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Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire
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Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results
of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the
average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes,
in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same
frequency. These results open the possibility of new oscillation-based applications.
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I. INTRODUCTION

The understanding of the domain wall (DW) dynamics
is a cornerstone in nanomagnetism owing to the potential
technological applications in modern nanoelectronics such as
high density memories [1] and logic devices [2]. In particular,
the promising concept of “race-track memory” [1,3] demands
a well-controlled motion of the DW along a nanowire. In this
context, several works have studied the controlled displace-
ment of DWs in stripes [4–9] and cylindrical wires [10–12].
Such studies have revealed that geometry plays a fundamental
role in the DW dynamics. For instance, rectangular wires
exhibit a Walker field [13]; that is, while at low fields the
DW velocity is linearly proportional to the field, at some
critical value the velocity drastically drops and an oscillatory
behavior of the DW position is observed [8]. On the contrary,
in cylindrical nanowires, the DW does not change its structure
during the motion and thus no Walker limit or critical velocity
is observed [11]. Other examples of important geometrical
effects on the DW motion are an increase of the DW velocity
by a factor of 4 if a magnetic stripe has a series of cross-shaped
traps [14] or the pinning of the DW by artificial necks in
wires [15].

Since the shape of the nanowire, frequently curved by
nature, affects the magnetization statics and dynamics [16],
and many of the potential applications of the DW include curvi-
linear segments along the wire (see, for example, Ref. [1]), it
is fundamental to understand how the curvature influences
the DW dynamics. Recent theoretical studies have shown that
new interesting phenomena appear when a cylindrical wire is
curved. First, it has been shown that due to a curvature-induced
Dzyaloshinsky-Moriya interaction (DMI), the DW gets pinned
at the maximum of the curvature and, to minimize the exchange
cost, a phase selectivity occurs; that is, a head-to-head DW is
directed outward while a tail-to-tail DW is directed inward the
bend [17]. This curvature-induced DMI is also responsible for
the formation of a new DW profile, given by a head-to-head
vortex-antivortex pair in toroidal magnetic nanoparticles [18].
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Recently, the effects of the curvature on a magnetic helicoid
ribbon as well as on a Möbius ribbon have been analyzed [19].
It has also been shown that the spin-current driven DW motion
is strongly dependent on curvature and torsion [20]. In this
case, the curvature results in the existence of a Walker limit
for a uniaxial wire, and the torsion induces an effective shift of
the nonadiabatic spin torque parameter [20]. The direction
of motion of a DW along a helical wire under the action
of a Rashba spin-orbit torque depends on the helix chirality
and wall charge in such a way that DWs can be moved only
under the action of Rashba and geometrical effects [21]. Thus,
the curvature can induce inhomogeneities in the DW profile.
Under this frame, the study of the influence of curvature on
the DW velocity is paramount.

In this paper, by means of an analytical model and
micromagnetic simulations, we explore the dynamics of a
transverse DW in a curved cylindrical nanowire driven by
a constant external magnetic field. We have analyzed the
DW motion for different curvatures of the nanowire, going
from 0 until it reaches its maximum, which is a half-torus
section. Our results demonstrate a strong dependence of
the DW dynamics on the curvature of the wire, leading to
the possibility of engineering its characteristic features. The
manuscript is organized as follows. In Sec. II, the analytical
model for a curved nanowire is developed and an effective
equation of motion for the DW is presented. In Sec. III,
numerical simulations using NMAG micromagnetic software
[22] are performed for different control parameters. Finally,
conclusions are presented in Sec. IV.

