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We present an approach and a theoretical framework for generating high-order exceptional points of degeneracy
(EPDs) in photonic structures based on periodic coupled resonator optical waveguides (CROWs). Such EPDs
involve the coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain and loss, which
contrasts with the parity-time symmetry required to develop exceptional points based on gain and loss balance.
The EPDs arise here by introducing symmetry breaking in a conventional chain of coupled resonators through
periodic coupling to an adjacent uniform optical waveguide, which leads to unique modal characteristics that
cannot be realized in conventional CROWs. Such remarkable characteristics include high quality factors (Q
factors) and strong field enhancement, even without any mirrors at the two ends of a cavity. We show for the
first time the capability of CROWs to exhibit EPDs of various orders, including the degenerate band edge (DBE)
and the stationary inflection point. The proposed CROW of finite length shows an enhanced quality factor when
operating near the DBE, and the Q factor exhibits an unconventional scaling with the CROW’s length. We
develop the theory of EPDs in such unconventional CROW using coupled-wave equations, and we derive an
analytical expression for the dispersion relation. The proposed unconventional CROW concepts have various
potential applications including Q switching, nonlinear devices, lasers, and extremely sensitive sensors.
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I. INTRODUCTION

Confinement of light in optical microresonators (or micro-
cavities) is one of the fundamental processes for enhancing
optical interactions for various applications [1,2], including
filters [3], sensors [4], optical delay line devices [5], optical
switching and modulators [6,7], optical buffers [8], lasers
[9], and energy harvesting applications, and in engineering
of the wave-matter interaction in quantum systems [10].
Photonic crystal cavities [11], disk [9], toroid [12], or ring
[13] microcavities, among others, are typically employed
in the aforementioned applications requiring a high quality
(Q) factor. On the other hand, cascading a chain of coupled
microresonators, as was introduced in [14], has stimulated
great interest in studying coupled resonator optical waveguides
(CROWs) as efficient devices for light transport [5,15,16].

The slow-light phenomenon, whereby the group velocity of
light in optical structures is low (much lower than the velocity
of light in free space c) [17,18], has spawned many intriguing
new aspects of optical resonators in which nonlinearities (har-
monic generation, wave mixing, etc.) [19] and gain/absorption
[20], among other features, can be significantly enhanced. A
particular kind of slow wave resonance occurs in the vicinity
of the transmission band edge of periodic structures. For
this reason, a slow wave resonance is often referred to as a
transmission band edge resonance [21–23]. The band edge
resonance is due to degeneracy of Bloch eigenwaves that
coalesce (in both eigenvalues and eigenvectors) at a single
frequency. The degenerate band edge (DBE) [21,24,25] arises
when four Floquet-Bloch eigenwaves coalesce in periodic
structures supporting multiple polarization eigenwaves that
are periodically mixed. The DBE condition, which is a
fourth-order eigenwave degeneracy, causes a quartic power
dependence at the band edge of the dispersion diagram, (ω −
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ωd ) ∝ (k − kd )4, where ωd is the DBE angular frequency, k

is the Floquet-Bloch wave number, and kd is the band edge
wave number. Hence the DBE condition is accompanied by
a significant reduction in the group velocity of waves and
improvement in the local density of states. DBE has stimulated
research in many interesting applications such as small anten-
nas [26], low-threshold lasing and optical switching [25,27],
and efficient high power microwave generation [28,29].

Furthermore, another important point of degeneracy is
the stationary inflection point (SIP), which is a third-order
degeneracy [30], and in its proximity the dispersion relation
follows (ω − ωs) ∝ (k − ks)3, where ωs is the SIP angular
frequency, k is the Floquet-Bloch wave number, and ks is the
SIP Floquet-Bloch wave number. Slow light associated with
the SIP shows promising characteristics [31] potentially useful
for many applications. In general, degeneracy conditions are
exact mathematical conditions and are very sensitive to losses.
Here we demonstrate an effective approach for observing high
Q factors even in the presence of losses.

In view of this background, the pervasive concept of
exceptional points (EPs) has emerged to describe points of
state eigenvector coalescence in coupled circuits, resonators,
and waveguides with gain and loss. The notion of parity-time
(PT ) symmetry is widely used to conceive optical components
and lasers [32,33] having spatially symmetric distributions of
gain and loss. These features occur in strictly non-Hermitian
systems, which means that the local evolution of waves in
the coupled system is described by a non-Hermitian matrix.
Two kinds of systems have been investigated in the context
of PT symmetry: (i) systems in which EPs are observed
when describing eigenstate evolution in time (e.g., coupled
resonators with loss and gain) [34–36], and (ii) systems in
which EPs are observed when describing eigenwave evolution
in space, in other words, evolution of eigenwaves in a specific
direction (e.g., multimode waveguides with loss and gain
balance) [37–40]. In both kinds of systems, the EP is induced
thanks to the presence of gain and/or loss. In this paper, instead,
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analogous characteristics of EPs are found in lossless periodic
structures; such EPs include the regular band edge (RBE),
the DBE, and the SIP. Nonetheless, the evolution equations
of locally coupled waves in lossless uniform waveguides
constitute Hermitian (i.e., diagonalizable) matrices. The EPs
induced in lossless/gainless periodic structures are due to
periodicity thanks to waves that can be periodically mixed.
Indeed, EPs induced in both PT -symmetry systems and
systems without loss or gain are similarly described with a
system matrix similar to a Jordan block, which corresponds
to the coalescence of multiple eigenvectors (besides the
coalescence of eigenvalues), as will be shown in Sec. IV.

From here onward, we denote the EP that is associated
with an eigenwave coalescence by the acronym EPD to
avoid ambiguities since the term “exceptional” may have
different meanings in different disciplines, and indeed here we
investigate points of degeneracy. Therefore, the EPD is defined
here as the point in the parameter space of the periodic CROW
at which a degeneracy occurs; i.e., two or more physical wave
eigenvectors coalesce.

In this paper, we reveal novel properties of a CROW
that is engineered to exhibit EPDs of various orders. Our
proposed theory of CROWs with modal degeneracies leads
to the observation of unconventional performance in terms of
Q factors which are suitable for many applications such as
lasers, highly sensitive sensors, and Q-switching devices, to
name few. A great advantage of such CROWs is that they
can be easily fabricated using optical lithography and possess
high Q factors compared to prior implementations of optical
waveguides with DBEs such as those in [27,41,42]. Our paper
shows the DBE condition in CROWs, as well as the SIP. We
also demonstrate an unconventional scaling of the Q factor,
and we also investigate this scaling in the presence of losses.

This paper is organized as follows. First, in Sec. II
we describe the proposed CROW coupled to the straight
waveguide shown in Fig. 1. Then we detail the transfer matrix
formalism adopted for the CROW system in Sec. III. In
Sec. IV, we analyze the Floquet-Bloch eigenwaves of the
proposed CROW and present the mathematical description
of all possible EPDs that may arise in such a guiding structure.
Then in Sec. V we introduce an analytic expression of the
dispersion relation of the proposed CROW unit cell shown in
Fig. 2 and the necessary conditions for such unit cell to exhibit
a DBE. In Sec. VI we show with examples the dispersion
diagram of various EPDs that manifest in the proposed CROW.
Finally, in Sec. VII we show the transfer function behavior of
such CROW near various EPDs and we briefly describe the
unusual properties of the loaded Q factor of CROW cavities
with EPDs even in the presence of losses.

II. GEOMETRY OF PROPOSED CROW

In this paper, we investigate the emergence of high-order
EPDs in CROWs shown in Fig. 1(a), where the straight
waveguide provides an additional coupling mechanism. It
consists of a chain of coupled ring resonators, with outer
radius R, side-coupled to a uniform optical waveguide. We
define the field coupling coefficient (also referred to as the
cross-coupling coefficient; see Chap. 2 of Ref. [43]) between
two contiguous rings or between the waveguide and a ring

FIG. 1. (a) The proposed CROW consists of a chain of coupled
ring resonator optical waveguides of radius R side-coupled to
a rectangular straight waveguide. The field coupling coefficients
between the straight waveguide and the rings alternate between κ1

and κ2, and the field coupling coefficients between the coupled ring
resonators themselves alternate between κ ′

1 and κ ′
2. The CROW is

periodic in the z direction with a period d = 4R. (b) The unit cell
of this CROW with the electric field wave amplitudes defined at the
cell boundaries. z0 is a coupling point between the waveguide and the
ring.

as κ , which quantifies how efficiently the field leaks from
one to the other (see definitions in [44]). The coupling is
assumed to occur at discrete points of closest proximity
(denoted hereafter as the coupling points), between adjacent
rings and between each ring and the straight waveguide as in
Fig. 1. For the sake of generality, the field coupling coefficients
between the waveguide and the rings may change from pair to
pair of adjacent rings as κ1 and κ2, while the ring coupling
coefficients alternate between κ ′

