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Dynamic scaling analysis of the long-range RKKY Ising spin glass DyxY1−xRu2Si2
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Dynamic scaling analyses of linear and nonlinear ac susceptibilities in a model magnet of the long-rang
Ruderman-Kittel-Kasuya-Yosida (RKKY) Ising spin glass (SG) Dy0.103Y0.897Ru2Si2 were examined. The
obtained set of critical exponents, γ ∼ 1, β ∼ 1, δ ∼ 2, and zν ∼ 3.4, indicates the SG phase transition
belongs to a universality class different from that of either the canonical (Heisenberg) or short-range Ising SGs.
The analyses also reveal a finite-temperature SG transition with the same critical exponents under a magnetic
field and the phase-transition line Tg(H ) described by Tg(H ) = Tg(0)(1 − AH 2/φ), with φ ∼ 2. The crossover
exponent φ obeys the scaling relation φ = γ + β within the margin of errors. These results strongly suggest
spontaneous replica-symmetry breaking (RSB) with a non- or marginal-mean-field universality class in the
long-range RKKY Ising SG.
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I. INTRODUCTION

The stability of a spin glass (SG) under a magnetic field is an
important issue because it relates to the nature of the SG state,
that is, complex or simple. The mean-field theory based on
the infinite-range interaction model, the so-called Sherrington-
Kirkpatrick (SK) model [1], predicts a spontaneous replica-
symmetry breaking (RSB) at the SG transition temperature Tg

[2]. In the RSB picture, the SG state is characterized by a
complex free-energy landscape with multivalley structure and
numerous thermodynamic equilibrium states, which are not
related to each other by trivial symmetry operations [3]. On
the other hand, a different SG picture was predicted on the basis
of the phenomenological droplet theory [4], where the replica
symmetry (RS) is maintained and only two thermodynamic
equilibrium states exist, which are trivially related to each
other by the time-reversal operation. The former RSB SG is
stable even under a finite magnetic field [5], whereas the latter
RS SG state becomes unstable by an infinitely small magnetic
field [4]. Hence, the stability of the SG under a magnetic field
is a good touchstone to distinguish the RSB and RS SGs.

In spite of many efforts and its scientific importance, the
stability of the SG state under a magnetic field is still an
open question, except for limited-number models, such as the
SK model. The systems below the upper critical dimension
(<du = 6), including a three-dimensional (3D) system, are
especially interesting because they can be compared with
realistic systems directly. However, there is still no definitive
consensus on this issue in such “low”-dimensional systems.
Indeed, most of the numerical studies did not show the SG
transition in a field [6–9], although several did [10–12]. The
conflict may be due to quite large corrections to finite-size
scaling.

Experimentally, the stability of the SG under a magnetic
field has also been examined for various type of systems
[13–18]: Ising-like, XY-like, and Heisenberg-like systems
with a short-range (super)exchange interaction and long-
range dipolar and Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions; however, the results are not conclusive yet. The
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difficulty of experimentally verifying the SG transition in a
field is mostly due to the nonequilibrium effects due to their
unavoidable long relaxation time.

Here we introduce two former experimental studies using
the same protocol to test the SG transition in a field by
dynamic critical scaling analysis: one is an experiment for
a model magnet of the short-range Ising SG FexMn1−xTiO3

[14] and the other is for that of the long-range RKKY Ising
SG DyxY1−xRu2Si2 [16]. According to the dynamic scaling
hypothesis [19], the characteristic relaxation time τ diverges
when approaching the transition temperature Tg in a power-law
fashion with the critical exponent zν. If the transition presents
even in a finite magnetic field, the characteristic relaxation
time at certain temperature T and field H , τ (T ,H ), obeys

τ (T ,H ) = τ0[T/Tg(H ) − 1]−zν, (1)

with a field-dependent transition temperature Tg(H ) and
field-insensitive microscopic time scale τ0 and zν. For both
FexMn1−xTiO3 and DyxY1−xRu2Si2, τ (T ,H ) was estimated
from the frequency ω dependence of the ac susceptibility
using the same protocol: χ ′(T ,H ; 1/τ ) = (1 − α)χeq(T ,H ),
where χ ′(T ,H ; ω) is the real part of the ac susceptibility and
χeq(T ,H ) is the equilibrium susceptibility estimated from the
dc-magnetization measurements. In FexMn1−xTiO3, τ obeys
the dynamic scaling law (1) only at zero field and, rather, obeys
the scaling law based on the droplet theory where τ diverges
only at a zero field below Tg(0) or at zero temperature in finite
fields. On the other hand, τ (T ,H ) obeys Eq. (1) in both zero
and finite fields in DyxY1−xRu2Si2. These results strongly
suggest that the short-range and long-range Ising SGs belong
to different universality classes, and the replica symmetry is
broken only in the long-range one.