II. THEORETICAL MODEL

Let us consider a curved wire with length L and diameter d

characterized by a magnetization, M. Its dynamics is modeled
by the Landau-Lifshitz-Gilbert (LLG) equation

∂m
∂τ

= m × δE
δm

+ α m × ∂m
∂τ

, (1)

where m = M/MS , such that MS is the saturation magne-
tization. Here, we use dimensionless time τ = tγ0Ms and
dimensionless energy E = E/(μ0M

2
SV ), such that V is the
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FIG. 1. The top figure shows the adopted coordinate system
to describe the curved wire, the magnetization direction, and the
domain wall. The bottom figures show different nanowires with their
corresponding n values and dimensions. All the wires have 1 μm of
length along their axis, which is indicated with red lines.

volume, μ0 is the magnetic permeability, and γ0 = μ0|γ |,
with γ = 1.76 × 1011rad/T s being the gyronagnetic factor.
Additionally, α is the dimensionless Gilbert damping pa-
rameter. In our calculations, we consider a Permalloy wire
characterized by the saturation magnetization μ0Ms = 1T and
the exchange constant A = 1.3 × 10−11J/m and we fix the
damping constant to α = 0.01.

The geometrical description of a curved nanowire is done
by using a toroidal coordinate system, given by

r = êR (r + R cos θ ) + θ̂ R sin θ , (2)

where êR and θ̂ are the radial unitary vector and the angular
unitary vector, respectively, with R and r as the toroidal
and poloidal radii, respectively. The angles θ ∈ [−θ0,θ0] and
ϕ ∈ [0,2π ] play the role of azimuthal and poloidal angles,
respectively, as is shown in Fig. 1. This parametrization
allows us to define the wire length as L = 2θ0R, which is
fixed in this work. Even though this parametrization yields a
geometry with variable Gaussian curvature, in this work we
define the curvature of the wire as K = 1/R. Then, variations
in the curvature are represented by simultaneous changes
in the toroidal radius R = nL/2π and the azimuthal angle
θ ∈ [−π/n : π/n], where n ∈ [2,∞) is a real number (see
Fig. 1). It can be noted that the wire with greater curvature,
described by a half-torus section, is obtained when θ0 = π/2,
and an almost straight wire is obtained for n → ∞. The
description of such a curved wire by its toroidal and poloidal
radii is more suitable than other representations [23–25].

Let us parametrize the magnetization m in the spherical
coordinate system lying on a curvilinear background described
by a Frenet-Serret basis (θ̂ , − êR,ẑ), that is, m = θ̂ cos 
 −
êR sin 
 cos � + ẑ sin 
 sin �, where the directional vectors
are associated with a toroidal coordinate system given in
Eq. (2).

The LLG equations in this coordinate system can be
written as

− sin 

∂


∂τ
= δE

δ�
+ α sin2 


∂�

∂τ
(3)

and

sin 

∂�

∂τ
= δE

δ

+ α

∂


∂τ
. (4)

For the energy, we employ a simple model that contains
only tree contributions: exchange, magnetostatic, and Zeeman.
Hence, the energy can be written as

E = S R

∫ θ0

−θ0

[
�2Eex − λ cos2 
 − �2

A
H · M

]
dθ , (5)

where S = πr2 is the area of the wire cross section, � =√
A/(μ0M

2
S ), Eex is the exchange energy density, H =

H (θ̂ cos θ − êR sin θ ) is the external magnetic field point-
ing along the y-axis direction, and λ is the dimension-
less anisotropy constant. Following the model described in
Refs. [17,20], we consider that λ > 0 represents an easy-
tangential anisotropy coming from magnetostatic contribu-
tions. It is worth noting that there is a dependence of λ on θ and
ϕ, coming from the fact that the demagnetizing field depends
on the geometry of the magnetic body [26]. However, because
of the considered dimensions, this difference is small, and we
adopt λ = 1/4 to describe magnetostatic contributions to the
energy [8,17,20]. In terms of the adopted parametrization, the
exchange energy density is given by [17,27]

Eex

K2
=

(
∂


∂θ
+ cos �

)2

+
(

sin 

∂�

∂θ
− cos 
 sin �

)2

.

