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The critical behavior of a random-field O(N ) model driven at a uniform velocity is investigated near three
dimensions at zero temperature. From intuitive arguments, we predict that the large-scale behavior of the
D-dimensional driven random-field O(N ) model is identical to that of the (D − 1)-dimensional pure O(N )
model. This is an analog of the dimensional reduction property of equilibrium cases, which states that the critical
exponents of D-dimensional random-field models are identical to those of (D − 2)-dimensional pure models.
However, the dimensional reduction property breaks down in low enough dimensions due to the presence of
multiple metastable states. By employing the nonperturbative renormalization group approach, we calculate the
critical exponents of the driven random-field O(N ) model in the first order of ε = D − 3 and determine the range
of N in which the dimensional reduction breaks down.
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I. INTRODUCTION

The effect of quenched disorder on the large-scale structure
of interacting systems is still unknown. The difficulties of
disordered systems come from the fact that the competition
between disorder and interaction leads to multiple metastable
states, which are local minima of the Hamiltonian. The
presence of such metastable states can significantly affect the
critical behaviors and dynamical properties of the system.
One of the most remarkable phenomena associated with
metastable states is the failure of the so-called “dimensional
reduction” property in the random-field spin models. Standard
perturbation theory predicts that the critical behaviors of
D-dimensional random-field spin models are the same as those
of (D − 2)-dimensional pure spin models [1,2]. However,
it is known that this dimensional reduction breaks down
in low enough dimensions due to a nonperturbative effect
associated with multiple metastable states. For example, it
predicts that the lower critical dimension of the random-field
Ising model (RFIM) is three because that of the pure Ising
model is one. This result obviously contradicts the fact that
the three-dimensional (3D) RFIM exhibits long-range order
(LRO) at weak disorder [3].

A promising theoretical approach for describing the break-
down of the dimensional reduction is functional renormaliza-
tion group (RG) theory [4–6]. In this formalism, one follows
the RG flow of a whole function of a renormalized cumulant
for the disorder. For a particular range of parameters, the
renormalized cumulant corresponding to a fixed point exhibits
a cusp as a function of the field. Such nonanalytic behavior is a
consequence of the presence of multiple metastable states and
leads to the breakdown of the dimensional reduction. The range
of the parameters for which the dimensional reduction fails
has been determined for the RFIM and the random-field O(N )
model [RFO(N )M] [7–9]. For example, the critical dimension
above which the dimensional reduction recovers is estimated
as DDR � 5 for the RFIM. This is consistent with numerical
simulations in which the critical exponents of the four and
five-dimensional RFIM are calculated [10–12].
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A more challenging problem concerning the effect of
disorder, is to understand the critical behavior of disordered
systems driven out of equilibrium in the presence of an external
force. It is still poorly understood how the interplay between
the quenched disorder and driving force affects the large-scale
structure of the system. One of the well-studied examples is
the driven vortex lattices in dirty superconductors [13]. In
such systems, vortex lines are driven by the Lorentz force
in the presence of a random pinning potential. The transport
properties associated with the collective dynamics of the
vortices have been investigated experimentally [14–17].

The most remarkable phenomena in the driven vortex
lattices are depinning and dynamical reordering transitions.
For a driving force lower than a certain critical value, the lattice
is pinned by disorder and the average velocity is zero. As the
driving force becomes large enough to overcome the resistance
of the pinning force, the lattice starts to move. This transition
from a pinned state to a moving state is known as a depinning
transition, in which the average velocity corresponds to an
order parameter. In recent decades, there have been notable
theoretical developments in the depinning transition of elastic
systems driven in a disordered medium [18–21]. The critical
exponents near the transition point and the force-velocity
characteristics at finite temperature are obtained from the
functional RG analysis.

A vortex lattice driven at large velocities becomes more
ordered than that for small driving velocities. The intuitive
explanation is that at large driving velocities the random forces
that each vortex experiences vary rapidly and the inhomo-
geneity is reduced. Thus, as the driving velocity increases, a
phase transition from a disordered phase to an ordered phase
takes place. This nonequilibrium phase transition is called a
dynamical reordering transition [22–24]. The depinning and
dynamical reordering transitions can be observed in a wide
variety of systems, such as charge density waves [25] and
colloids [26] driven over inhomogeneous substrates.

The vortex lattice system in a dirty superconductor is
equivalent to the random-field XY model at weak disorder. In
this sense, the vortex lattice can be considered as a disordered
system with “Abelian” symmetry. On the other hand, there
are some examples of random “non-Abelian” systems, which
include liquid crystals confined in random porous media
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[27–29]. The universality class of critical phenomena crucially
depends on the symmetric nature of the system. Therefore it
is an intriguing question to ask what kinds of phase transitions
occur when random non-Abelian systems are driven out of
equilibrium.

To resolve this problem, it is a natural starting point to
introduce a nonequilibrium counterpart of the dimensional
reduction property. In this study, we first attempt to establish a
dimensional reduction which relates the nonequilibrium steady
states of driven disordered systems to the equilibrium states of
lower dimensional pure systems. This implies that the critical
exponents of the dynamical reordering transitions in driven
disordered systems are the same as those of the equilibrium
phase transitions in the corresponding pure systems.

The strategy of this study is as follows: (i) we introduce a
simple model of non-Abelian systems, the driven random-
field O(N ) model [DRFO(N )M], which is the RFO(N )M
driven at a uniform and steady velocity. This model exhibits
a dynamical reordering transition above three dimensions.
(ii) From intuitive arguments, we derive a novel type of
dimensional reduction property which states that the critical
exponents of the D-dimensional DRFO(N )M at zero temper-
ature are identical to those of the (D − 1)-dimensional pure
O(N ) model. However, as in equilibrium, it can break down
in low enough dimensions due to a nonperturbative effect
associated with multiple metastable states. (iii) By employing
the nonperturbative renormalization group (NPRG) approach,
we investigate the critical behavior of the model at zero temper-
ature. (iv) From the nonanalytic behavior of the renormalized
disorder correlator, we determine the region in the parameter
space wherein the dimensional reduction breaks down.

According to the above strategy, this paper is organized
as follows. In Sec. II, we define the DRFO(N )M and discuss
the lower critical dimension of this model. We also review the
phase structure of the RFO(N )M. In Sec. III, we introduce a di-
mensional reduction property for the DRFO(N )M from naive
arguments, as well as its limitations. In Sec. IV, the formalism
of the NPRG method is developed for our model. We derive
the RG equation for the renormalized cumulant of the random-
field, which is a set of coupled nonlinear partial differential
equations. In Sec. V, the critical exponents are calculated as
functions of N in the first order of ε = D − 3. We show that the
dimensional reduction breaks down when 2 < N < 10 near
three dimensions. In Sec. VI, the results are summarized.