In this paper, we report on an extended study to verify the
SG transition under a magnetic field in Dy0.103Y0.897Ru2Si2.
The temperature region used for the scaling analysis in the
previous study [16], ε (≡ T/Tg − 1) > 0.2, was rather far
from Tg, and thus, the observed critical behavior might not
be genuine. In this study, dynamic scaling analyses of the
linear and nonlinear ac susceptibilities were examined by
using data in the temperature T regions closer to Tg, where
the scaling analysis works more appropriately. The analyses
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reveal the finite-temperature SG transition both in zero and
finite magnetic fields, as well as in the previous study. The
obtained set of the critical exponents is γ ∼ 1, β ∼ 1, δ ∼
2, and zν ∼ 3.4. The crossover exponent φ ∼ 2, obtained
from the field dependence of Tg(0) − Tg(H ) ∝ H 2/φ , obeys
the scaling law [20] φ = γ + β within a margin of error. The
existence of the SG transition in a finite magnetic field indicates
the spontaneous RSB in the long-range RKKY Ising SG.
Nevertheless, the fulfillment of the scaling law φ = γ + β and
the zν slightly larger than the mean-field value [21] (zν)mf = 2
suggest that the SG transition belongs to a different universality
class than the mean-field one.

II. EXPERIMENTS

A single-crystalline sample of Dy0.103Y0.897Ru2Si2 grown
using the Czochralski method with a tetra-arc furnace,
which had been used for a previous study [16], was reused
for the present experiments. The ac and dc magnetization
measurements were performed using the superconducting
quantum interference device magnetometer (Quantum Design)
equipped in the Research Center for Low Temperature and
Material Science at Kyoto University. Both measurements
were performed in the temperature and field region: 1.9 K
� T � 4.0 K and 0 Oe � H � 800 Oe, respectively. The
dc magnetization was measured 10 min after stabilization
at certain temperature and field to obtain a thermodynamic
equilibrium magnetization. The ac susceptibility was mea-
sured with an ac field of 3 Oe and a frequency of 0.01 Hz
� ω � 20 Hz. The waiting time after the stabilization of
temperature and field for the ac measurement was also 10 min.
We confirmed that the ac susceptibility does not show waiting
time dependence after 5 min within a margin of error down to
1.9 K, which is the lowest measurement temperature of this
study. This result indicates that we can avoid aging effects,
which are often observed in spin-glass states, and we can
capture the equilibrium dynamics in the present measurements.

III. RESULTS AND ANALYSES

A. In zero magnetic field

Here we show the experimental results and dynamic scaling
analyses of nonlinear ac susceptibility and the imaginary part
of the ac susceptibility to investigate the thermodynamic SG
phase transition of Dy0.103Y0.897Ru2Si2 in zero magnetic field.
In the zero-field limit, nonlinear susceptibility corresponds to
the SG susceptibility, and the critical phenomena, divergences
of the SG susceptibility with a static critical exponent γ and the
characteristic relaxation time with a dynamic critical exponent
zν when approaching the SG transition temperature Tg, can
be captured simultaneously by measuring the nonlinear ac
susceptibility. The divergence of the characteristic relaxation
time can also be captured by measuring the imaginary part
of the ac susceptibility, which is related to the dynamic
spin autocorrelation function by the fluctuation-dissipation
theorem. The details of the dynamic scaling of the nonlinear
ac susceptibility and the imaginary part of the ac susceptibility
are described in Appendixes A and B.

Linear and nonlinear dc susceptibilities χdc
2n(T ) are ob-

tained by fitting the dc magnetization divided by the field

Mdc(T ,H )/H as a series function of H 2 in the form of

Mdc(T ,H )/H =
∑
n�0

χdc
2n(T )H 2n, (2)

and these dc susceptibilities generally can be considered ther-
modynamic equilibrium ones. Similarly, linear and nonlinear
ac susceptibilities χ ac

2n(ω; T ) are obtained by fitting the ac
susceptibility in the dc field χac(ω; T ,H ) as a series function
of H 2. Since χac(ω; T ,H ), the dynamic response with a small
ac field at T and H , can be recognized as a differential
magnetization with a frequency of ω dMac(ω; T ,H )/dH [22],
it is given by a series function of H 2 in the form of

χac(ω; T ,H ) = dMac(ω; T ,H )

dH

=
∑
n�0

(2n + 1)χ ac
2n(ω; T )H 2n. (3)

For instance, the field dependence of the real part of the ac
susceptibility χ ′

ac with ω = 0.01 Hz at T = 1.9 K is shown in
Fig. 1(a), which is well fitted by using Eq. (3) up to n =
2, denoted as a solid line. The linear ac susceptibility χ ′

0
(n = 0) is obtained as the intercept of the vertical axis, and
the first nonlinear ac susceptibility coefficient χ ′

2 (n = 1),
the leading nonlinear term, is obtained as the initial slope of the
χ ′

ac curve. The real part of the full nonlinear ac susceptibility
χ ′

nl(ω; T ,H ) ≡ χ ′
ac(ω; T ,H ) − χ ′

0(ω; T ), including all non-
linear terms in the ac susceptibility, with several frequencies at
T = 1.9 K is shown in Fig. 1(b) with the nonlinear part of the
fitting results using Eq. (3). Strong suppression of χ ′

nl(ω; T ,H )
with increasing frequency is found. As discussed later, the
nonlinear ac susceptibility does not merge into the static one
even with 0.01 Hz below 2.5 K, in the vicinity of Tg, indicating
the time scale of the critical spin dynamics in this temperature
region is more than 100 s.