(6)

The DW properties can be analyzed based on a collective
variable approach [28,29]. In this manner, a head-to-head DW
can be described by the ansatz


(θ,τ ) = 2 arctan

[
exp

(
ζ (θ,τ )

�

)]
, �(τ ) = φ(τ ), (7)

where ζ (θ,τ ) = Rθ − q(τ ). Here q and φ denote the canoni-
cally conjugated pairs of collective variables, determining the
DW position and phase, respectively, and � determines the
DW width, which is assumed to be constant and independent
on the DW position or the direction. This approximation is
valid once the considered geometry does not present torsion
and a generalized DW model [30] is not necessary. From
Eqs. (6) and (7), it can be noted that in the absence of
an external magnetic field, the minimum energy density is
obtained for �0 = π and the DW has its minimum energy
when it points along êR (outward the bend), according to
Yershov et al. [17].

The energy of the DW can be obtained analytically by
performing the substitution of Eq. (7) in Eq. (5) but its
expression is cumbersome and therefore is presented in the
Appendix. The dynamical properties of the domain wall in
terms of the collective variables can be described by the
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FIG. 2. Domain wall position, q (top), and phase, φ (bottom),
obtained from the numerical integration of Eqs. (8) and (9). The used
value of the magnetic field is H = 6 mT.

following equations of motion [17]:

q̇ = 1

2S

∂EDW

∂φ
+ α � φ̇ (8)

and

φ̇ = − 1

2S

∂EDW

∂q
− α

�
q̇ , (9)

which have been derived by inserting the ansatz (7) into
Eqs. (3) and (4), respectively. The above equations do not have
simple analytical solutions; nevertheless, they can be solved
numerically. The obtained DW position and phase are shown
in Fig. 2 for a fixed value of the magnetic field H = 6 mT.
The upper frame shows the oscillatory behavior of the DW
center along the wire. The lower frame presents the DW phase
for the angular velocity of the DW rotation around the wire.
The period of the DW displacement is approximately 6 ns,
and in this time interval the phase changes in 2π , giving a
precessional frequency of 60◦ per nanosecond. This behavior
of the DW direction is different from that of stripes, which
present a 180◦ rotation around the nanowire followed by an
inversion of the sense of the rotation. This difference can be
explained because nanostripes have two minima associated
with the magnetostatic energy when the DW is pointing along
the thinner sides of the stripe (exchange energy is equal during
all the DW motion). On the other hand, the DW magnetic
energy presents only one minimum in a curved cylindrical

wire, which is mainly associated with the exchange energy.
However, in curved cylindrical wires the DW has different
values of the exchange energy when it is pointing inward or
outward of the bent of the wire. Then, the DW needs to rotate an
angle 2π before recovering its minimum energy position. Let
us also remark that unlike its straight counterpart, curved wires
present the oscillatory behavior associated with the Walker
breakdown phenomenon. As explained in Ref. [11], the Walker
breakdown is absent in straight cylindrical wires because the
demagnetizing factors and the exchange effective field do not
depend on the DW phase. Therefore the contribution coming
from the magnetostatic and exchange energies to the effective
fields acting on the domain wall (which produces the Walker
breakdown) is canceled upon derivatives and do not contribute
to the DW displacement. In the case of a curved wire, the
corresponding effective fields depend on the DW phase (see the
Appendix), and therefore, there will be always an oscillatory
behavior in the DW position during its displacement.

We remark that our model provides quantitative results
which are valid not far from the nanowire center. Since the
magnetic field is applied along the y-axis direction, the torque
produced by the field is maximum when the domain wall is
at the center of the magnetic wire. When we are far from
the center, the domain wall experiences a smaller torque and,
although the qualitative behavior is exactly the same, the
velocity slows down.

III. NUMERICAL RESULTS

To better understand our analytical results, we developed
several full numerical simulations. We use the public micro-
magnetic code NMAG [22], which considers finite element
discretization, allowing a better description of curved surfaces
compared to finite differences methods. With this code we
solve the Landau-Lifshitz-Gilbert equation (1) for a Py
nanowire. Since we focus on a head-to-head DW, the position
of the center of the DW is obtained from m‖(rDW ,t) = 0,
where m‖ is the parallel component along the wire axis. Using
the angular difference �θ between the position of the center of
the DWs at two consecutive times, we define the instantaneous
velocity as V(t) = R � θ/ � t . All the simulated wires have
the same diameter (d = 30 nm) and length (L = 1 μm), but
different curvatures (K), which were varied as a function of
n. The initial state of all simulations is a transverse DW in a
wire, obtained by saturating the system in the +x direction
with a 1T field. Then, the field is switched off, and the system
is left to relax to its equilibrium state, as explained in Ref. [31].
In this way we create a head-to-head DW pointing along the
+x direction (outward the bend), as predicted in Ref. [17].
Starting from this state, we apply a constant magnetic field
along the +y direction and perform the simulation for 20 ns.
To check our methodology we have obtained the velocity from
our simulations in straight wires and compared our results with
the velocity obtained in the literature [11] for similar systems.
Both results are in good agreement, giving us confidence in
the software and method used in our calculations.