II. MODEL

Let φ(r) = (φ1(r), . . . ,φN (r)) be an N -component real
vector field. The Hamiltonian of the O(N ) model with a
quenched random-field h(r) is given by

H [φ; h] =
∫

dD r
[

1

2
K|∇φ|2 + U (ρ) − h · φ

]
, (1)

where ρ = |φ|2/2 is the field amplitude and U (ρ) =
(λ0/2)(ρ − ρ0)2 is a local interaction potential. The random-
field obeys a mean-zero Gaussian distribution with

hα(r)hβ(r ′) = h2
0δ

αβδ(r − r ′), (2)

where the over-bar represents the average over the quenched
disorder. The dynamics are described by

	(∂tφ
α + v∂xφ

α) = −δH [φ; h]

δφα
+ ξα, (3)

where v denotes the uniform time-independent driving veloc-
ity, and ξα(r,t) represents the thermal noise that satisfies

〈ξα(r,t)ξβ(r ′,t ′)〉 = 2	T δαβδ(r − r ′)δ(t − t ′). (4)

We call this model the driven random-field O(N ) model
[DRFO(N )M]. In this study, we consider the case N � 2.
Since we are interested in the nonequilibrium steady states of
this model, in the following, 〈. . . 〉 denotes the average over
the distribution function of the steady state,

〈A[φ]〉 ≡
∫

DφA[φ]Pst[φ; h], (5)

where Pst is the probability distribution function of the steady
state for a given realization of the random-field. The disorder
average is given by

〈A[φ]〉 ≡
∫

Dh〈A[φ]〉PR[h], (6)

where PR is the distribution function of the random-field.
The DRFO(N )M describes the relaxation dynamics of

ordering systems flowing in a random environment. An
example is liquid crystals flowing in a porous medium.
Recently, the dynamics of liquid crystals confined in a complex
geometry has attracted considerable attention, due to not
only the fundamental research interest, but also the industrial
applications [30,31]. For liquid crystals in a porous medium,
the irregular surface structure of the solid substrate results in
symmetry breaking random anchoring, which is similar to the
random-field in the O(N ) model.

We briefly review the equilibrium phase structure of the
RFO(N )M. From phenomenological and rigorous arguments,
it is shown that the lower critical dimension of the RFO(N )M
with N � 2 is four [32,33], therefore, there is no LRO in three
dimensions. However, the existence of quasi-long-range order
(QLRO), in which the correlation function decays with power-
law, is a more subtle problem. In early theoretical and numeri-
cal studies [34–36], it was suggested that the 3D random-field
XY model (RFXYM), which corresponds to N = 2, exhibits
QLRO at weak disorder. This phase is called the “Bragg glass
phase” in the context of the vortex lattice in superconductors
[37]. However, recently, more sophisticated renormalization
group approaches have been developed, and these studies
negated the existence of QLRO in the 3D-RFXYM [38–40].
Therefore it is believed that the RFO(N )M with N � 2 neither
exhibits QLRO nor LRO in three dimensions.

We now consider the lower critical dimension of the
DRFO(N )M, and denote the transverse fluctuation of the order
parameter field from a completely ordered state as φT (r). Its
equation of motion at zero temperature is given by

	(∂tφ
T + v∂xφ

T ) = K∇2φT + hT , (7)

where hT is the transverse component of the random-field.
Therefore, if the renormalization of the random-field is
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ignored, the disconnected Green’s function is given by

G
(T )
d (q) = 〈φT (q)〉〈φT (−q)〉 = h2

0

K2|q|4 + 	2v2q2
x

, (8)

whose q-integral exhibits an infrared-divergence below three
dimensions and the lower critical dimension is three. This
implies that, at D = 3 + ε, the DRFO(N )M is always in a
disordered phase for v = 0 while it exhibits a dynamical
reordering transition at sufficiently large v. In particular, at
D = 3 and N = 2, one may expect the existence of a QLRO
phase and the Kosterlitz-Thouless (KT) transition [41,42]
from the analogy of the two-dimensional (2D) pure XY
model. In fact, it is suggested from the one-loop perturbative
renormalization group analysis that elastic lattices driven in
a random potential exhibit an anisotropic QLRO at weak
disorder [43–45]. Furthermore, the KT-like transition is also
observed in numerical simulations of the 3D-DRFO(2)M [46].
However, since the analysis for this case requires a more
careful treatment than that given in this study, the detailed
investigation will be presented elsewhere.

III. DIMENSIONAL REDUCTION

In this section, we introduce a dimensional reduction
property for the DRFO(N )M. At zero temperature, Eq. (3)
is written as

	(∂tφ + v∂xφ) = K∇2φ − U ′(ρ)φ + h(r). (9)

A steady state φst(r) satisfies the following equation:

	v∂xφ = K∇2φ − U ′(ρ)φ + h(r). (10)

In the large length scale, the longitudinal elastic term K∂2
xφ is

negligible compared to the advection term v∂xφ. Thus Eq. (10)
becomes

	v∂xφ = K∇2
⊥φ − U ′(ρ)φ + h(x,r⊥), (11)

where ∇⊥ is the derivative operator for the transverse directions
and r⊥ represents the transverse coordinate. In Eq. (11), if the
coordinate x is considered to be a fictitious time and h(x,r⊥)
as thermal noise, φst(x,r⊥) is identical to the dynamical
solution for the (D − 1)-dimensional pure O(N ) model with
temperature Teff = h2

0/(2	v). If we assume that all steady
states satisfying Eq. (11) contribute with equal weight, we can
conclude that the large-scale behavior of the D-dimensional
DRFO(N )M at zero temperature is identical to that of the (D −
1)-dimensional pure O(N ) model at finite temperature. This is
the dimensional reduction property for the DRFO(N )M.

However, as in equilibrium, the dimensional reduction
property can break down. The reason is that each steady state
contributes with nontrivial weight to the averaged quantities.
To clarify this subtle point, we consider the equilibrium case,
in particular the RFIM. The Hamiltonian of the RFIM has
many local minima or metastable states. If we assume that
all metastable states contribute with equal weight, we have
the conventional dimensional reduction property [2]; however,
such an assumption is incorrect. In fact, each metastable state
contributes with the Boltzmann weight e−E/T , where E is the
energy corresponding to the metastable state. In particular,

at sufficiently low temperatures, the dominant contribution is
from the ground state. The same problem arises in nonequilib-
rium situations. Let Pst[φ; h,T ] be the probability distribution
function of the steady state for a fixed random-field h and tem-
perature T . In the limit T → 0, Pst[φ; h,T ] has a sharp peak
at the “most probable” steady state φ∗

st(r), which is one of the
solutions of Eq. (11). If the large-scale behavior of φ∗

st(r) is dif-
ferent from that of the (D − 1)-dimensional pure O(N ) model,
the dimensional reduction breaks down. It is worth noting that
Pst[φ; h,T ] cannot be expressed in the form exp(−E[φ; h]/T )
because the advection term v∂xφ in Eq. (3) cannot be cast into
the functional derivative of an appropriate potential.