Figures 1(c) and 1(d) show temperature dependences of the
real parts of the linear susceptibility and the first nonlinear
ac susceptibility coefficient, χ ′

0(ω; T ) and χ ′
2(ω; T ). Both

susceptibilities exhibit frequency dependences below 4 K.
Especially, strikingly strong frequency dependence is found
in χ ′

2(ω; T ), which corresponds to a dynamic susceptibility of
the SG order parameter. Indeed, χ ′

2(ω; T ) with ω = 0.01 Hz
deviates from the nonlinear dc susceptibility coefficient χdc

2 (T )
below 2.5 K, whereas χ ′

0(ω; T ) with 0.01 Hz almost collapses
on χdc

0 (T ). Hence, the observed slow dynamics is considered
to be due to the critical slowing down of the SG transition. The
temperature dependence of χ ′

2(ω; T ) is also much stronger than
that of χ ′

0(ω; T ) and shows a peak at a frequency-dependent
temperature Tpeak(ω), which corresponds to a dynamic spin-
freezing temperature where spins are frozen within the
time scale of 1/ω and is extrapolated to a thermodynamic
equilibrium SG transition temperature Tg with ω → 0. The
peak of χ ′

2(ω; T ) becomes sharper, and its temperature begins
to fall with decreasing frequency and seems to be extrapolated
to a certain finite temperature of ∼1.9 K. This suggests
the thermodynamic SG transition at around ∼1.9 K at zero
field.

Figure 2(a) shows a double-logarithmic plot of the real part
of the first nonlinear ac susceptibility coefficient χ ′

2 against the
reduced temperature ε = T/Tg − 1 assuming Tg = 1.905 K,
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FIG. 1. (a) The real part of the ac susceptibility χ ′
ac with ω =

0.01 Hz at T = 1.9 K. (b) The real part of the full nonlinear ac
susceptibility χ ′

nl with several representative frequencies at T =
1.9 K. Solid lines in (a) and (b) represent the fitting results using
Eq. (3) up to n = 2. The dashed line in (a) represents a leading term
in Eq. (3), 3χ ′

2H
2. Temperature dependences of (c) the real part of

the linear ac susceptibility χ ′
0 and (d) first nonlinear ac susceptibility

coefficient χ ′
2 with several representative frequencies. Solid lines

represent the corresponding dc susceptibilities, χdc
0 and χdc

2 .

FIG. 2. (a) Double-logarithmic plot of χ ′
2 with several represen-

tative frequencies against the reduced temperature ε = T/Tg − 1
assuming Tg = 1.905 K. The dashed line represents a divergent
behavior of χ ′

2 ∝ ε−1.05. (b) Double-logarithmic plot of χ ′
2 at T =

1.9 K against the frequency. The dashed line represents a divergent
behavior of χ ′

2 ∝ ω−0.33. (c) Dynamic scaling plot of χ ′
2 in the form

of −χ ′
2ε

γ vs ωε−zν , described in Eq. (A3). Dashed lines represent the
asymptotes of the scaling function given in Eq. (A4). (d) Dynamics
scaling plot of χ ′

nl at T = 1.9 K in the form of −χ ′
nlH

−2/δ vs
ωH−2zν/βδ , described in Eq. (A9). The dashed line represents the
asymptote of the scaling function given by Eq. (A10).

184406-3



Y. TABATA, T. WAKI, AND H. NAKAMURA PHYSICAL REVIEW B 96, 184406 (2017)

which is actually obtained by the dynamic scaling analysis
of χ ′

2 described later. χ ′
2 exhibits a ε−1.05 behavior in the

high-temperature region, denoted by a dashed line. Similar
ε−1-like behavior is observed whenever Tg is assumed to be
near 1.9 K. A double-logarithmic plot of χ ′

2 at 1.9 K against
ω is shown in Fig. 2(b). In the plot, χ ′

2 diverges down to
ω → 0 as ω−0.33. These divergent behaviors of χ ′

2 against ε

and ω are considered its critical divergences in the asymptotic
region for T → Tg and ω → 0, expressed in Eq. (A5) in
Appendix A, which suggest critical exponents γ and zν are
roughly ∼1 and ∼3, respectively. We tried to analyze the
experimental data of χ ′

2(ω; T ) in the range of 0.01 < ε <

1 and 0.01 Hz � ω � 20 Hz using a dynamic scaling plot
in the form of −χ ′

2ε
γ vs ωε−zν , described in Eq. (A3). The

best scaling plot is shown in Fig. 2(c). The experimental data
well collapsed on a unique curve reveals that the dynamic
critical scaling of χ ′

2 works very well when assuming a finite
SG transition temperature. Furthermore, the experimental data
obey the asymptotes of the scaling function given in Eq. (A4),
as denoted by dashed lines in Fig. 2(c), which correspond
to the divergent behaviors for ω → 0 and ε → 0 shown in
Figs. 2(a) and 2(b). The obtained transition temperature and
critical exponents are Tg = 1.905(7) K and γ = 1.00(5) and
zν = 3.5(1), respectively.