1 and κ ′
2, respectively (see

Fig. 1). Having κ1 �= κ2 and κ ′
1 �= κ ′

2 enables the occurrence

FIG. 2. The CROW unit cell design that supports a DBE and
an RBE. The structure is periodic in the z direction with period
d = 2R. The field coupling coefficient between the waveguide and
the resonator chain is κ1 while the field coupling coefficient between
the coupled ring resonators is κ ′

1. The figure also shows the orientation
of the electric field wave amplitudes at the cell boundaries defined by
the dashed lines.
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of the third-order degeneracy (the SIP). We also define a
corresponding transmission coefficient at the coupling points
denoted by τ . In our analysis we assume, for simplicity without
loss of generality, that both κ and τ are real positive values; see
pages 120–122 in [45] or Ref. [46]. Also, we assume lossless
coupling at all the coupled sections [15], i.e.,

κ2 + τ 2 = 1. (1)

The waveguides and the rings support eigenwaves whose
local phase propagation in the positive/negative z direction
is represented by e±ink0z and the time convention e−iωt

is implicitly assumed. Accordingly, phase propagation (or
attenuation) in the waveguide as well as in the rings is
modeled by their effective refractive index, namely n, which
is defined as the ratio of the propagation wave number k of
the propagating eigenwave normalized by the wave number
in free space k0 = ω/c. Moreover, we assume that only a
single transverse eigenwave can be excited inside the rings, in
each direction, as well as in the waveguide, and we neglect
higher order mode interactions. In addition, we assume that
ring resonators do not couple waves of different polarizations
[43]. Also, we assume that the effective refractive indices n are
frequency independent, justified by the narrow-band frequency
response investigated here.

The unit cell of the considered periodic CROW is shown
in Fig. 1(b) and the CROW’s period is d = 4R, where R

is the outer radius of each ring resonator. We also consider
the simplified version with period d = 2R in Fig. 2 that is
able to provide the fourth-order degeneracy. Note that the
coupling between adjacent rings is achieved with the small
gaps shown in the figure; however when we evaluate the total
length of the period, we neglect such gap lengths as was done in
Ref. [15]. As an example, this CROW can be fabricated using
silicon on insulator (SOI) technology [47,48]. All geometrical
dimensions pertaining to the geometry in Fig. 1 are given in
Appendix A, for the cases investigated in this paper.

III. TRANSFER MATRIX FORMALISIM OF CROWs WITH
EXCEPTIONAL POINTS OF DEGENERACY

Analysis of a CROW can be carried out utilizing tight-
binding methods [49], transfer matrices [15], or temporal
coupled-mode theory [50], aside from full-wave simulations.
In particular, the transfer matrix (T matrix) method [15,51] is
the most convenient and flexible as it naturally allows for the
analysis of finite, lossy, and dispersive CROWs with strong
coupling coefficients that are not necessarily identical for all
resonators. Indeed, the transfer matrix is often employed in
analysis of layered media [23] as well as investigation of
points of degeneracy [21,25]. We adopt the transfer matrix
formulation for analyzing the modal behavior as well as the
resonance properties of the proposed CROW.

We consider that each waveguide is able to support a single
traveling wave along the +z direction and by reciprocity also
an analogous travelling wave along the −z direction. These
waveguides have uniform cross section and therefore their
supported eigenwaves have fixed field distributions. In the
straight waveguide, the fields’ variation along the +z and −z

directions is described by the electric field wave amplitudes
E+

1 (z) ∝ e+inwk0z and E−
1 (z) ∝ e−inwk0z, respectively, where

nw is the effective refractive index of the straight waveguide.
In the rings, there are four electric field wave amplitudes,
E+

2 (z), E+
3 (z), E−

2 (z), and E−
3 (z), as schematically shown

in Figs. 1(b) and 2. E±
2 (z) are the wave amplitudes in the

upper half ring representing waves propagating in opposite
directions, and similarly E±

3 (z) are the electric field wave
amplitudes propagating in the lower half ring (closer to the
waveguide).

We then define the electric field wave amplitudes
as three-dimensional vectors E+(z)= [E+

1 (z) E+
2 (z) E+

3 (z)]T

and E−(z)= [E−
1 (z) E−

2 (z) E−
3 (z)]T to represent waves propa-

gating in the +z and −z directions, and the superscript T stands
for transpose. It is further convenient to represent electric field
wave amplitudes at any point z using the six-dimensional state
vector

�(z) =
(

E+(z)
E−(z)

)
, (2)

which describes how the guided waves evolve along the z

direction, similarly to the formalism in [21,25]. Accordingly,
the wave evolution between any two points z1 and z2 [see
for example Fig. 1(b)] is governed by the simple translation
property

�(z2) = T(z2,z1)�(z1), (3)

where T(z2,z1) is the 6 × 6 transfer (T ) matrix that translates
the state vector from point z1 to z2. It is interesting to observe
the analogy of this formalism with the coupled transmission
line approach developed in [52]. This is also a generalization
of the coupled-mode formalism developed for conventional
CROWs [14,15]. It is the subject of the subsequent analysis to
obtain T(z2,z1) for any z2 and z1.

Note that the structure is reciprocal; therefore, the T matrix
in (3) for any z1 and z2 has a determinant that equals unity, i.e.,
det[T(z2,z1)] = 1. In other words the eigenvalues of T(z2,z1)
must come in reciprocal pairs [21]. Moreover in lossless
structures, the T matrix is J -unitary (as explained in [21,30]),
meaning that T−1(z2,z1) = J T†(z2,z1) J−1, where the dagger
symbol † denotes the complex-conjugate transpose operation,
and the J matrix is given in Appendix B.

Scattering matrix (S matrix) method. An alternative yet
very ubiquitous approach for analyzing CROWs is the use of
the scattering matrix or the S matrix [53]. It is defined by
relating the outgoing (or scattered) fields at specific boundary
planes defined at z1 and z2 to the incoming (or incident) fields
on the same planes defined at z1 and z2 as in Fig. 1(b). The
6 × 6 S matrix is expressed in terms of the electric field wave
amplitudes as [53](

E−(z1)
E+(z2)

)
= S(z1,z2)

(
E+(z1)
E−(z2)

)
. (4)

From reciprocity the S matrix must be symmetric, and
for lossless structures (i.e., without dissipative or scatter-
ing/radiation losses) the S matrix must be unitary, i.e.,
S S† = 1, where 1 is the 6 × 6 identity matrix [54].

We also use the well-known generalized beam splitter
relations [55,56] to relate the fields at the coupling points.
For example, let us consider the point z0 between a ring
and the waveguide as the point where coupling occurs; see
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Fig. 1(b). Let us define z−
0 and z+

0 to be the z coordinates
just before and just after a coupling point at z0, respectively,
between the waveguide and the ring resonator. Accordingly,
we relate the state vector fields just before the coupling
point E+

1 (z−
0 ), E+

3 (z−
0 ) to those just after the coupling point

E+
1 (z+

0 ), E+
3 (z+

0 ) as(
E+

1 (z+
0 )

E+
3 (z+

0 )

)
=

(
τ2 iκ2

iκ2 τ2

)(
E+

1 (z−
0 )

E+
3 (z−

0 )

)
, (5)

where τ2 and κ2 are the transmission and coupling coefficients,
respectively, representing the coupling at point z0.

It is intuitive in the proposed CROW to write the wave
amplitude evolution equations describing a unit cell using the
S matrix. We proceed by relating the fields at the boundaries
of the unit cell, namely at point z and z + d (d = 4R), as
in Fig. 1(b). For simplicity, we divide the unit cell into two
segments each of length 2R. The two segments are similar in
construction; the first segment depends on κ1 and κ ′

1 whereas
the second segment depends on κ2 and κ ′

2 as seen in Fig. 1(b).
Note that the wave amplitudes at the segment boundaries are
defined on the left side of the coupling points, meaning that
�(z + 2R) = �(z−

0 ) as can be seen in Fig. 1(b). To determine
the scattering matrix of a unit cell, we first calculate the
scattering matrix of the individual segments 1 and 2 defined in
Fig. 1(b), then we determine their T matrices, and finally we
combine them. Consequently, we write the 6 × 6 S matrix S1
of the first segment of the unit cell in Fig. 1(b) as

S1 =
(

S
11

S
12

ST

12
S

22

)
, (6)

where the superscript T denotes the transpose operation,
and each of the submatrices has dimensions of 3 × 3. The
submatrices in (6) are expressed as

S
11

=
⎛
⎝ 0 iκ1τ

′
1�r 0

iκ1τ
′
1�r 0 τ1τ

′
1�r

0 τ1τ
′
1�r 0

⎞
⎠, (7)

S
12

=
⎛
⎝ τ1�w −κ1κ

′
1�r 0

0 0 iκ ′
1�r

iκ1�w iκ ′
1τ1�r 0

⎞
⎠, (8)

S
22

=
⎛
⎝0 0 0

0 0 τ ′
1�r

0 τ ′
1�r 0

⎞
⎠, (9)

where �r = eikrπR is the phase propagation along half of the
ring circumference, and �w = e2ikwR is the phase propagation
inside the uniform straight waveguide for a distance 2R. Here,
kr is the propagation wave number in the waveguide making
the ring resonators and it is written as kr = nrk0, where nr

is the effective refractive index of that waveguide. Similarly,
kw is the propagation wave number in the straight waveguide
expressed as kw = nwk0. In the same manner one can derive
the scattering matrix S2 related to segment 2 in Fig. 1(b) by
replacing κ1 with κ2, κ ′

1 with κ ′
2, τ1 with τ2, and τ ′

1 with τ ′
2.