IV. NPRG FORMALISM

We employ the NPRG approach [47] to investigate the
large-scale behavior of the DRFO(N )M. This approach en-
ables us to treat interacting systems with large degrees of
freedom in a systematic way, such as frustrated magnets [48],
strongly correlated quantum gases [49], reaction-diffusion
systems [50], and the Kardar-Parisi-Zhang equation [51]. The
NPRG formalism for disordered systems has been developed
in Refs. [8,9]. We extend this formalism to driven disordered
systems and derive the RG equations of the DRFO(N )M in
the first order of ε = D − 3.

A. Scale-dependent effective action

Our starting point is the field-theoretical representation of
Eq. (3). We introduce the replicated fields �a = t (φa,φ̂a), a =
1, . . . ,n. Taking the average over the random-field leads to the
action

S[{�a}] =
∑

a

S1[�a] − 1

2

∑
a,b

S2[�a,�b], (12)

where the one and two-replica parts are given by

S1[�] =
∫

rt

[	φ̂ · (∂tφ + v∂xφ − T φ̂)

+ φ̂ · {−K∇2φ + U ′(ρ)φ}] (13)

and

S2[�a,�b] =
∫

rtt ′
h2

0 φ̂a,rt · φ̂b,rt ′ . (14)

The derivations of Eqs. (13) and (14) are presented in
Appendix A. In the following, a superscript with a greek alpha-
bet letter represents the index of the field component α,β =
1, . . . ,N and a subscript with a roman alphabet letter repre-
sents the replica index a,b = 1, . . . ,n. By introducing source
fields Ja = t ( ja, ĵa), the generating functional is defined as

Z[{Ja}] =
∫ ∏

a

D�a exp

[
−S[{�a}] +

∑
a

∫
rt

t Ja · �a

]
.

(15)
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The effective action is given by a Legendre transformation of
ln Z[{Ja}],

	[{a}] = − ln Z[{Ja}] +
∑

a

∫
rt

t Ja · a, (16)

where a = t (ψa,ψ̂a) and Ja are related by

a = 〈�a〉 = δ

δJa

ln Z[{Ja}].

The NPRG formalism is based on an exact RG equation for
the scale-dependent effective action 	k[{a}], which includes
only high-energy modes with momenta larger than the running
scale k. As k goes from the cutoff � to zero, 	k interpolates
between the bare action (12) and the full effective action (16).
To suppress the contribution from the low-energy modes, a
mass-like quadratic term is added to the bare action,

�Sk[{�a}] = 1

2

∑
a

∫
q

t�a(q) Rk(q) �a(−q), (17)

where we have used the notation q = (q,ω) and
∫
q

=∫
dDqdω/(2π )D+1. A frequency-independent 2N × 2N ma-

trix Rk(q) is given by

Rk(q) = Rk(q)

(
0 1
1 0

)
⊗ IN, (18)

where IN is the N × N unit matrix, which acts on the field
component index. Rk(q) is a cutoff function, which has a
constant value proportional to k2 for |q| � k and rapidly
decreases for |q| > k. The explicit form of Rk(q) will be given
later. We also introduce a 2nN × 2nN matrix

R̂k(q) = Rk(q) ⊗ In, (19)

where In is the n × n unit matrix, which acts on the replica
index. From the generating functional with the running scale k,

Zk[{Ja}] =
∫ ∏

a

D�a exp

[
−S[{�a}] − �Sk[{�a}]

+
∑

a

∫
rt

t Ja · �a

]
, (20)

one defines the scale-dependent effective action through a
Legendre transformation,

	k[{a}] = − ln Zk[{Ja}] +
∑

a

∫
rt

t Ja · a − �Sk[{a}],

(21)

where a and Ja are related by

a = 〈�a〉 = δ

δJa

ln Zk[{Ja}].

It can be shown that limk→∞ 	k[{a}] = S[{a}] and
limk→0 	k[{a}] = 	[{a}]. (See Ref. [52] for the general
framework of the NPRG formalism for nonequilibrium sys-
tems.)

B. Exact flow equation for the effective action

The exact evolution of 	k is described by Wetterich’s
equation [47],

∂k	k = 1
2 Tr ∂kR̂k(q)

[
	

(2)
k + R̂k(q)

]−1
, (22)

where 	
(2)
k is the second functional derivative,

(
	

(2)
k

)μν

ab
(q,q ′) = δ2	k

δ
μ
a (q)δν

b (q ′)
, (23)

and Tr represents an integration over momentum and fre-
quency as well as a sum over the indices of the replica, the
field component, and the two conjugate fields {ψ,ψ̂}. Note
that R̂k(q) in Eq. (22) implicitly contains the delta function of
momentum and frequency.

According to Ref. [8], 	k is expanded in an increasing
number of free replica sums,

	k[{a}] =
∑

a

	1,k[a] − 1

2

∑
a,b

	2,k[a,b]

+ 1

3!

∑
a,b,c

	3,k[a,b,c] − · · · , (24)

where the multireplica parts are related to the cumulants of the
renormalized random-field. Inserting Eq. (24) into Eq. (22)
leads to the exact flow equations for 	p,k . To express these in
a compact form, we define the one-replica propagator with the
infrared cutoff,

Pk[] = [
	

(2)
1,k[] + Rk(q)

]−1
. (25)

The exact flow equations for 	1,k[] and 	2,k[1,2] are

∂k	1,k[] = 1

2
tr

∫
q

∂kRk(q)
[
Pk[] + Pk[]	(11)

2,k [,]Pk[]
]
, (26)

∂k	2,k[1,2] = −1

2
tr

∫
q

∂kRk(q)
[
Pk[1]

{
	

(20)
2,k [1,2] − 	

(110)
3,k [1,1,2] + 	

(11)
2,k [1,2]Pk[2]	(11)

2,k [2,1]

+	
(20)
2,k [1,2]Pk[1]	(11)

2,k [1,1] + 	
(11)
2,k [1,1]Pk[1]	(20)

2,k [1,2]
}
Pk[1] + perm(1,2)

]
, (27)

where we have introduced the following notation:

	
(11)
2,k [1,2] = δ2	2,k[1,2]

δ1δ2
, 	

(20)
2,k [1,2] = δ2	2,k[1,2]

δ1δ1
, (28)
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and tr in Eqs. (26) and (27) represents the sum over the indices
of the field component and the two conjugate fields {ψ,ψ̂}. The
derivations of Eqs. (26) and (27) are presented in Appendix B.
Note that 	p+1 appears on the right-hand side of the flow
equation for 	p, thus we have an infinite hierarchy of the
coupled flow equations.

C. Derivative expansion

To solve Eqs. (26) and (27), we must introduce an
approximation for the functional form of 	p,k . Since we are
interested in the large-scale behaviors of the system, we expand
the effective action in an increasing number of derivatives of
the field and retain only a limited number of terms.