Figure 2(d) shows a dynamic scaling plot of the real part
of the full nonlinear ac susceptibility very close to Tg [T =
1.9 K shown in Fig. 1(a)] in the form of −χ ′

nlH
−2/δ vs

ωH−2zν/βδ , given in Eq. (A9). In this plot, the experimental
data in the region of 100 Oe � H � 800 Oe and 0.01 Hz
� ω � 20 Hz collapses on a unique curve. The obtained
critical exponents are δ = 2.1(1) and zν/βδ = 1.62(5). The
dynamics of Dy0.103Y0.897Ru2Si2 near Tg is too slow to observe
the constant behavior of the scaling function for ω → 0,
whereas the power-law behavior for H → 0 is clearly seen,
as denoted by a dashed line in Fig. 2(d). The exponent β

is derived to be 1.00(5) from the above-mentioned dynamic
scaling analyses of χ ′

2(ω; T ) and χ ′
nl(ω; Tg,H ). The obtained

set of static critical exponents, γ, β, and δ, obeys the scaling
law γ + β = βδ within the margin of error [γ + β = 2.00(7)
and βδ = 2.10(12)]. The results, shown in Figs. 2(c) and
2(d), indicate that the dynamic scaling of the experimentally
obtained nonlinear ac susceptibility works very well and
confirm the thermodynamic SG phase transition at zero field.

The temperature dependence of the imaginary part of the ac
susceptibility at zero field χ ′′(ω; T ) with various frequencies
is shown in Fig. 3(a). Corresponding to the appearance of the
frequency dependence of the real part of the ac susceptibility
shown in Fig. 1(b), χ ′′(ω; T ) emerges below 4 K. The ω

dependences of χ ′′(ω; T ) at 1.9 and 4.0 K are shown in
Fig. 3(b), exhibiting ω0.35 and ω0.95 behaviors at 1.9 K (≈ Tg)
and 4.0 K (≈ 2Tg), respectively. The strongly nonanalytic
behavior close to Tg is a manifestation of the critical dynamics
described in Eq. (B5) in Appendix B, suggesting β/zν =
0.35. The dynamic scaling plot of χ ′′(ω; T ) in the form of
(χ ′′/χeq)ε−β vs ωε−zν described in Eq. (B2) is shown in
Fig. 3(c). In this analysis, the transition temperature Tg is
fixed to be 1.905 K, obtained from the dynamic scaling of the
first nonlinear ac susceptibility coefficient. The scaling with
β = 1.1(1) and zν = 3.45(8) reveals that the experimental
data in 0.01 < ε < 1.0 and 0.01 Hz � ω � 20 Hz collapse
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FIG. 3. (a) Temperature dependence of the imaginary part of the
ac susceptibility χ ′′ with several representative frequencies at a zero
field. (b) Double-logarithmic plot of χ ′′ at T = 1.9 K and 4.0 K
against the frequency. Solid lines represent nonanalytic and nearly
analytic behaviors at 1.9 and 4.0 K, ω0.35 and ω0.95, respectively.
(c) Dynamic scaling plot of χ ′′ in the form of (χ ′′/χeq)ε−β vs ωε−zν ,
described in Eq. (B6). Dashed lines represent the asymptotes of the
scaling function given in Eq. (B4).

on a unique curve very well. The asymptotic behaviors of the
scaling function K(x) expressed in Eq. (B4) are also clearly
found, which are represented by dashed lines in Fig. 3(c). The
obtained critical exponents are consistent with those obtained
in the analyses of χ ′

2 and χ ′
nl within a margin of error. The result

of this scaling analysis of χ ′′(ω; T ) affirms the zero-field SG
transition at Tg = 1.905 K.