Using the relation between the S matrix and the T matrix
[Eq. (B2) in Appendix B], we calculate T1 ≡ T(z + 2R,z) and
T2 ≡ T(z + 4R,z + 2R) as the T matrices of segments 1 and
2, respectively, from S1 and S2 [the submatrices of T1 are given
in Eq. (B3), Appendix B]. Finally, we calculate the unit cell T

matrix, denoted by TU, simply as

TU = T2 T1. (10)

The state vector evolves across a unit cell as

�(z + d) = TU �(z), (11)

where d is the period of the CROW. To find periodic solutions
of the state vector in the CROW that behave as eikd where k

is the complex Floquet-Bloch wave number, the state vector
�(z) must follow the evolution equation

�(z + d) = ζ�(z), ζ ≡ eikd . (12)

Hence, using (11) and (12) we write the eigensystem
equation

TU�(z) = ζ�(z), (13)

whose eigenvalues ζ = ζn ≡ eiknd , with n = 1,2, . . . ,6, are
evaluated by solving the dispersion equation

D(k,ω) ≡ det[TU − ζ1] = 0 (14)

for complex k [21,52]. Solutions of (14) produce eigenvalues
ζn associated with regular eigenvectors �n that are linearly
independent if TU is diagonalizable. In the proposed CROW,
there are six modal (Floquet-Bloch) wave numbers of the pe-
riodic structure, and if k1,k2, and k3 are solutions, reciprocity
implies that also −k1, − k2, and − k3 are solutions (i.e., if
ζ is an eigenvalue of TU then ζ−1 is another eigenvalue).
This property is useful to determine the number of possible
degenerate solutions (that have equal wave numbers). In this
paper we find it is convenient to represent the wave numbers
in the fundamental Brillouin zone (BZ) that is defined here
within the range from kd = 0 to 2π . Accordingly, the center
of the BZ is defined at k = π/d. Because of periodicity
solutions associated with wave numbers −k1, − k2, and −k3

have also Floquet harmonics −k1 + 2π/d, − k1 + 2π/d, and
−k1 + 2π/d in the fundamental BZ.

We construct the diagonal 3 × 3 matrix k of the Floquet-
Bloch wave numbers as

k =
⎛
⎝k1 0 0

0 k2 0
0 0 k3

⎞
⎠. (15)

We also use � as a 6 × 6 diagonal matrix whose elements
are the eigenvalues eiknd via

� =
(

eikd 0

0 e−ikd

)
, (16)

where 0 is the 3 × 3 zero matrix. Therefore, it follows that the
transfer matrix T− U, when diagonalizable, is written as

T− U = V � V−1, (17)

where V is a 6 × 6 matrix that represents a nonsingular
similarity transformation that diagonalizes T− U, and is com-

puted using the six regular normalized eigenvectors of T− U

as V = [�1| �2| �3| �4| �5 | �6]. This diagonalization and
the existence of six independent eigenvectors is only possible
if there exists a complete basis of regular eigenvectors of
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T− U. This is not valid anymore at a degenerate condition as

described in the following.

IV. EXCEPTIONAL POINTS OF DEGENERACY IN CROW

The aforementioned analysis is valid unless an EPD
emerges. At an EPD, and only there, the unit cell T matrix TU is
similar to a Jordan block or a matrix containing Jordan blocks,
analogously to the cases of stratified media and photonic
crystals in Refs. [21,57]. At the EPD, the algebraic multiplicity
of an eigenvalue of (13) [i.e., the number of identical roots of
(14)] is higher than its geometrical multiplicity (the number of
independent eigenvectors associated with that eigenvalue).

Note that the evolution equations of the wave amplitudes
in the CROW constitutive waveguides can be described with
first-order differential coupled-wave equations that can be
written in a Hermitian form (in the absence of gain and loss), as
conventionally done in coupled-mode theory [44]. Therefore,
this lossless system can be locally referred to as Hermitian
(in the context of coupled-wave propagation [44,58]), even
though the T matrix (transfer matrix) is not Hermitian. Here
we emphasize that the EPDs induced through periodicity
or through gain and loss balance, as in the PT -symmetry
case, follow the same mathematical fundamental theory of
degenerate operators (see Chap. 2 in [59]).

We study the evolution of guided eigenwaves in space
(i.e., along the z direction) at and near EPDs. We propose
a CROW with EPDs, in the absence of losses and gain,
and investigate their occurrence. The eigenvalue and the
generalized eigenvectors [21,30] at the EPD are found by
solving

(TU − ζEPD1)q�q(z) = 0, q = 1,2, . . . ,m . (18)

Here �q is a generalized eigenvector and m is the order
of degeneracy, i.e., the number of coalescing eigenvectors at
the EPD, hence also corresponding to the multiplicity of the
eigenvalues at the EPD ζEPD. Note that at least one regular
eigenvector is always present in (18); the other m − 1 ones
are generalized eigenvectors. Solutions represented in terms
of generalized eigenvectors algebraically diverge along the
z direction as �(z) ∝ zq−1eikz �q(0) with q = 1,2, . . . ,m

(see Chap. 7 in [60]). Note that m in our CROW can
only take the values of 2, 3, 4, and 6 due to symmetry
of the Floquet-Bloch wave number solutions (reciprocity).
Such points of degeneracy occur in the spectrum of TU by
varying system parameters, such as frequency, or the coupling
parameters. An important feature of an EPD is that perturbation
of such mathematical condition results in a fractional power
series (or Puiseux series) of the resulting eigenvalues in the
perturbation parameter [61]. In other words, if we assume
that the transfer matrix TU, which is similar to a matrix
containing at least a Jordan block at an EPD, is perturbed as
TU(ε) ∼= TU(0) + ε	, where ε is a perturbation parameter and
	 is a constant perturbation matrix. The resulting eigenvalues
ζ of TU will obey the fractional power expansion in the
perturbation parameter ε as

ζ = ζEPD + a1ε
1/m + a2ε

2/m + · · · . (19)

The same perturbation property is found also in the context
of EPDs induced in systems with balanced gain and loss [36].

Indeed, EPDs induced either by periodicity in lossless/gainless
systems or by gain and loss balance are two realizations of the
same fundamental concept related to eigenvector coalescence
and perturbation of a Jordan block in a system matrix; see
Chap. 2 in [59].

In the following subsections, we will show the mathematical
construction of four different types of EPDs that may emerge
in the dispersion diagram of the proposed CROW.

A. Second-order EPD: m = 2

In the given CROW system three scenarios could occur
to develop a second-order EPD. At the second-order EPD,
the unit cell T matrix TU contains at least one degenerate
eigenvalue and eigenvector (i.e., at least two of the six
eigenvalue solutions are equal) while the remaining four
eigenvalues are in general distinct (unless they also experience
another degeneracy). As such, at a given frequency, a CROW
can exhibit one, two, or even three second-order EPDs. The
simplest case is when TU is similar to a matrix that contains
one Jordan block; hence it is cast as

TU = V
[
�α 0
0 �

g

]
V−1, �

g
=

(
ζg 1
0 ζg

)
, (20)

where V, in this case, is a 6 × 6 matrix composed of five
column regular eigenvectors in addition to a generalized eigen-
vector corresponding to the degenerate eigenvalue solutions
ζg with a multiplicity of two. Furthermore, ζg = exp(ikgd),
where kg is the Floquet-Bloch wave number of the second-
order degeneracy, and �

g
is a 2 × 2 Jordan block shown in

(20). �α is a diagonal 4 × 4 matrix with the four remaining
eigenvalues. If �

g
is the only Jordan block in TU then ζg = ±1,

meaning that the degeneracy occurs either at the edge (kg = 0)
or at the center (kg = π/d) of the BZ.

On the other hand, another scenario could manifest when
TU is similar, at a given frequency, to a matrix having two
Jordan blocks. This means that there exist two second-order
EPDs at that frequency, then TU is cast as

TU = V

⎡
⎢⎣

�
γ

0 0

0 �
b

0
0 0 �

c

⎤
⎥⎦V−1, �

b,c
=

(
ζb,c 1
0 ζb,c

)
,

(21)
where �

b
and �

c
are two Jordan blocks corresponding to two

pairs of degenerate eigenvalues ζb and ζc, respectively; each
pair is associated with a second-order EPD, one at kb and the
other one at kc. The remaining 2 × 2 block �

γ
in (21) is a

diagonal matrix that has two eigenvalues that are not related to
the degeneracies. Note that if the two second-order EPDs occur
at the band edge or center, then ζb and ζc must take values of
either 1 or −1. Otherwise, the two second-order EPDs occur
inside the BZ; then ζb = 1/ζc �= ±1 (this case will be shown
later on in Sec. V, and in Fig. 3).