This systematic truncation scheme is called “derivative
expansion” [47]. We use the following functional form for
the one-replica part 	1,k , which includes the first order of the
derivative expansion:

	1,k[] =
∫

rt

[
Xkψ̂ · (∂tψ + vk∂xψ − Tkψ̂)

+ ψ̂ · {−Z‖,k∂2
xψ − Z⊥,k∇2

⊥ψ − Fk(ρ)ψ
}]

, (29)

where we have introduced two field renormalization factors
Z‖,k and Z⊥,k representing the anisotropy due to the driving.
Fk(ρ) is a renormalized local force, which can be written as the
derivative of a potential Fk(ρ) = −U ′

k(ρ) in the equilibrium
case (v = 0).

The higher-order terms ignored in Eq. (29), such as ψ̂ ·
ψ∇2ρ and ψ̂ · ∇4ψ , just yield subleading contributions to the
critical exponents. More precisely, at D = 3 + ε, the critical
exponents have values ofO(ε), but the contributions from these
terms are O(ε2). This fact can be understood as follows. The
first term ψ̂ · ψ∇2ρ modifies the propagator of the longitudinal
(massive) mode. However, as we will explain in Sec. IV E, the
contribution from the longitudinal mode is negligible in the
first order of ε = D − 3. The second term ψ̂ · ∇4ψ yields
a term proportional to |q|4 in 	

(2)
1,k(q). At a critical point,

	
(2)
1,k(q) is expected to behave as |q|2(|q|2 + ck2)−η/2 near

q = 0, where η is the anomalous dimension [47]. By expanding
this expression around q = 0, one finds that the coefficients
of the higher-order terms O(|q|4) are proportional to η. As we
will show in Sec. IV E, η has a value of O(ε). Therefore the
contribution from the term ψ̂ · ∇4ψ is subleading compared
to that from the term ψ̂ · ∇2ψ .

The two-replica part 	2,k is given by

	2,k[1,2] =
∫

rtt ′
ψ̂

μ

1,rt ψ̂
ν
2,rt ′�

μν

k (ψ1,rt ,ψ2,rt ′ ), (30)

where �
μν

k (ψ1,ψ2) is the second cumulant of the renormalized
random-field. From the rotational symmetry, �μν

k (ψ1,ψ2) can
be rewritten as

�
μν

k (ψ1,ψ2) = �00,k(ρ1,ρ2,z)δμν

+ (4ρ1ρ2)−1/2
[
�12,k(ρ1,ρ2,z)ψμ

1 ψν
2

+�21,k(ρ1,ρ2,z)ψμ

2 ψν
1

+�11,k(ρ1,ρ2,z)ψμ

1 ψν
1

+�22,k(ρ1,ρ2,z)ψμ

2 ψν
2

]
, (31)

where z = ψ1 · ψ2/
√

4ρ1ρ2 is the cosine of the angle between
ψ1 and ψ2. In the equilibrium case, it can be written as the
derivative of the cumulant of the random potential,

�
μν

k (ψ1,ψ2) = ∂ψ
μ

1
∂ψν

2
Vk(ψ1,ψ2).

This cannot be done for the nonequilibrium case. The
bare value is given by �

μν

k=�(ψ1,ψ2) = h2
0δ

μν . We ignore
the contributions from the higher order cumulants, 	3,k =
	4,k = · · · = 0.

It is worth noting the symmetry of the effective action in
the absence of the disorder or driving. In the equilibrium case
(v = 0), it can be shown that the bare action Eqs. (13) and (14)
are invariant under a time-reversal transformation [52],

t → −t,

ψμ
a → ψμ

a , (32)

ψ̂μ
a → ψ̂μ

a − (1/T )∂tψ
μ
a .

Since the effective action Eqs. (29) and (30) should be invariant
under the same transformation, we can conclude that the
temperature is not renormalized, Tk = T , in equilibrium. In
contrast, in the presence of a finite velocity v �= 0, Eq. (13)
is not invariant under Eq. (32) because the advection term
v∂xφ cannot be expressed as a functional derivative of a
potential. Thus, in the nonequilibrium case, the temperature
can be renormalized, Tk �= T .

Next, we consider a zero random-field case h0 = 0 with
a finite driving velocity, and Eq. (13) is invariant under a
space-time-reversal transformation,

t → −t,

x → −x,

ψμ
a → ψμ

a ,

ψ̂μ
a → ψ̂μ

a − (1/T )∂tψ
μ
a − (v/T )∂xψ

μ
a . (33)

This implies that the driving velocity is not renormalized,
vk = v. This result can be easily understood by noting that,
in the absence of the random-field, the driven system can be
mapped into the corresponding equilibrium system through
the Galilei transformation. In contrast, in the presence of the
random-field, Eq. (14) is not invariant under Eq. (33). Thus
the driving velocity can be renormalized, vk �= v.

The renormalized parameters in Eq. (29) are given by the
following functional derivatives:

Xk = 1

�T ∂iω	
(2)
1;ψ̂2ψ2 (p,ω)

∣∣
p,ω=0, (34)

Xkvk = 1

�T ∂(−ipx )	
(2)
1;ψ̂2ψ2 (p,ω)

∣∣
p,ω=0, (35)

2XkTk = − 1

�T 	
(2)
1;ψ̂2ψ̂2 (p,ω)

∣∣
p,ω=0, (36)

Z‖,k = 1

�T ∂p2
x
	

(2)
1;ψ̂2ψ2 (p,pxvk)

∣∣
p=0,

Z⊥,k = 1

�T ∂p2
⊥	

(2)
1;ψ̂2ψ2 (p,pxvk)

∣∣
p=0, (37)

√
2ρFk(ρ) = − 1

�T 	
(1)
1;ψ̂1 (p,ω)

∣∣
p,ω=0, (38)
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where we have used the following notation:

	
(1)
1;ψ̂μ

(p,ω) = δ	1,k[]

δψ̂μ(p,ω)
,

	
(2)
1;ψ̂μψν

(p,ω) = δ2	1,k[]

δψ̂μ(p,ω)δψν(−p,−ω)
.