B. In finite magnetic fields

Next, we try carrying out the dynamic scaling of
χ ′′(ω; T ,H ) in finite fields. If the thermodynamic SG transition
exists in finite fields and the characteristic relaxation time
τ (T ,H ) obeys the critical divergence expressed in Eq. (1), the
dynamic scaling of χ ′′(ω; T ,H ) works with finite transition
temperatures Tg(H ) as well as in zero field. It should be
noted that the critical divergence of the nonlinear susceptibility
coefficient is suppressed in the presence of magnetic field,
and thus, observation of the divergence of τ (T ,H ) through
the dynamic scaling of χ ′′(ω; T ,H ) is the best known way to
capture the SG phase transition in a finite field.
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Figures 4(a)–4(c) show dynamic scaling plots of
χ ′′(ω; T ,H ) at the representative fields, H = 100, 200,
300 Oe. The SG transition temperature Tg(H ) and critical
exponents β and zν are evaluated by these dynamic scaling
analyses separately for each field. The experimental data
collapse on a unique curve at each field with the asymptotic
behaviors ∝ x for x → 0 and ∝ xβ/zν for x → ∞. The
best scalings shown in the figures are obtained with almost
identical sets of critical exponents, β ∼ 1.1 and zν ∼ 3.4,
and monotonically reduced Tg(H ) with increasing field. The
field dependences of the obtained critical exponents and SG
transition temperatures are shown in Figs. 5(a) and 5(c). The
critical exponents are quite insensitive to the magnetic field.
Not only the critical exponents but also the scaling function
K(x) are almost universal against the magnetic field, as shown
in Fig. 4(d). These results demonstrate the existence of the
thermodynamic SG phase transition in both zero and finite
fields with the same universality class in Dy0.103Y0.897Ru2Si2,
indicating the spontaneous RSB. In the HT phase diagram
[Fig. 5(a)], an Almeida-Thouless-like Tg(H ) is found, which
is described by the functional form of

Tg(H ) = Tg(0)(1 − AH 2/φ), (4)

as shown in Fig. 5(b). The crossover exponent φ is estimated
as φ = 2.0(2), which is discussed in detail in Sec. IV.

IV. DISCUSSION

A. Critical exponents and universality class

Here we discuss the universality class of the RKKY Ising
SG under zero and finite fields based on the static and dynamic
critical exponents obtained in the present experiments.

The obtained set of static critical exponents, γ, β, and δ,
is very similar to that of the mean-field SK model, γmf = 1,
βmf = 1, and δmf = 2. The value of β does not vary in the field,
being within 1.0–1.2. Hence, Dy0.103Y0.897Ru2Si2, the model
magnet of the long-range RKKY Ising SG, seems to belong
to the mean-field universality class from the viewpoint of the
static critical phenomena. On the other hand, the crossover
exponent φ, defined from the field dependence of the SG
transition temperature as H 2 ∝ [1 − Tg(H )/Tg(0)]φ , derived
from Eq. (4), is estimated to be 2.0(2), as shown in Fig. 5(b),
which coincides with γ + β ∼ 2. According to the Fisher-
Sompolinsky scaling [20], the scaling relation φ = γ + β

is satisfied only below the upper critical dimension du = 6,
which is violated above du and continuously connected to the
SK value [5] for d → 8: φ = d/2 − 1 for 6 � d � 8 and φ =
3 for d � 8. The validity of the scaling relation φ = γ + β

in our results indicates that the RKKY Ising SG belongs to the
non- or marginal-mean-field universality class. The dynamic
critical exponent zν ∼ 3.4 being larger than the mean-field
value (zν)mf = 2 reinforces this argument. If the system
belongs to a non-mean-field universality class, under du, the
hyperscaling law is applicable. In our Dy0.103Y0.897Ru2Si2,
we can derive the critical exponent of the correlation length
ν = 1.07(5) and anomalous dimension η = 1.07(7) using
the hyperscaling relations γ = ν(2 − η) and dν = 2 − α =
2β + γ . Similar static critical exponents were obtained in
other RKKY Ising SG materials such as TbxY1−xRu2Si2 and
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FIG. 4. Dynamic scaling plots of χ ′′ in the form of
(χ ′′/χeq)ε(H )−β vs ωε(H )−zν at H = (a) 100, (b) 200, and
(c) 300 Oe. Dashed lines represent the asymptotes of the scaling
function given in Eq. (B4). (d) Scaling plot of χ ′′ for all fields is
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function K(x). Dashed lines in (d) are the asymptotes using the mean
value β = 1.11 and zν = 3.35 shown in Fig. 5(c).
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FIG. 5. (a) HT phase diagram of Dy0.103Y0.897Ru2Si2 derived
from the dynamic scaling analyses of χ ′′. (b) Double-logarithmic
plot of Tg(H ) in the form of H vs 1 − Tg(H )/Tg(0). Solid lines in (a)
and (b) represent the fitting result using Eq. (4). (c) Field dependences
of the critical exponents β and zν. Dashed lines represent the mean
value β = 1.11 and zν = 3.35.

GdxY1−xRu2Si2[17], indicating the universality of the RKKY
Ising SG.

The universality class of Dy0.103Y0.897Ru2Si2 is different
from the two archetypes of the real SG systems, the canonical
SG and FexMn1−xTiO3. The canonical SG is a group of
SG materials consisting of a nonmagnetic metal with low-
concentration magnetic impurities, such as Au(Fe), Cu(Mn),
Ag(Mn), and Pt(Mn), which are categorized into the RKKY
Heisenberg SG with weak random anisotropy. Most of the
canonical SG materials exhibit a universal critical behavior
with critical exponents γ ∼ 2, β ∼ 1, δ ∼ 3, and zν ∼ 7
[23–26]. On the other hand, FexMn1−xTiO3 is a model magnet
of the Ising SG with short-range (superexchange) interaction
and shows a SG transition with critical exponents γ 	 4.0,
β 	 0.54, δ 	 8.4, and zν 	 10 [13,14,27]. These differences
of the critical exponents are attributed to differences of
“relevant parameters” of the critical phenomena, such as
spin dimension, spatial dimension, and spatial dependence
of interaction. The spin dimension N is different between
Dy0.103Y0.897Ru2Si2 and the canonical SG, for which N = 1
(Ising) and 3 (Heisenberg), respectively, whereas the spatial