Furthermore, the last possible scenario is when three
second-order degeneracies occur in TU, all at a given fre-
quency. Then �

γ
in (21) is also a 2 × 2 Jordan block and

that could only happen if the eigenvalues �
γ

are such that

ζγ = ±1; i.e., they are either at the BZ edge or center.
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B. Third-order EPD: m = 3

When a third order EPD occurs, TU contains two sets
of degenerate eigenvalues of algebraic multiplicity 3 and
geometrical multiplicity 1, denoted by ζs and ζ−1

s . The T

matrix TU is represented as

TU = V

[
�−

s
0

0 �+
s

]
V−1, �±

s
=

⎛
⎝ζ±1

s 1 0
0 ζ±1

s 1
0 0 ζ±1

s

⎞
⎠,

(22)

where V is composed of two regular eigenvectors and four
generalized eigenvectors. The matrices �+

s
and �−

s
are 3 × 3

Jordan blocks and each degenerate eigenvalue solution, ζs

or ζ−1
s , has algebraic multiplicity of 3 and geometrical

multiplicity 1. Therefore, there are a regular eigenvector and
two generalized eigenvectors associated with each eigenvalue.
Here ζs = exp(iksd) and ζ−1

s = exp(−iksd). Indeed, because
of reciprocity that implies symmetries in the dispersion
diagram, if ks is a third-order EPD, then also −ks must be.
In this paper, we show them at ks and −ks + 2π/d. The
third-order EPD is often called an SIP resulting in an inflection
point in the dispersion curve.

As we discuss in the next sections and in Appendix C, we
anticipate that the SIP can be obtained with the unit cell in
Fig. 1(b). However, it cannot be obtained using a CROW with
a simpler unit cell shown in Fig. 2.

C. Fourth-order EPD: m = 4

When a fourth-order EPD occurs, TU contains four degen-
erate eigenvalues (i.e., four of the six eigenvalue solutions are
equal) while the remaining two eigenvalues can be distinct or
degenerate. In this case TU is represented as

TU = V−1

[
�

β
0

0 �
d

]
V, �

d
=

⎛
⎜⎝

ζd 1 0 0
0 ζd 1 0
0 0 ζd 1
0 0 0 ζd

⎞
⎟⎠,

(23)
where V is composed of three eigenvectors and three general-
ized eigenvectors if there exists only a fourth-order EPD. The
eigenvalue ζd = exp(ikdd) has algebraic multiplicity of 4 and
geometrical multiplicity of 1. Therefore, there are one regular
eigenvector and three generalized eigenvectors associated with
ζd . In (23), the matrix �

d
is a 4 × 4 Jordan block that contains

the four degenerate eigenvalues. Furthermore, �
β

is a 2 × 2

diagonal matrix with the two remaining eigenvalues, which are
not affected by the fourth-order degeneracy, associated with
two other eigenvectors. In terms of wave numbers, and because
of reciprocity, the fourth-order degeneracy has to occur at both
kd and −kd , and in this paper we show what happens at −kd

by looking at the higher Floquet harmonic at −kd + 2π/d.
Now, the only way to have both wave numbers kd and −kd of
multiplicity four (we recall that the total dimensionality of the
system is 6) is that kd must be either kd = 0 or kd = π/d,
i.e., either at the edge or center of the BZ, respectively,
so that ζd = exp(ikdd) = exp(−ikdd). In other words, this
fourth-order degeneracy cannot occur at other points of the
BZ in a reciprocal system. It is also possible that the block

�
β

experiences another degeneracy of order 2 at the same

frequency.
As we show in the next section, we anticipate that the DBE

can be obtained with the simpler unit cell in Fig. 2.

D. Sixth-order EPD: m = 6

When a sixth-order EPD occurs, TU contains six degenerate
eigenvalues; i.e., all six eigenvalues of (13) are equal; i.e., the
algebraic multiplicity is 6 but the geometrical multiplicity is
1. Therefore, the T matrix TU is represented as

TU = V−1�eV, � =

⎛
⎜⎜⎜⎜⎜⎝

ζe 1 0 0 0 0
0 ζe 1 0 0 0
0 0 ζe 1 0 0
0 0 0 ζe 1 0
0 0 0 0 ζe 1
0 0 0 0 0 ζe

⎞
⎟⎟⎟⎟⎟⎠, (24)

where V is now composed of a single regular eigenvector
and five generalized eigenvectors corresponding to degenerate
eigenvalue solutions ζe = exp(iked), where ke is the wave
number at the sixth-order EPD and �e is the 6 × 6 Jordan
block. The sixth-order degeneracy has never been investigated
in an optical platform and it is the highest order of degeneracy
that can be achieved in the configuration shown in Fig. 1,
i.e., associated with a system vector with dimension 6. In
terms of wave numbers and because of reciprocity, the system
has to experience an EPD of order six also at −ke (hence
−ke + 2π/d). It follows that ke must be either ke = 0 or ke =
π/d, i.e., either at the edge or center of the BZ, respectively. In
other words, this sixth-order EPD cannot occur at other points
of the BZ in this reciprocal system.

V. ANALYTIC DIPSERSION RELATION
FOR CROWs WITH DBE

In this section, we show that the proposed CROW is able
to support EPDs of various orders through proper tuning of
the unit cell parameters. Importantly, we derive analytical
formulas for the dispersion relation of the CROW as well as
the necessary conditions on the CROW parameters to exhibit a
DBE (fourth-order EPD). First, let us consider a CROW design
where the period comprises a single ring, i.e., the coupling
coefficients from ring to ring are all identical (i.e., κ ′

1 = κ ′
2), as

well as the coupling coefficients between rings and the straight
waveguide (i.e., κ1 = κ2) as shown in the unit cell depicted in
Fig. 2. In this case the corresponding CROW period is d = 2R.
This simplified geometry is also able to support the DBE.

The general k−ω dispersion equation is obtained from (14),
for the simplified unit cell in Fig. 2. After some manipulation
(14) is cast in the analytic form

D(k,ω) = F (k,ω)S(k,ω) − (k,ω) = 0, (25)

where k is the Floquet-Bloch wave number and ω is the angular
frequency. The three functions in (25) are

F (k,ω) = ζ 2 − 2ζ cos(2kwR) + 1,

S(k,ω) = ζ 4 +
[

2 +
(

2 sin(πkrR)

κ ′
1

)2
]
ζ 2 + 1,

(k,ω) = gζ 5 + hζ 4 + f ζ 3 + hζ 2 + gζ, (26)
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with ζ = eikd , and

g = −2(1 − τ1) cos(2kwR),

h = 1

κ ′2
1

[
2(1 − τ1) cos(2πkrR) − κ2

1 + 2κ2
1 κ ′2

1

]
,

f = −1

κ ′2
1

{
2κ2

1 cos [2R(πkr − kw)] + 4(1 − τ1)τ ′2
1 cos(2kwR)

}
.

(27)

Recall that for a lossless coupling one has τ 2 + κ2 = 1,
with τ and κ being real positive numbers, though (25)–(27)
are valid also for the more general case where τ and κ are
complex. For the trivial case when the coupling coefficient
κ1 = 0 and τ1 = 1, then  = 0 in Eqs. (26) and (27), and
for this trivial case the dispersion Eq. (25) is cast simply
as D(k,ω)|κ1=0 = F (k,ω)S(k,ω) = 0, which is the dispersion
relation of the two decoupled systems: the conventional
CROW [15] made of a chain of coupled rings (and not coupled
to the straight waveguide) and the isolated straight waveguide.
Indeed, the function F (k,ω) represents the dispersion relation
of the straight waveguide alone, i.e., F (k,ω) = 0, that would
generate the waveguide wave numbers k = ±kw ≡ ±nwω/c;
hence kw is the wave number of the eigenwaves in the isolated
straight waveguide and nw is the associated effective refractive
index. Furthermore, the dispersion relation of the conventional
CROW [15] is S(k,ω) = 0. Such conventional CROW cannot
develop degeneracies with order higher than two. This fact is
evident from its dispersion relation as the function S(k,ω) = 0
cannot have roots for the eigenvalue ζ with multiplicity greater
than 2, which is necessary to have a degeneracy higher than
second order.

Hence, the only degeneracy condition in the conventional
CROW [15] is associated with the eigenvalue equation at
the second-order EPD angular frequency, called ωg , that is
S(k,ωg) = (ζ 2 − ζ 2

g )2 = 0, in which ζg = ±1 are the two
eigenvalues with second-order degeneracy that must occur
either at the BZ edge or center. The reason behind this
limitation in a simple conventional CROW is that the chain
of coupled resonators does not allow coupling between
waves propagating in opposite directions inside each ring.
In addition, there is a symmetry between waves propagating
in the upper and lower halves of each ring. The occurrence
of more general EPDs requires coupling of waves traveling
in opposite directions that is achieved by symmetry breaking

of the conventional CROW. We define symmetry here with
respect to a plane perpendicular to the plane that contains
the rings, which cuts all the rings of the chain in half as
shown with a horizontal dashed line in Fig. 1(a). An effective
symmetry breaking is achieved through side coupling to the
additional straight waveguide that allows for nontrivial mixing
of counterpropagating eigenwaves in the CROW as shown
next.