� and T denote the space-time volume. The functional
derivatives in Eqs. (34)–(38) are evaluated for a uniform field
ψ rt ≡ t (

√
2ρ,0, . . . ,0), ψ̂ rt ≡ t (0, . . . ,0). Especially, for Xk ,

Tk , vk , and Zk , the field amplitude ρ is set to ρm,k satisfying

Fk(ρm,k) = 0, (39)

where ρm,k is the renormalized spontaneous magnetization.
Note that in Eq. (37) the field renormalization factors Zk

are defined as the momentum derivatives of 	
(2)
1,k with ω =

pxvk , and not ω = 0 as in Eq. (34). If the approximation
(29) is appropriate, Zk should be almost independent of
the momentum and frequency at which the derivatives are
evaluated. However, in some cases, the contribution of other
terms that do not appear in Eq. (29) may not be negligible.
Thus there is ambiguity in the choice of the momentum
and frequency in the definition of Xk and Zk . In Eq. (37),
we have chosen the frequency such that, in the absence of
the disorder, the RG equation for Zk is equivalent to that
of the corresponding equilibrium model. To derive the RG
equations for Xk , Tk , vk , Zk and Fk(ρ), we require the exact
flow equations for 	

(1)
1,k and 	

(2)
1,k , which are obtained from the

functional derivative of Eq. (26) (see Appendices C and D).
The renormalized cumulant in Eq. (30) is given by

�
μν

k (ψ1,ψ2) = 1

�T 2
	

(11)
2;ψ̂μ

1 ψ̂ν
2
(p,ω)

∣∣
p,ω=0, (40)

where the functional derivative is evaluated for a uniform
field ψ1,rt ≡ ψ1, ψ̂1,rt ≡ 0 and ψ2,rt ≡ ψ2, ψ̂2,rt ≡ 0. The

exact flow equation for 	
(11)
2,k , which is obtained from the

functional derivative of Eq. (27), leads to the RG equation
for �

μν

k (ψ1,ψ2) (see Appendix E).

D. Dimensionless parameters

To obtain a fixed point, we express the RG equations in
a scaled form by introducing renormalized dimensionless
quantities. For comparison between the equilibrium and
nonequilibrium cases, we define the dimensionless quantities
for both cases below. In the following, the cutoff � is set to
unity.

1. Equilibrium case

For the equilibrium case (v = 0), we follow the definition
employed in Ref. [8]. Since the momentum q is measured in
units of k, we introduce the dimensionless momentum,

y = |q|2
k2

. (41)

We define the dimensionless quantities, which are denoted
with a tilde,

ρ = Z−1
k kD−2τ−1

k ρ̃, (42)

Fk(ρ) = Zkk
2F̃k(ρ̃), (43)

�k(ρ1,ρ2,z) = Zkk
2τ−1

k �̃k(ρ̃1,ρ̃2,z), (44)

where Zk = Z‖,k = Z⊥,k , and τk is chosen such that �̃k attains
a fixed point. To define τk , we introduce the renormalized
disorder strength

�m,k = �00,k(ρm,k,ρm,k,z = 1), (45)

where ρm,k is given by Eq. (39). Then, τk is defined by

τk = (Zk/Z�)k2

�m,k/�m,�

. (46)

From Eq. (44), �̃00,k(ρm,k,ρm,k,z = 1) is constant along the
RG flow. We also introduce the running exponent associated
with τk as

θk = k∂k ln τk = 2 − ηk − k∂k ln �m,k, (47)

where ηk is the running anomalous dimension

ηk = −k∂k ln Zk. (48)

It is worth noting that τk can be considered as a renor-
malized temperature. In the static formulation, the replicated
Hamiltonian with temperature τ is given by

H [{φa}] = 1

τ

∑
a

∫
dD r

[
1

2
K|∇φa|2 + U (ρa)

]

− 1

2τ 2

∑
a,b

∫
dD rh2

0φa · φb.

The ratio of the kinetic term |∇φa|2 to the disorder term h2
0φa ·

φb is proportional to the temperature. Since the kinetic term
scales as Zkk

2, Eq. (46) represents some kind of a renormalized
temperature. Note that τk should not be confused with Tk in
Eq. (29), which is the strength of the renormalized thermal
noise. In equilibrium, τk ∼ kθ with θ � 2, while Tk is constant
along the RG flow from the time-reversal symmetry Eq. (32). In
the RG equations, Tk and τk always appear in the combination
Tkτk and the flow of this product controls the critical behavior
of the system.

At a critical point, the “connected” and “disconnected”
Green’s functions behave as

Gc(r − r ′) = δ〈φ(r)〉
δh(r ′)

∼ |r − r ′|−(D−2+η), (49)

Gd(r − r ′) = 〈φ(r)〉〈φ(r ′)〉 ∼ |r − r ′|−(D−4+η̄), (50)

where η is the fixed point value of ηk and η̄ is a new
exponent. Note that from the fluctuation-dissipation theorem
T Gc(r − r ′) = 〈φ(r)φ(r ′)〉 − 〈φ(r)〉〈φ(r ′)〉. Let us derive a
relation between η, θ , and η̄. The renormalized spontaneous
magnetization ρm,k , which is defined in Eq. (39), can be
considered as the amplitude of the field averaged over a region
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V of linear dimension k−1. Therefore, at the critical point, it
behaves as

ρm,k ∼ k2D

∫
V

dD rdD r ′Gd(r − r ′) ∼ kD−4+η̄,

where we have used Eq. (50). On the other hand, from Eq. (42),
ρm,k scales as kD−2+η−θ at the fixed point. Thus, if we define

η̄k = 2 + ηk − θk, (51)

η̄ is the fixed point value of η̄k .
The cutoff function Rk(q) is written as

Rk(q) = Zkk
2r(y), (52)

where y is the dimensionless momentum. In the following
calculations, we employ the “optimized” cutoff function,

r(y) = (1 − y)�(1 − y), (53)

where �(x) is a step function [53].

2. Nonequilibrium case

For the nonequilibrium case (v �= 0), considering the
anisotropy due to the driving, the transverse momentum q⊥
and longitudinal momentum qx are measured in units of k

and Qk (defined below), respectively. Thus we introduce the
dimensionless momentum

y⊥ = |q⊥|2
k2

, y‖ = q2
x

Q2
k

. (54)

We define the dimensionless quantities, which are denoted
with a tilde,

ρ = Z−1
⊥,kk

D−3Qkτ
−1
k ρ̃, (55)

Fk(ρ) = Z⊥,kk
2F̃k(ρ̃), (56)

�k(ρ1,ρ2,z) = Z⊥,kk
2τ−1

k �̃k(ρ̃1,ρ̃2,z). (57)

The temperature scaling exponent θk is defined by Eq. (47)
with

η⊥,k = −k∂k ln Z⊥,k. (58)

We also introduce the dimensionless velocity ṽk and dimen-
sionless longitudinal elastic constant z̃‖,k as

ṽk = XkvkQk

Z⊥,kk2
, (59)

z̃‖,k = Z‖,kQ2
k

Z⊥,kk2
. (60)

Qk is chosen such that ṽk attains a fixed point. Thus we define

Qk = (Z⊥,k/Z⊥,�)k2

Xkvk/(X�v�)
. (61)

The running exponent associated with Qk reads

ζk = k∂k ln Qk = 2 − η⊥,k − k∂k ln(Xkvk). (62)

Since ṽk is constant along the RG flow, we omit the subscript
k below.