dependence of interaction is the same: the RKKY interaction
works in both. On the other hand, between Dy0.103Y0.897Ru2Si2
and FexMn1−xTiO3, the spin dimension is the same, whereas
the spatial dependence of interaction is different. The critical
exponents of these materials are listed in Table I. In Table I, ν

and η in the canonical SG and FexMn1−xTiO3, obtained using
hyperscaling relations, are also shown.

Here we should emphasize the difference between
Dy0.103Y0.897Ru2Si2 and FexMn1−xTiO3, the long-range
RKKY and short-range Ising SGs. Smaller ν and larger η with
the sign changed to positive are estimated in the long-range
RKKY Dy0.103Y0.897Ru2Si2. Especially, the large positive η

in the RKKY Ising SG causes the marginal-mean-field-like
critical phenomena. Some numerical works [32–34,36,37] also
showed that the long-range interaction, such as RKKY and
dipolar interactions, systems have a criticality different from
that in corresponding short-range interaction systems. For
instance, smaller ν is estimated in the dipolar Ising SG: ν ∼
1 and 2.5 in the dipolar [32–34] and short-range Ising systems
[28–30], respectively. In addition, slightly smaller ν and larger
η are estimated in the dipolar [37] and RKKY [36] Heisenberg
systems compared with those in the short-range system
[35,38]. The critical exponents obtained in these numerical
works are also listed in Table I. Experimental and numerical
studies on the criticality of long-range SGs in three dimensions
are restrictive; for instance, η has not been numerically
estimated in the long-range Ising SGs, and only limited Ising
compounds have been examined experimentally; thus, the
comparison between them should be limited. Nevertheless, we
should note that the same characteristic trends in long-range
interaction systems, smaller ν and larger η, are found in both
experimental and numerical works.

On the other hand, the criticality of the RKKY Ising SG
in three dimensions should belong to the same universality
class as the corresponding short-range Ising SG, in accordance
with scaling theory [39–44], which apparently contradicts
our experimental findings. The system with the ρth power
decaying (r−ρ) long-range interaction in d dimensions can
be broken into three regimes: (i) the mean-field regime
d < ρ < ρmf(d), where the mean-field criticality is correct,
(ii) the long-range regime ρmf(d) < ρ < ρsr(d), where a
criticality different from the corresponding short-range one
appears, and (iii) the short-range regime ρsr(d) < ρ, where the
short-range criticality is found. In the SG system, the upper
bound of the mean-field regime is given by ρmf(d) = 4d/3
[39]. In the long-range regime, the correspondence between the
d-dimensional long-range system and D-dimensional short-
range system, D = [2 − ηsr(D)]d/(ρ − d), is conjectured
[42–44], where ηsr(D) is the anomalous dimension in the short-
range system. The upper bound of the long-range regime is
given by the condition of D = d as ρsr(d) = d + 2 − ηsr(d).
The RKKY interaction decays as Jij ∼ cos(kFrij )/r3

ij , and

its variance decays as J 2
ij ∝ r−6

ij . Hence, the RKKY Ising
SG system is a system with d = 3 and ρ = 6. This ρ is
apparently larger than ρsr(3) = 5 − ηsr(3) = 5.35, where the
anomalous dimension obtained in FexMn1−xTiO3 shown in
Table I is used, and ρmf(3) = 4. In a finite field, a different
anomalous dimension ηh

sr and consequent different ρh
sr can be

expected, which can be lower than the zero-field ρsr in any
known case [45]. As a consequence, the short-range criticality
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TABLE I. Critical exponents obtained in various SG materials and theoretical models. The listed critical exponents in the present work
are the values obtained from the analyses of χ ′

2 (γ ), χ ′
nl (δ), and χ ′′ at zero field (β and zν). Some exponents are derived via the scaling and

hyperscaling relations by using reported exponents. SE and SR mean superexchange and short-range interactions, respectively.

Compound or model γ β δ zν ν η Ref.

DyxY1−xRu2Si2 (Ising, RKKY) 1.00(5) 1.1(1) 2.1(1) 3.45(8) 1.07(5) 1.07(7) this work
FexMn1−xTiO3 (Ising, SE) 4.0 0.54 8.4 ∼11 1.7 −0.35 [13,14,27]
Canonical SGs (Heisenberg, RKKY) 1.5–2.2 0.9–1.0 2.5–3.3 ∼7 1.2–1.4 0.4–0.7 [22–26]
Simulation (Ising, SR) 6.0–6.5 0.52–0.8 6.3–8.8 ∼14 2.35–2.72 −0.384–−0.40 [28–31]
Simulation (Ising, dipolar) 0.95–1.28 [32–34]
Simulation (Heisenberg, SR) 2.6 0.95 3.7 1.49 0.28 [35]
Simulation (Heisenberg, RKKY) 2.0 0.98 3.0 1.3 0.5 [36]
Simulation (Heisenberg, dipolar) 0.72 1.4 1.5 1.2 1.4 [37]
Mean field 1 1 2 2 1/2 0 [21]

in the RKKY Ising SG in both zero and finite fields is
theoretically expected. This significant discrepancy between
our experimental findings and theoretical expectation for the
criticality in the RKKY Ising SG is an open question and
should be fixed in the future.