Now let us introduce a nonvanishing coupling coefficient
κ1 that represents the strength of coupling between the chain
of resonators and the straight waveguide (Fig. 2). In this case
(k,ω) �= 0, and rearranging (25) as F (k,ω)S(k,ω) = (k,ω),
it is apparent that (k,ω) represents the coupling between
the individual dispersion relations of the conventional CROW
without waveguide and the straight waveguide. This introduces
a structural symmetry breaking and leads to coupling of
eigenwaves of the CROW; thus higher order EPD can be
attained. As we show next, the dispersion equation D(k,ω) =
0 in (25) can have solutions representing a fourth-order EPD,
as well as a second-order EPD that is not necessarily at the
edge or at the center of the Brillouin zone.

Necessary conditions for DBE. The characteristic disper-
sion equation of the system at the fourth-order EPD (i.e., the
DBE) frequency can be cast in a simple way because the
CROW has four degenerate Floquet-Bloch eigenwaves with
four coincident eigenvalues; i.e., the characteristic equation
must have the term (ζ − ζd )4 where ζd is the DBE eigenvalue
occurring at the DBE angular frequency ωd . Moreover, the
CROW has also two other eigenwaves that are independent
of the four degenerate eigenwaves at the DBE and we
assume that their wave numbers are kβ and −kβ . Therefore,
the characteristic dispersion equation must also have the
term (ζ − e−ikβd )(ζ − eikβd ) which is simplified into [ζ 2 −
2 cos(kβd)ζ + 1]. Finally, at the frequency at which the fourth-
order EPD occurs, the characteristic dispersion equation that
comprises all the eigenvalues of the system at and only at the
DBE angular frequency ωd must take the form

D(k,ωd ) = [ζ 2 − 2 cos(kβd)ζ + 1](ζ − ζd )4 = 0. (28)

The formula (28) and the general dispersion equation (25)
are polynomials of order 6 in the variable ζ . By equating
the coefficients of these two polynomials, we obtain three
equations governing the various CROW parameters that must
be satisfied (necessary but not sufficient) in order for a DBE
to manifest:

± 2 + τ1 cos(2kwR) = cos(kβd),

τ1 cos (2πkrR) + 6κ ′2
1 + κ2

1

2
− κ2

1 κ ′2
1 − 1 = ∓4κ ′2

1 τ1 cos (2kwR),

τ 2
1 cos [2(πkr − kw)R] + cos [2(πkr + kw)R] = ±8κ ′2

1 + τ1(4κ ′2
1 + 2) cos (2kwR), (29)

where the ± sign corresponds to the existence of the DBE
either at the center of the BZ (i.e., kd = π/d or ζd = −1)
or at the edge of the BZ (i.e., kd = 0 or ζd = 1). Even
though the values of the lossless CROW parameters (i.e.,
κ1,τ1,κ2,τ2,nr ,nw, and R) are real and some are bound within

a certain range, e.g., 0 < κ1,τ1,κ2,τ2 < 1, infinitely many
points in the parameter space of the CROW whose unit cell is
in Fig. 2 can be found where a DBE is manifested. However,
the necessary and sufficient condition to develop a DBE is that
four eigenvectors of (13) coalesce.
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On the contrary, as demonstrated in Appendix C there are
no points in the parameter space of the lossless CROW unit
cell in Fig. 2 that can lead to an SIP. Therefore, for an SIP to
manifest, the more general unit cell of the CROW shown in
Fig. 1(b) must be considered.

VI. EXAMPLES OF DISPERSION RELATION
NEAR EPDs IN CROW

In this section, we show how the proposed CROW side-
coupled to a straight waveguide can exhibit degeneracies of
order 2, 4, and 3, called RBE, DBE, and SIP, respectively.
For the RBE and DBE cases we consider a geometry as in
Fig. 2 with parameters given in Appendix A (the same for
both cases). For the SIP we consider the geometry in Fig. 1(b)
with parameters given in Appendix A.

Regular band edges (RBEs). The CROW constructed from
the unit cell depicted in Fig. 2, with period d = 2R, develops
a second-order degeneracy, also called a regular band edge
(RBE), at the center of the BZ (i.e., ζg = −1) marked with a red
circle in the CROW Floquet-Bloch wave number dispersion
diagram depicted in Fig. 3. Note that this plot shows only the
propagating eigenwaves of the dispersion diagram in a lossless
CROW (i.e., eigenwaves with a purely real Floquet-Bloch
wave number k as conventionally done in periodic structures
[62]). This RBE emerges at frequency ωg/(2π ) ∼= 194.41THz,
for the parameters in Appendix A; some are summarized in
the caption of Fig. 3. The dispersion around the RBE fre-
quency is approximated by (ωg − ω) ∼= hg(k − kg)2 where the
geometry-dependent fitting parameter is hg ∼ 0.05ωg/k

2
g for

the parameters given in Appendix A. In fact, the dispersion of
a conventional CROW [15] with only coupled rings exhibits an
RBE. Furthermore, other second-order degeneracies (RBEs)
not at the edge/center of the BZ are found. At these points
the group velocity also vanishes; however, the eigenvalues at
such degeneracies are ζg �= ±1 as marked with blue circles in
Fig. 3. These RBEs not located at the center or edge of a BZ are
developed in the proposed CROW in Fig. 2; they cannot occur
in a conventional CROW (i.e., a CROW not side-coupled to a

FIG. 3. The Floquet-Bloch wave number dispersion diagram
associated with a CROW with unit cell shown in Fig. 2. It shows
various RBEs; one, at the center of the BZ, is at frequency f ∼=
194.41 THz. The different parameters of the unit cell are set as
radius R = 10 μm, power cross coupling coefficients κ2

1 = 0.35,
κ2

2 = 0.469, and effective refractive indices nw = 2.5 and nr = 1.5.

FIG. 4. The Floquet-Bloch wave number dispersion diagram of
a CROW with unit cell as in Fig. 2. It shows a DBE at frequency
f ∼= 194.83 THz and an RBE in the shown frequency range at f ∼=
194.62 THz. The different parameters of the unit cell are set as in
Fig. 3.

waveguide) for the reasons discussed in the reasons discussed
in Sec. V.

Degenerate band edges (DBEs). The proposed CROW
whose unit cell with period d = 2R is depicted in Fig. 2
exhibits also a fourth-order EPD (i.e., the DBE) when coupling
parameters are properly designed, as those in Appendix A. A
necessary set of equations that govern the different parameters
of the CROW unit cell in Fig. 2 is given in (29). The other
necessary and sufficient condition to develop a DBE is that
four eigenvectors coalesce, meaning that the transfer matrix
contains a 4 × 4 Jordan block as explained in Sec. IV. Such
condition is checked numerically once the set of Eqs. (29) is
satisfied.

Here the DBE frequency is ωd/(2π ) ∼= 194.83 THz as
shown in Fig. 4 in which the dispersion relation is depicted,
for CROW parameters provided in Appendix A, and some are
summarized in the caption of Fig. 4. One should notice the
flatness at the DBE point; indeed the dispersion around the
DBE frequency is approximated by (ωd − ω) ∼= hd (k − kd )4,
where the geometry-dependent fitting parameter is hd ∼
0.95ωd/k4

d for the given parameters in Appendix A. The
CROW with this kind of unit cell can develop either an RBE
or DBE at any desired frequency through proper tuning of the
different unit cell parameters (mainly the coupling coefficients
and the effective refractive indices).

Stationary inflection points (SIPs). As mentioned before,
the proposed CROW can develop different kinds of degen-
eracies. Here, we illustrate how the CROW develops also a
third-order degeneracy (i.e., an SIP) in its Floquet-Bloch wave
number dispersion diagram. The unit cell shown in Fig. 2
has been capable of developing an RBE and DBE but is not
capable of developing an SIP in its dispersion diagram, due to
insufficient mixing of waves propagating in the CROW (see
Appendix C for a mathematical proof). Therefore, to develop
an SIP we use the unit cell with period d = 4R shown in
Fig. 1(b) with alternating the field coupling parameters among
contiguous rings. The parameters of such unit cell are given at
the end of Appendix A.