At a critical point, the Green’s functions for the transverse
direction behave as

Gc(r⊥) ∼ r
−(D−2+η⊥)
⊥ , (63)

Gd(r⊥) ∼ r
−(D−3+η̄⊥)
⊥ , (64)

where η⊥ is the fixed point value of η⊥,k and η̄⊥ is a new
exponent. For the longitudinal direction, they behave as

Gc(r‖) ∼ r
−(D−2+η⊥)/ζ
‖ , (65)

Gd(r‖) ∼ r
−(D−3+η̄⊥)/ζ
‖ , (66)

where ζ is the fixed point value of ζk . Let us derive a relation
between η⊥, θ , ζ , and η̄⊥. The renormalized spontaneous
magnetization ρm,k can be considered as the amplitude of the
field averaged over a region V of linear dimension k−1 for
the perpendicular direction and Q−1

k for the parallel direction.
Therefore, at the critical point, it behaves as

ρm,k ∼ k2(D−1)Q2
k

∫
V

dD rdD r ′Gd(r − r ′) ∼ kD−3+η̄⊥ ,

where we have used Eqs. (64) and (66). On the other hand,
from Eq. (55), ρm,k scales as kD−3+ζ+η⊥−θ . Thus, if we define

η̄⊥,k = ζk + η⊥,k − θk, (67)

η̄⊥ is the fixed point value of η̄⊥,k .
We assume that Rk(q) = Rk(q2

x ,|q⊥|2) is independent of
the longitudinal momentum qx ,

Rk(q2
x ,|q⊥|2) = Rk(|q⊥|2) = Z⊥,kk

2r(y⊥), (68)

where r(y) is given by Eq. (53).

E. RG equations near the lower critical dimension

We show the RG equations at D = 4 + ε for the equilibrium
case and at D = 3 + ε for the nonequilibrium case, in the first
order of ε. In the case of the pure O(N ) model and near the
lower critical dimension, the fixed point associated with the
critical point is expected for a value of ρ̃m that diverges as 1/ε.
Therefore one can organize a systematic expansion in powers
of 1/ρ̃m. The leading order of this expansion is considered
below.

The transverse and longitudinal components for the one-
replica propagator are denoted as P (T )(q) and P (L)(q), re-
spectively, whose expressions are given in Appendix F. If
we assume that F̃ ′

k(ρ̃m) has a value of O(1) at the fixed
point, P (T )(q) = O(1) and P (L)(q) ∼ ρ̃−1. Therefore retaining
the leading order of the expansion of 1/ρ̃m implies that the
contribution from the longitudinal mode is ignored.

The RG flow of the one-replica force Fk(ρ) is given
by Eqs. (C4)–(C6) in Appendix C. We introduce a scale
parameter l = − ln(k/�), which moves from 0 to ∞ as k

decreases from � to 0. The RG equation for ρm can be derived
from F ′

k(ρm)∂lρm + ∂lFk(ρ)|ρ=ρm
= 0, where ∂l = −k∂k . In

the leading order of ρ−1
m , the RG equation for ρm reads

∂lρm = −(N − 1)

[
Tk

2
L

(T )
2,m + �mI

(T )
12,m

]
, (69)
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where the integrals L and I are defined by Eqs. (F6) and (F7) in Appendix F, respectively. We have used notations such as
I

(T )
12,m = I

(T )
12 (ρm,ρm). The renormalized disorder strength �m is defined by Eq. (45).

We next consider the RG flows of Xk , vk , Tk , and Zk . Since we are interested in the static properties of the critical point at zero
temperature, it is sufficient to consider the flows of Z⊥,k and Xkvk . The RG equations for these are obtained from the momentum
derivatives of ∂l	

(2)
1 , which are given by Eqs. (D1), (D3), and (D4) in Appendix D, and

∂lZ⊥ = − �m

2ρm

∫
q
∂lRk(q)D0(q)−2

[
4M0(q)

(
Z⊥ + R′

k(q) + 2

D − 1
|q⊥|2R′′

k (q)

)

− 4

D − 1
|q⊥|2(Z⊥ + R′

k(q)
)2

(
4M0(q)2

D0(q)
− 1

)]
, (70)

∂l(Xv) = − �m

2ρm

Xv

∫
q
∂lRk(q)

2M0(q)

D0(q)2
, (71)

where M(q) and D(q) = D(q,ω = 0) are defined in Appendix F, and R′
k(q) = ∂|q⊥|2Rk(|q⊥|2). The running exponents η⊥,k and

ζk can be calculated from these equations. For the equilibrium case, the RG equations can be obtained by the replacements
Z⊥ → Z, |q⊥|2 → q2, (D − 1) → D, and R′

k(q) → ∂q2Rk(q2).
Finally, let us consider the RG flow of the cumulant of the random-field �μν(ψ1,ψ2), which can be rewritten as Eq. (31). The

details of the derivation of the RG equation are given in Appendix E. It is worth noting that in the leading order of ρ−1
m , the RG

equations for �00 and �21 do not contain �12, �11, or �22. Since the flows of Z⊥,k and Xkvk depend on only �00, it is sufficient
to consider the flow of �00 and �21. The RG equations for these are given by

∂l�00(ρ1,ρ2,z) = 1
2A00(ρ1,ρ2,z)TkL

(T )
2 (ρ1) + A00(ρ1,ρ2,z)�00(ρ1,ρ1,1)I (T )

21 (ρ1,ρ1) + B00(ρ1,ρ2,z)I (T )
21 (ρ1,ρ2)

+C00(ρ1,ρ2,z)J (T )
21 (ρ1,ρ2) + perm(ρ1,ρ2), (72)

∂l�21(ρ1,ρ2,z) = 1
2A21(ρ1,ρ2,z)TkL

(T )
2 (ρ1) + A21(ρ1,ρ2,z)�00(ρ1,ρ1,1)I (T )

21 (ρ1,ρ1) + B21(ρ1,ρ2,z)I (T )
21 (ρ1,ρ2)

+C21(ρ1,ρ2,z)J (T )
21 (ρ1,ρ2) + perm(ρ1,ρ2), (73)

where the integral J is defined by Eq. (F8). A, B, C in Eqs. (72) and (73) are given as follows:

A00 = (2ρ1)−1
[
(N − 1)

(
2ρ1∂ρ1 − z∂z

)
�00 + (1 − z2)∂2

z �00 − 2z�21
]
,

B00 = (4ρ1ρ2)−1/2
[
(N − 2 + z2)�00∂z�00 + z�2

00 − z(1 − z2)
(
�21∂z�00 + �00∂

2
z �00

)
+ (1 − z2)2�21∂

2
z �00 + (1 + z2)�21�00

]
,

C00 = −2(4ρ1ρ2)−1/2(�00 + z�21)(1 − z2)∂z�00,

A21 = (2ρ1)−1
[
(N − 1)

(
2ρ1∂ρ1�21 − �21 − z∂z�21

) + (1 − z2)∂2
z �21 − 4z∂z�21 − 2∂z�00

]
,

B21 = (4ρ1ρ2)−1/2[(N − 2 + z2)�00∂z�21 − z(1 − z2)
(
�21∂z�21 + �00∂

2
z �21

) + (1 − z2)2�21∂
2
z �21 + 2�21(z�00 + z2�21)

− 2(∂z�00 + �21 + 2z∂z�21){(1 − z2)�21 − z�00}
]
,

C21 = (4ρ1ρ2)−1/2
[
(N − 2 + z2)(�21)2 − 2z(1 − z2)

(
2�21∂z�21 + ∂z�00∂z�21

) − 2(1 − z2)�00∂z�21 + 2z2�21∂z�00

+ z2(∂z�00)2 + (1 − z2)2(∂z�21)2 + (�00 + z�21)(�00 + 3z�21)
]
.

