine the
receptive field size of each neuron in the averaging layer.

Layer Output shape Kernel size

InputLayer (784, 1)
Convolution1D (784/(A),nA) A
Convolution1D (784/(A × B),nB ) B
Convolution1D (784/(A × B × C),nC) C
Average pooling (1, nC)
Flatten (nC)
Dense (nD)
Dense (1)

V. CONCLUSION

We proposed and demonstrated a method to fully interpret
neural networks, which is based on the correlation probing
neural network. The method was introduced at the Ising model
on the square lattice, where the neural network predicts phases
via the magnetization (5) or the expected energy per site (9).
We then demonstrated the power of this method at SU(2)
lattice gauge theory, where the reconstructed decision function
reveals the explicit mathematical expression of the Polyakov
loop (17), a nonlinear, nonlocal order parameter. This method
provides the means to judge whether neural networks have
learned physical properties and thus whether their results can
be trusted. Furthermore, our procedure can be used to deduce
the explicit formulas of physical order parameters. Since our
approach is vastly different than conventional methods, it could
determine the nature of phases where conventional methods
have not yet succeeded.

A first application could be identifying if machine learning
methods classify sign problematic models by physical quanti-
ties [26]. Then we could reliably determine the phase diagram
of QCD at finite density [44–46] or examine the pseudogap
[47–50] or the competition between d-wave and antiferromag-
netic order [51–54] in the two-dimensional Hubbard model.
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APPENDIX A: MONTE CARLO SIMULATIONS

In statistical physics and lattice gauge theory, Markov
Chain Monte Carlo algorithms are used to sample lattice
configurations from the Boltzmann factor. This is done by
constructing a stochastic sequence that starts at some random
initial configuration. This stochastic sequence is constructed
such that the configurations obey Boltzmann statistics in the
equilibrium. For more details on algorithm requirements and
algorithms see, e.g., [55].

Observables are then computed by taking the average
over many spin or lattice configurations from the equilibrium
distribution

〈O〉 = lim
N→∞

1

N

N∑
i=1

Oi . (A1)

Taking the limit in the last equality is practically not possible.
Hence, the expectation value of the observable is approximated
by large N and gives rise to a statistical error. It is important
to take enough configurations such that ergodicity is achieved.
In the case of two distinct regions of phase space, this can take
a very long simulation time.

For the Ising model, we produced a total of 55 000 spin
configurations, of size 28 × 28, equally distributed over 11
equidistant temperature values T ∈ [0,5] by employing the
Metropolis-Hastings algorithm [56] with simulated annealing.

For SU(2), we used the Heatbath algorithm [57] to produce a
total of 15 600 decorrelated configurations equally distributed
over 26 values in the range of βlatt = 4/g2 ∈ [1,3.5]. In the
context of this paper it is important to have decorrelated
data, since neural networks are good at finding structures, and
thus correlations between configurations, if existent. Due to
center symmetry breaking, in the deconfined phase the average
Polyakov loop can take either positive or negative values of
equal magnitude. In our simulations, we initiated all links with
the unit matrix, hence we introduced a bias for large values of
βlatt, i.e., our simulations are not fully ergodic. At large values
of βlatt, this will prevent a full exploration of phase space. If we
were to employ neural networks to extract the position of the
phase transition, this nonergodicity leads to a shift in the value
of critical βlatt. Generally speaking, ergodicity can be retained
by doing more simulations and employing algorithms such as
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FIG. 4. Results of the correlation probing neural network applied to the Ising model. (a) The latent prediction is perfectly correlated with
the absolute value of the average of spins, i.e., the magnetization in the 1 × 1 network. (b) The latent prediction of the 1 × 2 network is not
correlated with the absolute value of the average of spins. (d) The latent prediction of the 1 × 2 network is perfectly correlated with the average
product of neighbors, i.e., the expected energy per site. (c) The latent prediction of the 1 × 1 network is not correlated with the average of
neighbors.

simulated annealing or overrelaxation, thus in principle it is
possible to extract the critical temperature reliably.

APPENDIX B: NEURAL NETWORK ARCHITECTURE

We constructed our machine learning pipeline using Scikit-
learn [58] and Keras [59]. The neural network architectures
are presented in Tables III and IV. Since there is no Convo-
lutional4D in Keras, we just rearranged our samples to fit a
Convolutional1D layer. We used neural networks with number
of filters nA,nB,nD ∈ {1,4,8,32,256,1024}. The kernel sizes
A, B, C are used to set the receptive field size. For our
problems, nC = 1 is sufficient to capture the structure of
the order parameter. This was probed in the same manner
as finding the optimal receptive field size. In other models one
might need a higher nC , e.g., in the Heisenberg model, nC = 3
could be optimal. Hence, this can already be an early indicator
for the type of the broken symmetry. The activation functions
are rectified linear units relu(x) = max(0,x) between all layers

and the sigmoid function sigmoid(x) = 1/[1 + exp(−x)] in
the last layer. We do not employ any sort of regularization.
The training objective is minimizing the binary cross entropy
loss function

C(Y,P ) = − 1

N

∑
i

[yi lnpi + (1 − y)ln(1 − pi)], (B1)

where Y = yi is a list of labels and P = pi is the corresponding
list of predictions. Our baseline classifier is the classifier which
assigns each label with a probability of pi = 0.5. This means
that this classifier just assigns a label to each sample randomly.
The binary cross entropy then evaluates to 0.6931. The neural
networks learn by optimizing the weights and biases via
RMSprop gradient descent. The neural networks were trained
for 300 epochs or less, if the loss already saturated in earlier
epochs. The validation set is 20% of the training data.
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FIG. 5. (a) Finding a possible phase transition in SU(2) lattice
gauge theory with PCA. Green solid: The average mean squared
error reconstruction loss as a function of temperature is a universal
identifier for a phase transition. It was calculated in 100 independent
incremental PCA runs with two principal components (PC), measured
in units of ×10−5 and shifted by the value at β = 3.5. Blue dotted:
The average norm of the PC also indicates a phase transition.
(b) There is no correlation between the principal components and
the Polyakov loop.