B. Comparison with previous work

Finally, we compare the present results with our previous
work [16] where the mean-field-like criticality γ ∼ 1, β ∼
1, δ ∼ 2, zν ∼ 2, and φ ∼ 2.4 was reported. In the present
work, we obtained almost the same static critical exponents,
a larger dynamic critical exponent, and a smaller crossover
exponent. Here we discuss possible reasons why slightly
different criticality is found, and the present result is more
genuine.

The most significant difference between the two studies is
that of the parameter (T ,H , and ω) regions of the dynamic
scaling analyses. The analyses in the present study were
conducted using experimental data closer to Tg and lower
frequency, namely, 0.01 � ε � 1 and 0.01 Hz � ω � 20 Hz
in the present study and 0.1 � ε � 2 and 0.1 Hz � ω �
100 Hz in the previous one. This difference enables a large
extension of the scaling regions to the smaller-ε side: for
instance, the scaling region of the dynamic scaling of χ ′′ at
zero field in the present study, 10−1 � ωε−zν � 108, shown
in Fig. 3(c), is largely extended from that in the previous
study (0.3 � ωε−zν � 104). As expected from the asymptotic
forms of χ ac

2 and χ ′′, Eqs. (A5) and (B5), the dynamic critical
exponent zν is strongly affected by the data close to Tg, and
thus, the larger zν (∼3.4 in the present study and ∼2 in
the previous one) is obtained. The estimation of Tg, and the
consequent estimation of the crossover exponent φ, is also
sensitive to the data close to Tg, and slightly different results
are obtained. On the other hand, the static critical exponents
γ and β are mostly affected by high-ε (high-T ) and weakly
frequency dependent data, and consequently, almost the same
values are obtained in the present and previous studies.

The influence of the T and H regions on the critical
exponents was formerly investigated in the static scaling
analyses of the canonical SG Ag(Mn), and the possibility for
the derivation of different critical exponents in high ε and H

ranges from those in low ε and H ranges was discussed [23].
The critical scaling form of physical quantities is an asymptotic

feature in the vicinity of the phase-transition temperature, and
thus, the present dynamic scaling result using experimental
data closer to Tg is more reliable and genuine.

V. CONCLUSION

We performed a detailed ac susceptibility measurement
of a model magnet of the long-range RKKY Ising SG
Dy0.103Y0.897Ru2Si2. Dynamic scaling analyses of linear and
nonlinear ac susceptibilities in the limited T , H , and ω regions,
where the critical scaling analyses work appropriately, clearly
reveal the existence of the SG phase transition in both zero and
finite fields with the same universality class, which indicates
the RSB in the long-range RKKY Ising SG. The set of critical
exponents (the static critical exponents γ ∼ 1, β ∼ 1, and δ ∼
2, dynamic critical exponent zν ∼ 3.4, and crossover exponent
φ ∼ 2) was obtained. The scaling relation φ = γ + β was
found within a margin of experimental errors, suggesting
that the long-range RKKY Ising SG belongs to a non- or
marginal-mean-field universality class.
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APPENDIX A: DYNAMIC SCALING OF THE NONLINEAR
AC SUSCEPTIBILITY

The full nonlinear dc susceptibility χdc
nl (T ,H ) ≡

Mdc(T ,H )/H − χdc
0 (T ) corresponds to the SG order param-

eter under its conjugate field H 2 and obeys the static scaling
[46,47],

χdc
nl (T ,H ) = εβF (H 2ε−βδ), (A1)

where ε ≡ T/Tg − 1 is a reduced temperature, β and δ

are critical exponents of the order parameter against the
temperature and conjugate field at Tg, respectively, and F (x)
is a scaling function. Equation (A1) is expanded as a series of
H 2,

χdc
nl (T ,H ) =

∑
n>0

χdc
2n(T )H 2n ∝

∑
n>0

εβ(1−nδ)H 2n, (A2)

where the first- and higher-order nonlinear susceptibil-
ity coefficients χdc

2n(T ) diverge as εβ(1−nδ) = ε−γ−(n−1)βδ
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(βδ = γ + β). The first nonlinear susceptibility coefficient
χdc

2 is a coefficient of the primary term of Eq. (A2) and
corresponds to the SG order parameter susceptibility which
diverges with the critical exponent γ .