The zero-temperature case T = Tk = 0 is considered below,
and the first terms in Eqs. (72) and (73) are omitted.

1. Equilibrium case

For the equilibrium case (v = 0), the RG equations in terms
of the dimensionless quantities introduced in Sec. IV D can be
derived. The integrals in Eqs. (72) and (73) at ρ1 = ρ2 = ρm

are calculated as

I
(T )
21 (ρm,ρm) = J

(T )
21 (ρm,ρm) = Z−2

k kD−4 8

D
AD, (74)

where AD
−1 = 2D+1πD/2	(D/2). We define δ00(z) and δ21(z)

by

δ00(z) = 16

D
AD

�̃00(ρ̃m,ρ̃m,z)

2ρ̃m

,

δ21(z) = 16

D
AD

�̃21(ρ̃m,ρ̃m,z)

2ρ̃m

. (75)

From Eqs. (42) and (69), the RG equation for ρ̃m reads

∂lρ̃m = (D − 4 + η̄k)ρ̃m − (N − 1)δ00(1)ρ̃m, (76)

where η̄k is determined from the condition that 2ρ̃mδ00(1) is
constant along the RG flow. From Eq. (70), the anomalous
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dimension ηk is calculated as

ηk = δ00(1). (77)

From Eqs. (72) and (73), the following relation holds:

δ21(z) = ∂zδ00(z), (78)

which is clearly seen when observing that �00(z) and �21(z)
can be written as

�00 = 1√
4ρ1ρ2

∂zV , �21 = 1√
4ρ1ρ2

∂2
z V , (79)

where V (ρ1,ρ2,z) is the cumulant of the random potential. By
introducing a potential R(z) by δ00(z) = ∂zR(z) and δ21(z) =
∂2
z R(z), the RG equation for R(z) at D = 4 + ε is given by

∂lR(z) = −εR(z) + 2(N − 2)R′(1)R(z)

+ 1
2 (N − 1)

(
R′(z) − 2zR′(1)

)
R′(z)

+ 1
2 (1 − z2)[−R′(z)2 + 2

(
R′(1) − zR′(z)

)
R′′(z)

+ (1 − z2)R′′(z)2]. (80)

This RG equation was also derived from the one-loop
perturbative RG calculation [4,35].

2. Nonequilibrium case

We now derive the RG equations for the nonequilibrium
case. Note that the dimensionless longitudinal elastic constant
z̃‖,k , which is defined by Eq. (60), scales as z̃‖,k ∼ k2(ζ−1).
Thus, since ζ > 1, z̃‖,k can be set to zero for large scales.

Furthermore, from Eqs. (62), (70), and (71),

ζk = 2. (81)

The integrals in Eqs. (72) and (73) at ρ1 = ρ2 = ρm are
calculated as

I
(T )
21 (ρm,ρm) = Z−2

⊥,kk
D−3 2

D − 1
AD−1ṽ

−1,

J
(T )
21 (ρm,ρm) = 0. (82)

Note that the second integral J
(T )
21 vanishes in contrast to the

equilibrium case. This is independent of the choice for the
cutoff function Rk(q⊥).

We define δ00(z) and δ21(z) by

δ00(z) = 4

D − 1
AD−1ṽ

−1 �̃00(ρ̃m,ρ̃m,z)

2ρ̃m

,

δ21(z) = 4

D − 1
AD−1ṽ

−1 �̃21(ρ̃m,ρ̃m,z)

2ρ̃m

. (83)

The RG equation for ρ̃m reads

∂lρ̃m = (D − 3 + η̄⊥,k)ρ̃m − (N − 1)δ00(1)ρ̃m, (84)

and the anomalous dimension for the transverse direction η⊥,k

is written as

η⊥,k = δ00(1). (85)

The RG equation for δ00(z) and δ21(z) at D = 3 + ε is given
by

∂lδ00(z) = −εδ00(z) + (N − 2 + z2)δ00(z)∂zδ00(z) + zδ00(z)2 + (1 + z2)δ00(z)δ21(z) − z(1 − z2)
{
δ21(z)∂zδ00(z) + δ00(z)∂2

z δ00(z)
}

+ (1 − z2)2δ21(z)∂2
z δ00(z) + (N − 3)δ00(1)δ00(z) − (N − 1)zδ00(1)∂zδ00(z) − 2zδ00(1)δ21(z) + (1 − z2)δ00(1)∂2

z δ00(z),

(86)

∂lδ21(z) = −εδ21(z) + (N − 2 + 5z2)δ00(z)∂zδ21(z) + 2zδ00(z){∂zδ00(z) + 2δ21(z)} − 2(1 − z2)δ21(z)∂zδ00(z) − 2(1 − 2z2)δ21(z)2

− z(1 − z2)
{
δ00(z)∂2

z δ21(z) + 5δ21(z)∂zδ21(z)
} + (1 − z2)2δ21(z)∂2

z δ21(z) − 2δ00(1){∂zδ00(z) + δ21(z)}
− (N + 3)zδ00(1)∂zδ21(z) + (1 − z2)δ00(1)∂2

z δ21(z). (87)

Since the two integrals in Eq. (82) have different values, the
relation in Eq. (78) does not hold.

V. RESULTS

In this section, we obtain a fixed point by solving the RG
equations derived in the previous section. We calculate the
anomalous dimensions η and η̄ as functions of N and compare
them to those predicted from the dimensional reduction.

A. Equilibrium case

For the equilibrium case, one can find the detailed analysis
in Refs. [7,8,35]. We briefly summarize these results in this
section.

If the second derivative of R(z) at z = 1 is assumed finite,
the derivatives of Eq. (80) show that a fixed function R∗(z)
exists for N > NDR = 18. For N < NDR, there is a range of
initial condition R′

k=�(1) for which the RG flow of R′′
k (1)

diverges at a finite scale k−1 = ξL, known as the Larkin length.
In this case, the fixed function behaves as R∗(z) ∼ (1 − z)3/2

near z = 1 and the dimensional reduction breaks down.
Let us consider the detailed behavior of this nonanalytic

fixed point. For N > Nc � 2.83, a nonzero fixed point does
not exist below D = 4 (ε < 0), while above D = 4 (ε > 0), an
unstable fixed point exists, which corresponds to the transition
between a LRO phase and a disordered phase. The critical
exponents for several values of N are calculated as

η(N = 3) = 5.5|ε|,
η(N = 4) = 0.78|ε|, (88)

η(N = 5) = 0.42|ε|.