Figure 3 illustrates snapshots at different times of the
reversal process of the DW propagation along a wire with
curvature K ≈ 3.14 × 106 nm−1. In these snapshots a rotation
of the DW around the wire axis as well as an oscillation along
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FIG. 3. Schematic representation of the oscillatory movement of
the DW pushed by a constant magnetic field. The wire has a maximum
curvature of 1/R ≈ 3.14 × 106 nm−1.

its axis is shown. It should be highlighted that the sense of
the rotation of the DW is constant. The DW oscillations along
the propagation line have been observed in previous works for
DW dynamics in nanostripes under the action of a constant
magnetic field [8,9,32]. However, in the case of a Py stripe,
the DW displacement oscillates with a frequency double the
rotation frequency of the wall around the stripe [8,9]. In the
present study, as is clearly seen in Fig. 3, and in agreement with
our theoretical predictions, we have observed that the period
of the DW displacement along the wire is exactly the same as
the rotation period around it.

The dynamics of the DW position is shown in Fig. 4. We
observe that it has an oscillatory behavior and its amplitude
depends on the curvature, also in agreement with the analytical
model. In fact, both approaches exhibit the same oscillation
period. The discrepancy in the exact DW position obtained
from both methods comes from the fact that the theoretical
model fixes the width of the DW, however simulations show a
small change in the width during rotation.

FIG. 4. Displacement of the domain wall center as a function of
time for two different curvatures at H = 6 mT found using NMAG

simulations.

FIG. 5. Ampitude of velocity oscillation as a function of the
curvature at H = 6 mT. Insets show the velocity of the DW for
wires with curvatures of 3.14 × 106 nm−1 (blue triangles) and
0.63 × 106 nm−1 (beige dots).

Despite the existence of an oscillatory behavior of the DW
position, an increase in the curvature implies an increment in
the average amplitude of the velocity oscillation. This occurs
because, as shown in Fig. 1, the change in the direction of a
magnetic moment when passing the DW is smaller in a curved
wire, as compared to what occurs in a straight structure. Based
on our results, we have obtained the amplitude of the DW
velocity as a function of the wire curvature. Our simulations
show that the amplitude of the velocity oscillation does not
depend on the applied magnetic field, varying only with the
shape of the nanowire. In fact, the amplitude of the velocity is
a linear function of the curvature, as shown in Fig. 5.

Finally, Fig. 6 shows the average of the DW velocity as a
function of the external field for different curvature values.

FIG. 6. Average velocity as a function of the external magnetic
field for different curvatures.
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We can observe that the average velocity is no longer a
linear function of the magnetic field when the wire is curved.
Increasing the curvature produces a more noticeable change
of the linear behavior. Our modeling shows that at very small
fields of the order of 1 mT (not shown due to their too small
values) the linear regime is recovered in these nanowires. In
this sense, the Walker breakdown, absent in straight cylindrical
wires [11], is observed in nanowires with large curvature.