Figure 5(a) shows the dispersion diagram for this unit cell
and two SIPs are obtained at frequency f ∼= 197.04 THz,
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FIG. 5. (a) The Floquet-Bloch wave number dispersion diagram
of the CROW unit cell shown in Fig. 1(b) showing three different
kinds of EPDs on the same figure. They occur at different frequencies:
an RBE at f ∼= 197.1 THz, a DBE at f ∼= 197.3 THz, and an SIP at
f ∼= 197.04 THz. The parameters of the unit cell are chosen as the
radius R = 10 μm, the power cross coupling coefficients κ2

1 = 0.5,
κ ′2

1 = 0.2, κ2
2 = 0.3, κ ′2

2 = 0.4, and the effective refractive indices
nw = nr = 1.5. (b) The complex dispersion diagram showing both
real and imaginary parts of the Floquet-Bloch wave number k versus
real frequency. Real branches in the complex dispersion (denoted by
red lines) represent propagating eigenwaves, while complex branches
(denoted by black lines) represent evanescent eigenwaves.

symmetrically located with respect to the center of the
BZ at k = π/d. The dispersion around the SIP frequency
is approximated by (ω − ωs) ∼= hs(k − ks)3, where hs is a
geometry-dependent fitting parameter.

Note that Fig. 5(a) shows only branches with purely real
wave number k. However, a more complete picture is provided
by plotting the dispersion diagram allowing k to be complex.
This is plotted in Fig. 5(b) showing both real and imaginary
parts of the Floquet-Bloch wave number k, where the purely
real branches which represent propagating eigenwaves (with
zero imaginary parts) are denoted by red lines. From this
complex dispersion diagram, one can observe that at each
frequency there are six complex values of k, and how a number
m of wave numbers (m = 2,3,4 is the order of EPD) converge
to a single one at each EPD. In reading this diagram one
should keep in mind that both k and −k (hence −k + 2π/d)
are solutions, because of reciprocity. Furthermore, because of
absence of losses, if k is a solution, then k∗ (the complex
conjugate) is also a solution.

FIG. 6. Finite CROW consisting of N unit cells. We consider the
input at z = 0 and the output at z = L, where L = 2NR and R is the
radius of each ring. Note that the large Q factor and the giant scaling
with length occur without mirrors, i.e., despite that the waveguide
coupled to a chain of rings is continued to a waveguide with the same
dimensions.

Note that in this case all the aforementioned types of EPDs
occur in a small frequency band. In other words, RBE, DBE,
and SIP manifest at frequencies very close to each other in the
same structure. The same closeness of EPDs is observed in
Figs. 3 and 4. This is due to the fact that each ring, because
of its large size, supports several resonances. Using large (i.e.,
with multiwavelength size) rings is not necessary to develop
EPDs of various order; indeed a chain of coupled resonators
with smaller dimension than those in this paper (each with
a lower Q) would also exhibit EPDs. Another example of a
simple optical structure supporting DBE and RBE is shown in
[63], where two waveguides are periodically coupled.

VII. GIANT RESONANCE IN CROW WITH
EXCEPTIONAL POINTS OF DEGENERACY

In this section, we formulate and calculate the quantities
relevant to resonators made of a CROW with a finite number
of coupled rings, side-coupled to a uniform straight waveguide
as in Fig. 6. We explore with examples the transmission
coefficient (i.e., the transfer function) and the loaded Q factor
of the CROW near EPDs of various orders as well as the
field amplitude distribution inside the CROW at the resonance
closest to the EPD frequency. This resonance is generally the
sharpest one and for the DBE case we refer to it as the DBE
resonance since it is very close to the DBE frequency. We will
also investigate the effect of the waveguide and ring losses on
the loaded Q factor.

To obtain a solution for the state vector �(z) at any z ∈
[0,L], where L is the length of the finite CROW, for a given
excitation, we carry out the following steps. We define �0 ≡
�(0) to be the boundary condition at a certain point z = 0.
Hence the state vector �(z) at any other point z can be found
using �(z) = T(z,0)�0, where T(z,0) is the transfer matrix
that translates the field from z = 0 to an arbitrary z. Let us
assume that �0 defines the electric field wave amplitudes at
the left boundary of the first unit cell as seen in Fig. 6. We
consider a CROW made of cascaded identical unit cells, as
in Fig. 2, with period d = 2R, each described by the transfer
matrix TU that translates the state vector across each unit cell
as discussed in Sec. III. Accordingly, we relate the state vector
at the end of the CROW �(L), i.e., at the cell boundary of the
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last unit cell, to �0 by

�(L) = TN
U �0, (30)

where N is the number of unit cells, and the matrix TN
U is

simply calculated as follows. At any frequency except for
those at which EPDs occur we bring T− U to a diagonal form as

shown in (17).
Then matrix multiplication is simply carried out as T−

N
U =

V �N V−1. On the other hand, when T− U contains a Jordan

block, i.e., at any of the EPDs discussed in this paper, T− U is

nondiagonalizable, and based on Eq. (21), (22), (23), or (24)
one has T−

N
U = V �N

e V−1, where �N
e is a matrix containing

one or more Jordan blocks.
Boundary conditions. The state vector at z = 0 is chosen to

have a specific value �0 dictated by the boundary conditions,
i.e., by the load waveguide attached to the finite CROW and
by the left (right) loads attached to the first (last) half rings as
shown in Fig. 6. The six complex electric field wave amplitudes
E±(0) defined at the boundary of the first (z = 0) unit cell and
those six E±(L) at the boundary (z = L) of the last unit cell
are constrained. We assume that the chain of ring resonators is
terminated from both left and right sides with complete rings
(recall that the unit cell boundary choice is made here to start
at the middle plane of each ring, i.e., at the coupling point,
as shown also in Fig. 6). The straight waveguide is extended
for z < 0 and z > L serving as the feed and the real load of
the CROW from which power can be extracted. Therefore, the
number of cascaded rings equals the number N of unit cells
(defined as in Fig. 2) plus one. We assume that the straight
waveguide in Fig. 6 is excited by an incoming wave amplitude
E+

1 (0) = Einc, coming from the extended waveguide on the
left side, i.e., from z < 0. Recalling (2), the boundary state
vector components at z = 0 and z = L are derived as

E+
1 (0) = Einc,

E+
2 (0) = eikrπRE−

3 (0), (31)

E+
3 (0) = eikrπRE−

2 (0),

and

E−
1 (L) = iκ1e

ikrπRE+
3 (L),

E−
2 (L) = τ1e

ikrπRE+
3 (L), (32)

E−
3 (L) = eikrπR[τ1E

+
2 (L) + iκ1E

+
1 (L)].

Using the six equations in (31) and (32) along with the six
equations of the T matrix in (30), we solve for the state vector
at the boundaries of the finite CROW namely �0and�(L), and
the transfer function defined next is also found.

Transfer function. We define the transfer function TF =
Eout/E

+
1 (0) of the proposed CROW as the output electric

field wave amplitude Eout (see Fig. 6) divided by the CROW
excitation E+

1 (0) = Einc:

TF = Eout

Einc
, Eout = τ1E

+
1 (L) + iκ1E

+
3 (L). (33)

In Fig. 7, we show the transfer function of a CROW made of
a chain of N unit cells for different values of N . The structure
is designed with the unit cell in Fig. 2 and parameters in

0.999 0.9992 0.9994 0.9996 0.9998 1
ω/ω

DBE

-30
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0
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F
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]
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N=12
N=16

FIG. 7. Magnitude of the transfer function TF in dB close to
a DBE frequency plotted versus angular frequency normalized to
the DBE angular frequency (fDBE

∼= 194.83THz) for three different
numbers of unit cells (N = 8, 12, and 16) in the CROW with period
d = 2R.

Appendix A to have a DBE, i.e., a fourth-order EPD as seen in
Fig. 4. We see that for a larger number of rings, the transmission
peak closest to the fourth-order EPD gets narrower (i.e., higher
Q) and its DBE resonance (ωr,d ) gets closer to the DBE
frequency ωd following the equation ωr,d ≈ ωd − hd (π/Nd)4

[21] with hd being the dispersion fitting parameter and d the
period of the proposed CROW. Furthermore, for a given N , the
peak closer to ωd , denoted as resonance ωr,d , is the sharpest
one. And this has been used to conceive of the single mode of
operation of the DBE laser in [63].

In Fig. 8 we show the transfer function of a CROW made of
a chain of N unit cells for different values of N . The structure
is designed with the unit cell in Fig. 1(b) with the parameters at

0.9999 0.99995 1 1.00005 1.0001
ω/ω
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F
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FIG. 8. Magnitude of the transfer function TF in dB near an SIP
frequency plotted versus angular frequency normalized to the SIP
angular frequency (fSIP

∼= 197.04 THz) for three different numbers
of unit cells (N ) in the CROW given as 14, 17, and 20. Note that the
unit cell in this case has a period d = 4R. Hence, the number of rings
in this CROW equals 2N + 1.
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the end of Appendix A to have an SIP, i.e., a third-order EPD,
as seen in Fig. 5. Note that the period is d = 4R; therefore
the length of the CROW is L = Nd = 4NR. We see that the
resonance closest to the SIP frequency is getting narrower
(higher Q) and it is approaching the SIP frequency when N

increases. Note that the transmission peak closest to the SIP
frequency has a magnitude that is less than unity and this may
be attributed to the asymmetric topology of the unit cell, with
respect to the input signal [i.e., the unit cell in Fig. 1(b) is
asymmetric about a plane defined at z0 in Fig. 1(b)].