APPENDIX C: CROSS COMPARISON OF ISING MODEL
NEURAL NETWORK RESULTS

In Fig. 4 we show that latent parameters of the neural
networks applied to the Ising model cannot be simultaneously
correlated with the magnetization and the average energy per
spin.

APPENDIX D: UNSUPERVISED LEARNING OF PHASE
TRANSITIONS IN SU(2) LATTICE GAUGE THEORY

We assume no prior knowledge of the phase transition,
even its existence. Hence, we employ unsupervised learning
to find any possible indications for a phase transition. For the
sake of simplicity we employ principal component analysis
(PCA) [32,60] with two principal components. PCA is an
orthogonal linear transformation of the input samples to a
set of variables, sorted by their variance. Here, unsupervised
learning algorithms that are based on the reconstruction loss
like autoencoders [33] are doomed to fail, since the states
are gauge invariant. The autoencoder would need to predict a
matrix which is not unique.

Even though the Polyakov loop is a nonlinear order
parameter, PCA captures indications of a phase transition
at β ∈ [1.8,2.2], which is demonstrated in Fig. 5(a). Here
we employed the average reconstruction loss [33] and the
Euclidean norm of the principal components as identifiers
for a phase transition. In Fig. 5(b) we show that there is
no correlation between the Polyakov loop and the principal
components.

It is worth noting that this example shows that PCA can
capture phase indicators even when the principal components
cannot approximate any order parameter.

APPENDIX E: REGRESSION OF THE POLYAKOV LOOP
IN THE LOCAL NEURAL NETWORK

We perform a regression on the latent prediction of the local
neural network on only 1% of the local samples of size 2 ×
1 × 1 × 1 and use another 1% as validation set. By comparing
different algorithms, we find that a second-order polynomial
regression gives the best results; see Table V.

APPENDIX F: FULL REGRESSION OF THE POLYAKOV
LOOP IN THE GLOBAL NEURAL NETWORK

Here we present the general procedure for reconstructing
the decision function of a neural network applied to SU(2)
gauge theory. Since it requires separating the correlation
probing network into subnetworks, and transferring weights
between different networks, it requires more advanced knowl-
edge of artificial neural network architecture.

The decision function of the 2 × 1 × 1 × 1 neural network
which predicts the lattice SU(2) phase transition is by
construction

D(S) = F

(
2

N

∑
	x

f
(
U 0,	x

τ ,U 0,	x
x ,U 0,	x

y ,U 0,	x
z ,

U 1,	x
τ ,U 1,	x

x ,U 1,	x
y ,U 1,	x

z

))
. (F1)

In general, we cannot assume that the prediction network
consists only of the output neuron. Therefore, we suggest a
different procedure for constructing the decision function. We
split the full correlation probing net into subnetworks: we
extract the localization network plus averaging layer and the
prediction network as separate networks. In order to deter-
mine F (S) = sigmoid(ξ (S)), we use polynomial regression to
fit the latent prediction of the prediction network to the output
of the averaging layer. We find a polynomial of degree 1 is
enough to fit the data, and ξ is approximated by

ξ (x) ≈ −0.7101 x + 9.851 434 19. (F2)

The slope and intercept can be absorbed by the weight w and
bias b of the output neuron, such that we can infer

ξ (x) ≈ w x + b. (F3)

The function f requires us to build a new local neural
network which only acts on patches of size 2 × 1 × 1 × 1. By
construction this network has the same number of weights and
biases as the full neural network acting on the input of size
2 × 8 × 8 × 8. Instead of training the local neural network,
we transfer the weights and biases from the full correlation
probing network to the local neural network. Hence, one can
obtain the output of the localization network for each patch
separately. Again, we employ polynomial regression to fit the
input from the local patches to the output of the localization
network. The result of a regression of degree 2 with 561
parameters yields

f
({

Ux0
μ

}) ≈ − 26.8354 a0
τ a

1
τ − 2.4972 d0

τ c1
τ + · · ·

+ 1.5653 b0
τ c

0
τ + 26.5908 b0

τ b
1
τ

+ 27.7054 c0
τ c

1
τ + 27.8939 d0

τ d1
τ . (F4)
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After absorbing overall factors and the intercept by the weights
and biases of the prediction network and neglecting the
subleading terms, we rewrite f as

f
({

Ux0
μ

}) ≈ a0
τ a

1
τ − b0

τ b
1
τ − c0

τ c
1
τ − d0

τ d1
τ . (F5)

This is the Polyakov loop on a single lattice site. By employing
(F5) as an argument of (F3), we can promote f ({Ux0

μ }) →
f ({Ux0,	x

μ }) to depend on space again. We obtain the definition

of the decision function

D(S) ≈ sigmoid

[
w

(
2

N

∑
	x

f
({

Ux0,	x
μ

})) + b

]
, (F6)

where Q(S) = [ 2
N

∑
	x f ({Ux0,	x

μ })] is the Polyakov loop on the
full lattice.
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