IV. CONCLUSIONS

In this paper we studied domain wall propagation in
curved cylindrical nanowires showing an oscillatory behavior
along and around the nanowire axis. Contrary to the case of
rectangular stripes, the rotational period was proven to be the
same as the oscillations in the DW position. The amplitude of
the velocity depends on the magnitude of the demagnetizing
field that, in turn, depends on the curvature. The frequency of
these oscillations is a linear function of the external magnetic
field. The average velocity is not linear in the applied field
and, contrary to what happens in stripes, curved nanowires
show the Walker breakdown phenomenon. The oscillation of
the domain wall around and along the nanowire provides a
unique opportunity to convert a constant magnetic field to a
radio-frequency signal with tunable parameters coming from
nanowire geometry, material, and curvature. Such oscillations

should be also possible in the presence of spin currents, which
could open novel possibilities for spin-torque oscillators based
on magnetic nanowires.
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APPENDIX: DOMAIN WALL ENERGY

We have considered that the magnetic energy of the wire
under an external magnetic field has three contributions:
E = Eex + Edip + EZ , where Eex is the exchange energy, Edip

is an effective dipolar energy represented by an in-surface
anisotropy, and EZ is the Zeeman energy. The general expres-
sions of the energy are given by Eqs. (5) and (6). Inserting the
DW’s ansatz (7) into the aforementioned equations we obtain

Eex = �2S

R2

[
L + 4R �(q) cos φ + 2R2 − �2 + �2 cos 2φ

�
�(q)

]
, (A1)

where

�(q) = arctan

[
exp

(−q + L/2

�

)]
− arccot

[
exp

(
q + L/2

�

)]

and

�(q) = sinh
(

L
�

)
[

cosh
( 2q

�

) + cosh
(

L
�

)] ,

The dipolar energy is given by an in-surface anisotropy, being evaluated as

Edip = 2Sλ

[
��(q) − L

2

]
. (A2)

Finally, the energy from the interaction with the external magnetic field is given by

EZ = ie−iθ0HSR

2

{
2 − 2e2iθ0 + (cos φ − 1)

[
2F1

(
1,− i�

R
,1 − i�

R
, − ie

−q+L/2
�

)
+2 F1

(
1,

i�

R
,1 + i�

R
,ie

−q−L/2
�

)]

− e2iθ0 (cos φ − 1)

[
2F1

(
1,− i�

R
,1 − i�

R
, − ie

−q−L/2
�

)
+2 F1

(
1,

i�

R
,1 + i�

R
,ie

−q+L/2
�

)]

− (cos φ + 1)

[
2F1

(
1,− i�

R
,1 − i�

R
,ie

−q+L/2
�

)
+2 F1

(
1,

i�

R
,1 + i�

R
, − ie

−q−L/2
�

)]

+ e2iθ0 (cos φ + 1)

[
2F1

(
1, − i�

R
,1 − i�

R
,ie

−q−L/2
�

)
+2 F1

(
1,

i�

R
,1 + i�

R
, − ie

−q+L/2
�

)]}
, (A3)

where 2F1(a,b,c,z) is the hypergeometric function.
Aiming to understand the difference between the DW dynamics in curved and straight wires, we study an approximation in

which the DW is near to the center of the wire and its width is much smaller than the wire length. In this case q is on the order
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of tens nanometers, and therefore �/L ∼ 10−3. Consequently, Eqs. (A1) and (A2) are simplified to

Eex�/L→0 ≈ �2S

R2

[
L + 2R2

�
+ 2π R cos φ

]
, (A4)

Edip�/L→0
≈ −λ V, (A5)

where V is the wire volume. By use of the considered limits, the functions �(q) and �(q) are reduced to �(q) ≈ π/2 and
�(q) ≈ 1. Even with these approximations, the Zeeman energy keeps its dependence on q and φ, which results in the oscillatory
behavior of DW dynamics in curved nanowires. On the other hand, a straight wire is obtained in the limit R → ∞ and then
EexR→∞ ≈ 2�2S/� , while dipolar energy keeps the form presented in Eq. (A5). In addition, by taking the derivatives of the
Zeeman energy and adopting the limit R → ∞, it can be shown that ∂EZR→∞/∂q = −2HS and ∂EZR→∞/∂φ = 0. Therefore, by
substituting these results in Eqs. (8) and (9) and performing some algebraic manipulation, we obtain that the DW velocity in a
straight wire is

q̇ = α�

1 + α2
H, (A6)

which is the equation of motion for DW along a straight wire [8,9].
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