Quality factor. We point out that the straight waveguide
part of the proposed CROW system is not terminated with
partially reflecting mirrors at z = 0 and z = L, and indeed
the straight waveguide is just extended without modifications.
In other words, the straight waveguide segment part of the
CROW is not mismatched when attached to the outside straight
waveguide segments; i.e., the same straight waveguide coupled
to the chain of rings is continued with the same kw and nw

for z < 0 and z > L. Nevertheless, the CROW-waveguide
system experiences large mismatch to the outside loading
straight waveguides because of the EPD. This is the reason
for the high Q-factor transmission resonance near the points
of degeneracy such as the DBE or SIP shown in Figs. 7 and 8,
respectively.

In general, Floquet-Bloch eigenwaves at frequencies near
that of the DBE have characteristic impedance (called the
Floquet-Bloch impedance [52]) described by a 3 × 3 matrix
that makes the CROW-waveguide system highly mismatched
to the termination impedances (loads) for almost any loading
choice. This renders the DBE resonance strongly confined
inside the resonator [25,28,64,63] for any load variation.
Furthermore, operating near EPDs where the group velocity is
vanishing leads to a giant scaling of Q factor with the number
of ring resonators in a CROW. The word “giant” has been
used to describe this unconventional scaling law encountered
also in other geometries supporting the DBE [21,25,28]. This
can be inherently understood from the fact that the quality
factor is inversely proportional to the group velocity of the
Floquet-Bloch wave vg (i.e., Qvg = constant) as discussed in
[62]. This statement implies that if the DBE resonance ωr,d

coincides with the DBE frequency ωd at which vg = 0, then
the Q factor will be infinite (ideally, in a lossless waveguide).
However, the Q factor is finite because ωr,d �= ωd , though they
are very close following the equation ωr,d ≈ ωd − hd (π/Nd)4.
In essence, (ωd − ωr,d ) ∝ 1/N4; hence the Q factor rapidly
increases with the number of cells N, because this latter
formula describes the rate at which the resonance angular
frequency ωr,d gets closer to ωd with growing N , which in
turn leads to special scaling with N of the increase of group
delay and Q factor [65].

The loaded Q factor of the CROW is estimated numerically
using both the fractional bandwidth (FBW) as well as the group
delay methods as discussed next. The FBW is defined as the 3
dB bandwidth of the transfer function resonance normalized by
the resonance frequency, and the Q factor is then calculated as
Q = 1/FBW. On the other hand, the group delay is calculated
as the derivative of the phase of the transfer function, ∠TF ,
with respect to the angular frequency ω, i.e., τg = ∂∠TF /∂ω

[25]. The Q factor is then calculated by Q = ωr,dτg/2 in which
τg is the group delay [66].

FIG. 9. Loaded quality factor (Q) of CROW-waveguide system
(without internal losses) normalized with respect to that of a single
ring Q0, calculated varying the number of rings for both the RBE
and the DBE cases. The values of Q, denoted by cross symbols,
are calculated using the group delay method for DBE and RBE.
However, we also use the fractional bandwidth (FBW) method in the
DBE case, represented by square symbols, for the sake of comparing
both methods. Continuous lines represent fitting curves: N3 for the
RBE case and N 5 for the DBE case, where N is the number of unit
cells. Note that the number of CROW rings = N + 1.

In Fig. 9, the Q factor of a loaded CROW system, i.e., the
CROW side-coupled to the straight waveguide continued to
the external straight waveguide, is calculated near the DBE
frequency, namely at ωr,d , using both methods just discussed,
for different numbers of rings.

The loaded Q factor is normalized to the Q factor of a single
ring resonator coupled to the waveguide (Q0) calculated using
the well-known equation Q0 ≈ ωresτph/(αLr − 2 ln τ ) [67]
where ωres is the ring resonance angular frequency,Lr = 2πR

is the circumference of ring resonator, τph is the phase delay
given by τph = nrLr/c, and α is the power loss parameter per
unit length that includes radiation and material dissipation.
In Fig. 9 we assume that α = 0; i.e., rings are lossless. With
the parameters in Appendix A, one has Q0 ∼ 900. It is clear
from Fig. 9 that the two methods used to calculate the loaded
Q factor are almost equivalent (for instance see Ref. [66]).
The values of normalized Q are then fitted to a curve whose
equation is bN5 for N > 9, resulting in an error described
by the parameter R-squared ∼0.995, where R-squared is a
statistical measure expressing how close the calculated Q

values are to the fitting curve [68] and it takes values between
0 (worst fitting) and 1 (best fitting). Also in the same figure and
using the same unit cell parameters, the normalized Q factor
of a loaded CROW working near an RBE frequency is shown
and the values are fitted to an equation bN3 with R-squared
∼0.999. We stress that the Q factor near a DBE scales as N5,
which is an unconventional scaling law with size.

Note that the proposed CROWs exhibit both RBEs and
DBEs, and we consider the two denoted by the red circles in
Figs. 3 and 4. The RBE and DBE are at two distinct, but close,
frequencies, 194.22 THz and 194.83 THz, respectively. The
Q factor evaluated in Fig. 9 is evaluated at the resonance of
the finite-length CROW closest to the respective EPD. Figure
9 also shows the scaling of the Q factor associated with the
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FIG. 10. Calculated loaded quality factor (Q) plotted versus
number of rings for the lossless and lossy CROW. Each case is
evaluated at the resonance frequency closest to the frequency at which
the relative EPD occurs (i.e., at ωr,d for the DBE case). The lines
denote the N5 and N 3 trends for the lossless case as in Fig. 9, while
symbols are the calculated Q factor for lossy CROWs. The number
of CROW rings = N + 1.

RBE, calculated at its closest resonance, that scales as N3.
Both scaling factors, of the DBE and RBE cases, should be
compared with the Q factor for a single ring resonator that
increases linearly with the length.

Losses in CROW. We investigate now the effect of losses
on the CROW-waveguide system that includes radiation (due
to bending) and dissipative losses. We assume that losses
are represented by the attenuation constant of the waveguide
and ring resonators. The values of the dissipative losses, as
well as radiation losses due to bending, are taken from [69].
Therefore, propagation in the straight waveguide and ring
waveguides is characterized by wave numbers with complex
values kr,w = Re[kr,w] + iαr,w, where αw = 0.37 dB/mm is
the wave attenuation constant for the straight waveguide
whereas αr = 0.45 dB/mm is the attenuation constant inside
the rings and it includes dissipative losses 0.37 dB/mm and
radiation losses (due to bending) that are assumed to be
0.08 dB/mm (i.e, 0.005 dB/turn for a ring resonator with
R = 10 μm) [69].

In Fig. 10 we show the effect of these internal losses on
the scaling of the Q factor for both the RBE and the DBE
cases. From Fig. 10 we see that the normalized Q is higher
for the DBE case. We also observe that the Q factor relative
to the DBE case is affected by losses more than the Q factor
associated with the RBE case (the RBE and DBE designs
are at two different, but close, frequencies, 194.22 THz and
194.83 THz, respectively). For CROW-waveguide systems
made of a small number of rings the lossless and lossy cases
exhibit, more or less, the same Q factor, for both the DBE and
RBE cases. The Q factor, in the lossy case, increases till it
reaches a saturation value that is attained for the DBE case at a
smaller number of rings than for the RBE case. Nevertheless,
the Q factor for the DBE case is always higher than that for the
RBE case even when considering losses. The scaling of the Q

factor still exists even in the presence of losses as shown from
the microwave experiment [70].

FIG. 11. (a) Absolute values of the total electric field wave
amplitude |En(z)| = |E+

n (z) + E−
n (z)|, where n = 1, 2, 3, calculated

at one point per unit cell (at the left boundary of each unit cell) in
both lossless and lossy CROW-waveguide systems made of 16 rings
operating at the DBE resonance ωr,d . (b) As in part (a) but at the
RBE resonance. In both cases, solid lines represent field amplitudes
in the straight waveguide |E1(z)| = |E+

1 (z) + E−
1 (z)|. Dashed and

dotted lines represent the wave amplitudes inside the upper and lower
branches of the ring resonators at the left boundary of each unit cell.
DBE field values are always higher than RBE electric field wave
amplitude values. Moreover, the DBE case with loss has higher field
than the RBE case without loss.

Resonance with structured field. The distribution of the
normalized electric field wave amplitudes |En(z)/E+

1 (0)| is
shown in Fig. 11 for a CROW made of 16 rings, where
|En(z)| = |E+

n (z) + E−
n (z)| in each n = 1,2,3 waveguide path.