According to the dynamic scaling hypothesis of second-
order phase transitions [19], the dynamic order parameter
susceptibility is described by a scaling function of ωτ =
ωε−zν , where ν is a critical exponent of the correlation length
(ξ ∝ ε−ν) and z is a dynamic critical exponent relating
the correlation length to the characteristic relaxation time
(τ ∝ ξz). In the case of a SG, the divergence of the first
nonlinear dc susceptibility coefficient can be extended to a
dynamic one as

χ ac
2 (ω; T ) = ε−γ f2(ωε−zν). (A3)

The scaling function f2(x) has asymptotic forms for x → 0
(T → ∞ or ω → 0) and x → ∞ (T → Tg or ω → ∞),

f2(x) ∝
{

const (x → 0),

x−γ /zν (x → ∞),
(A4)

and thus, the first nonlinear ac susceptibility coefficient
diverges as

χ ac
2 (ω; T ) ∝

{
ε−γ (ω → 0 or T → ∞),

ω−γ /zν (ω → ∞ or T → Tg).
(A5)

The asymptote for ω → 0 or T → ∞ in Eq. (A5) corre-
sponds to the divergent behavior of χdc

2 .
The dynamic scaling form of χ ac

2 can be generalized to
arbitrary n (> 0) as

χ ac
2n(ω; T ) = ε−γ−(n−1)βδf2n(ωε−zν)

= εβ(1−nδ)f2n(ωε−zν), (A6)

where f2n(x) is the scaling function and has asymptotic forms,

f2n(x) ∝
{

const (x → 0),

xβ(1−nδ)/zν (x → ∞).
(A7)

Combining Eq. (A6) with the definition of the full nonlinear
ac susceptibility χ ac

nl (ω; T ,H ) ≡ χac(ω; T ,H ) − χ ac
0 (T ), the

scaling form of χ ac
nl (ω; T ,H ) is obtained as

χ ac
nl (ω; T ,H ) =

∑
n>0

(2n + 1)χ ac
2n(ω; T )H 2n

=
∑
n>0

(2n + 1)εβ(1−nδ)f2n(ωε−zν)H 2n

= εβF̃ (ωε−zν,H 2ε−βδ). (A8)

Consequently, the scaling form of χ ac
nl (ω; T ,H ) at Tg is deduced

using Eqs. (A7) and (A8) as

χ ac
nl (ω; Tg,H ) →

∑
n>0

(2n + 1)ωβ(1−nδ)/zνH 2n

= ωβ/zνg(H 2ω−βδ/zν)

= H 2/δh(ωH−2zν/βδ). (A9)

The scaling function h(x) should asymptote for x → 0 and
∞,

h(x) ∝
{

const (x → 0),

x−γ /zν (x → ∞),
(A10)

leading to asymptotic forms of χ ac
nl (ω; Tg,H ),

χ ac
nl (ω; Tg,H ) ∝

{
H 2/δ (ω → 0 or H → ∞),

ω−γ /zνH 2 (ω → ∞ or H → 0).

(A11)

The former form corresponds to the critical field dependence in
the static limit, and the latter one corresponds to the zero-field
limit as χ ac

2 (ω; T → Tg)H 2.

APPENDIX B: DYNAMIC SCALING OF THE IMAGINARY
PART OF THE AC SUSCEPTIBILITY

The spin autocorrelation function q is a dynamic SG order
parameter and obeys the dynamic scaling by t/τ as [19,48]

q(t ; T ) = t−β/zνQ(t/τ ). (B1)

Using linear-response theory, the imaginary part of the ac
susceptibility χ ′′ and its scaling form are derived from q as

χ ′′(ω; T ) = χeq(T )ω
∫ ∞

0
dtq(t ; T ) cos ωt

= χeq(T )ωτ 1−β/zν

∫ ∞

0
dyy−β/zνQ(y) cos ωτy

= χeq(T )τ−β/zνK(ωτ )

= χeq(T )εβK(ωε−zν), (B2)

where the scaling function is given by

K(x) = x

∫ ∞

0
dyy−β/zνQ(y) cos xy. (B3)

The spin autocorrelation function q(t) is expected to decay in
power-law fashion as t−β/zν at T = Tg. And χ ′′ is proportional
to ω far from Tg. Thus, the scaling function K(x) should
asymptote as

K(x) ∝
{
x (x → 0),

xβ2/zν (x → ∞),
(B4)

which leads to the following asymptotic forms of χ ′′/χeq:

χ ′′(ω; T )

χeq(T )
∝

{
ωεβ−zν (ω → 0 or T → ∞),

ωβ/zν (ω → ∞ or T → Tg).
(B5)

If the SG phase transition under a finite magnetic field
exists, the characteristic relaxation time at T and H, τ (T ,H ),
shows a critical divergent behavior to a certain phase-transition
temperature in the field Tg(H ) as τ (T ,H ) ∝ ε(H )−zν , where
ε(H ) ≡ [T/Tg(H ) − 1]. Thus, the dynamic scaling form (B2)
can be rewritten as

χ ′′(ω; T ,H )

χeq(T ,H )
= ε(H )βK[ωε(H )−zν]. (B6)
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