The CROW is excited by an incoming guided wave from the
left with magnitude |E+

1 (0)|. The normalized electric field
wave amplitudes are evaluated at discrete z points, one per
unit cell, specifically at the left boundary of each unit cell
of the proposed CROW in Fig. 2, for both the lossless and
lossy cases. For comparison, we show the fields at both the
second- and fourth-order EPDs, i.e., at the RBE and at the
DBE, respectively. It is important to note that in the DBE case,
|En(z)/E+

1 (0)| is twice more than in the RBE case, consistent
with the higher Q factor in Fig. 10. Indeed, based on Fig. 10
it is expected that the DBE case leads to even stronger field
values than the RBE cases for a larger number of rings. Finally,
we note that the effect of losses in the RBE case is less than that
in the DBE case and this is consistent with the aforementioned
observations made on the Q factor. Nevertheless, the electric
field wave amplitudes are still much stronger in the DBE case
even when losses are present.

184304-12



THEORY OF COUPLED RESONATOR OPTICAL . . . PHYSICAL REVIEW B 96, 184304 (2017)

VIII. CONCLUSION

We have presented the concept of a CROW made of a
chain of coupled ring resonators, all coupled to an adjacent
straight waveguide, that exhibits EPDs with various orders
of degeneracy. We have provided the theoretical formulation
relying on the transfer matrix analysis that describes such
EPDs of various orders. We have demonstrated that EPDs of
various orders exist without the need for gain and/or loss. This
is in contrast to what has been currently proposed in the context
ofPT -symmetric optics. We have also discussed the necessary
conditions to realize a DBE in a CROW-waveguide system. We
have derived an analytical expression for the CROW dispersion
relation, based on the unit cell in Fig. 2, that provides physical
insight into the DBE’s occurrence. Furthermore, we have
shown that the simplest geometry in Fig. 2 is not able to
generate SIP degeneracies, which have been obtained instead
using the more general unit cell in Fig. 1(b).

Moreover, we have shown that manipulation of various
orders of degeneracies in such a CROW system leads to uncon-
ventional enhancement in the Q factor and its unconventional
scaling law with the CROW length. Such unconventional
enhancement and unconventional scaling law have been
demonstrated even in the presence of loss. Importantly, when
operating at the DBE resonance, the proposed CROW with
losses has a larger Q factor than the ideal lossless RBE case.

The concepts here discussed are general and the analysis can
be applied to several other structures made of multiple coupled
waveguides. The examples discussed in this paper involved a
CROW that has shown several EPDs at frequencies close to
each other because we have used large (in terms of wave-
length) resonators that individually support various modes.
Our proposed concept of degeneracies for a CROW coupled
to a straight waveguide serves as a promising test bed for
enhancing the Q of resonators, even without mirrors, and for
having systems whose Q factor and transfer function change
abruptly by the slight variation of some system parameter,
hence making them suitable for extremely sensitive sensors.
EPDs such as those discussed in this paper are potentially
useful toward various applications including nonlinear light
manipulation and transport, lasers, switches, modulators, and
extremely sensitive sensors.
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APPENDIX A: PARAMETERS USED IN NUMERICAL
SIMULATIONS

The radius of all the ring resonators considered in this paper
is R = 10 μm, similar to a design demonstrated in [71]. The
various parameters of the unit cell shown in Fig. 2 that is
able to develop RBE and DBE are as follows: power cross
coupling coefficients are κ2

1 = 0.35 and κ ′2
1 = 0.469, while

the effective refractive indices that describe propagation in

the waveguide and in the rings are set as nw = 2.5 [72] and
nr = 1.5. Note that the values of the coupling coefficient were
chosen in the range presented in [73] and these values are
compatible with SOI fabrication as shown in [74]. For the SIP
case, the parameters of the unit cell shown in Fig. 1(b) are as
follows: power coupling coefficients are κ2

1 = 0.5, κ ′2
1 = 0.2,

κ2
2 = 0.3, and κ ′2

2 = 0.4, while the effective refractive indices
are set as nw = 1.51 and nr = 1.5.

APPENDIX B: TRANSFORMATION FROM
S MATRIX TO T MATRIX

We show here how to transform the scattering S matrix into
the transfer T matrix. The advantage of using the T matrix
is that we can characterize our multiple unit cell structure by
simply multiplying the T matrices of the cascaded unit cells
[75]. Recall that the transfer matrix relates the state vector at
points z1 and z2 as seen from (3). On the other hand, the S

matrix relates them using (4). The following transformation
from an S matrix to a T matrix is a general property that is
applicable to any dimensionality of the system. However, we
apply it for any T matrix or S matrix relating electric field
wave amplitudes at arbitrary points z1 and z2 in the proposed
CROW. Therefore, the T matrix and S matrix, for our proposed
CROW, are 6 × 6 matrices. We represent the 6 × 6 S matrix
and T matrix using four subblock matrices, each of size 3 × 3,
as

S(z2,z1) =
(

S
11

S
12

S
21

S
22

)
, T(z2,z1) =

(
T

11
T

12
T

21
T

22

)
. (B1)

Now we transform the subblocks of the S matrix into the
T -matrix subblocks through the following expressions [75]:

T
11

= S
21

− S
22

S−1
12

S
11

,

T
21

= −S−1
12

S
11

, T
12

= S
22

S−1
12

,

T
22

= S−1
12

. (B2)

Accordingly, after proper substitutions of the S-matrix
subblocks given in (7)–(9), the transfer matrix of the first
segment T1 of the unit cell shown in Fig. 1(b) is given by
its subblock matrices, viz.,

T
11

= T∗
22

=
⎛
⎝τ1�w 0 iκ1�w

κ1
κ ′

1
�r 0 i τ1

κ ′
1
�r

0 i �r

κ ′
1

0

⎞
⎠,

T
12

= T∗
21

=

⎛
⎜⎝

0 0 0

0 −i
τ ′

1
κ ′

1
0

− κ1τ
′
1

κ ′
1

−i
τ1τ

′
1

κ ′
1

⎞
⎟⎠, (B3)

where all these quantities were defined before in Sec. III.
Analogous steps are used to derive the transfer matrix of
the other segment, shown in Fig. 1(b), through replacing the
coupling coefficients κ1,κ

′
1 with κ2,κ

′
2 and the transmission

coefficients τ1,τ
′
1 with τ2,τ

′
2. Recall that the lossless condition

of the S matrix is S(z2,z1)S†(z2,z1) = 1, where the dagger
† implies complex conjugation and transpose operation,
meaning that it is unitary. In addition, the T matrix of the
lossless CROW obeys the fundamental J -unitary property
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(similar to general stratified media in [21]), which means that
T−1(z2,z1) = J T†(z2,z1) J−1 with the matrix J here is given
by

J =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠. (B4)

APPENDIX C: ON THE NECESSARY CONDITIONS
GOVERNING THE CROW PARAMETERS

TO DEVELOP AN SIP

The dispersion equation of the proposed CROW, made
of periodic rings side-coupled to the straight waveguide,
whose unit cell is shown in Fig. 2 with period d =
2R, is obtained by solving the general expression (14),
in which the unit cell transfer matrix TU has subblocks
defined in (B3) and is cast analytically in (25)–(27). In
the following we consider the lossless CROW parameters

(κ1,τ1,κ2,τ2,nw,nr , and R) that are real and positive, and
some have restrictions on their values, i.e., 0 < κ1,τ1,κ2,τ2

<1.
The necessary conditions governing the various parameters

of the lossless CROW unit cell shown in Fig. 2 in order to
develop a DBE are given in (29). Contrarily, no points in the
parameter space of the lossless CROW unit cell in Fig. 2 can
be found such that an SIP is observed, and the reason for this
statement is laid out in the following. The necessary condition
to achieve an SIP is that the characteristic equation of the
CROW unit cell in Fig. 2 at an SIP angular frequency ωs must
take the form

D(k,ωs) = [ζ − ζs]
3

[
ζ − 1

ζs

]3

= 0, (C1)

which means that there are two eigenvalues each with
multiplicity of order three and they are a reciprocal pair,
where the eigenvalue ζs = eiksd and d = 2R. Similarly to
what we did for the DBE case, by equating the co-
efficients of this polynomial to those of (25), we get
three equations governing the CROW parameters that are
necessary to obtain the SIP for the geometry in Fig. 2
as

τ1 cos(2kwR) = 3 cos(2ksR),

cos(2πkrR) = 1

τ1

[
6κ ′2

1 cos2(2ksR) + (
1 − τ 2

1

)(
κ ′2

1 − 0.5
) + 1

]
,

τ 2
1 cos [2R(πkr − kw)] − 2τ1τ

′2
1 cos(2kwR) + cos [2R(πkr + kw)] = −κ ′2

1 [cos(6ksR) + 9 cos(2ksR)]. (C2)

Omitting the details, the equalities in (C2) that represent
the necessary conditions to achieve an SIP for the CROW unit
cell in Fig. 2 cannot be simultaneously satisfied for any of the
lossless CROW parameters except for the trivial case when
κ1 = 0. Therefore, we find an SIP using a CROW with the

more general unit cell with period d = 4R as in Fig. 1(b) that
has more degrees of freedom than that shown in Fig. 2. The
necessary condition for such unit cell to develop an SIP could
also be derived analogously to what has been shown for the
DBE.
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