For N < Nc, a stable fixed point exists below D = 4 (ε <

0). This fixed point corresponds to a QLRO, which is known as
the Bragg glass in the vortex lattices of superconductors [34].
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FIG. 1. Schematic picture of the RG flow of R′
k(1) = ηk for the

RFO(N )M. The horizontal axis represents the spatial dimension D.
“D”, “LRO”, and “QLRO” denote the disordered, long-range order,
and quasi-long-range order phases, respectively.

The critical exponent for an XY model is calculated as

η(N = 2) = π2

9
|ε| � 1.10|ε|. (89)

Above D = 4 (ε > 0), a nonzero fixed point does not exist.
For N < Nc and D = 4, the RFO(N )M exhibits a “loga-

rithmic QLRO”, in which the disconnected Green’s function
exhibits logarithmic power-law decay Gd(r) ∼ (ln r)−α(N),
where α(N ) is independent of the strength of the disorder.
In particular, for N = 2 (XY model), we have

Gd(r) ∝
{
r−η, (r < ξL),
(ln r)−α, (r � ξL), (90)

where η = h2
0/(8π2K2) and α = π2/9 [35,54]. The Larkin

length is given by ξL = exp(cη−1), where c is a universal
constant. Such a logarithmic QLRO is also predicted in the
two-dimensional random anisotropy XY model with a dipole
interaction [55].

The schematic of the RG flow of R′(1) = ηk is shown in
Fig. 1. The blue (red) dashed (dotted) line represents stable
(unstable) fixed points. Note that for N < Nc we cannot obtain
the fixed point corresponding to the second-order transition to
a disordered phase in the leading order of ε. To obtain this
fixed point, the beta function of R(z) to the higher order of ε

must be calculated [38].

B. Nonequilibrium case

1. Analytic fixed point

Here we consider the nonequilibrium case (86) and (87).
First, the derivatives of δ00(z) and δ21(z) at z = 1 are assumed
finite. By taking the derivative of Eqs. (86) and (87),

∂lδ00(1) = −εδ00(1) + (N − 2)δ00(1)2, (91)

∂lδ
′
00(1) = −εδ′

00(1) + δ00(1)2 + 2δ00(1)δ′
00(1)

+ (N − 1)δ′
00(1)2 + 4δ′

00(1)δ21(1), (92)

∂lδ21(1) = −εδ21(1) + 2δ00(1)δ21(1) + 2δ21(1)2. (93)

From these equations, we have the following fixed points:

δ∗
00(1) = ε

N − 2
,

δ′∗
00(1) = (N − 4) − √

(N − 2)(N − 10)

2(N − 1)(N − 2)
ε,

δ∗
21(1) = 0, (94)

where we have chosen a stable solution for δ′∗
00(1) and δ∗

21(1). In
fact, Eq. (93) also has a fixed point δ∗

21(1) = (N − 4)/2(N −
2) ε, but it is unstable for N > 4. The fixed point Eq. (94)
describes the second-order transition from a LRO phase to a
disordered phase. Note that η⊥ = δ∗

00(1) = ε/(N − 2) is the
same as the anomalous dimension for the (2 + ε)-dimensional
pure O(N ) model. This analytic fixed point exists for N � 10.
Thus NDR = 10 is the field component number above which
the dimensional reduction property is recovered.

2. Nonanalytic fixed point

The nonanalytic fixed points are now considered. For the
equilibrium case, δ00 and δ21 exhibit the following singularity
near z = 1,

δ
(eq)
00 (z) ∼ (1 − z)1/2,

δ
(eq)
21 (z) = ∂zδ

(eq)
00 (z) ∼ −(1 − z)−1/2.

Thus we expand δ00 and δ21 around z = 1,

δ00(z) = a0 + a1(1 − z)1/2 + a2(1 − z) + · · · ,

δ21(z) = b−1(1 − z)−1/2 + b0 + b1(1 − z)1/2 + · · · . (95)

By substituting Eq. (95) into Eq. (87), the right-hand side of
Eq. (87) yields a term proportional to b−1(1 − z)−1, and we
have

b−1 = 0. (96)

Therefore, for the nonequilibrium case, δ21(z) is finite at z = 1,
in contrast to the equilibrium case in which it diverges as
(1 − z)−1/2.

By substituting Eq. (95) into Eq. (86), we have the RG
equation for a0 = δ00(1),

da0

dl
= −εa0 + (N − 2)a2

0 − 1

2
(N − 2)a2

1 + 2a1b−1, (97)

where the third and fourth terms of the right-hand side are
absent if δ00(z) and δ21(z) are analytic. Since b−1 = 0, the
fixed point behaves as δ∗(z) ∝ (N − 2)−1 near N = 2. This
fixed point is unstable and it corresponds to the second-order
transition between the LRO phase and the disordered phase.
Note that the Bragg glass phase does not exist for ε < 0 and
N > 2.

The upper panel of Fig. 2 shows the anomalous dimension
η = δ∗

00(1) for the nonequilibrium and equilibrium cases. The
red solid line represents η⊥ for the nonequilibrium case at D =
3 + ε obtained from Eqs. (86) and (87). The green dashed line
represents η for the equilibrium case at D = 4 + ε obtained
from Eq. (80). The η corresponding to the unstable fixed point
is plotted. Also shown is the anomalous dimension of the (2 +
ε)-dimensional pure O(N) model, ηDR = (N − 2)−1, which is
indicated by the blue dotted line. The inset displays the ratio of
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FIG. 2. Anomalous dimensions η and η̄ for the DRFO(N )M and
RFO(N )M as functions of N . The red solid lines represent η⊥ and η̄⊥
for the DRFO(N )M at D = 3 + ε. The green dashed lines represent η
and η̄ for the RFO(N )M at D = 4 + ε. ε is set to unity. The blue dotted
line represents the dimensional reduction value ηDR = (N − 2)−1.
The insets show η/ηDR and η̄/ηDR.

η and ηDR. From Eqs. (76) and (84), the anomalous dimension
for the disconnected Green’s function η̄ is given by

η̄ = −ε + (N − 1)η, (98)

which is shown in the lower panel of Fig. 2. For the equilibrium
case, η diverges as N approaches to Nc = 2.83, while for the
nonequilibrium case, η⊥ diverges as N approaches 2. The ratio
η⊥/ηDR exhibits nonmonotonic behavior with decreasing N . In
particular, limN→2 η⊥/ηDR = 1, which will be shown below.
Note that η⊥/ηDR − 1 ∝ (N − 2) near N = 2, and

lim
N→2

(η⊥ − ηDR) = χ, (99)

where χ � 1.65 is a universal constant. The fixed functions
δ∗

00(z) and δ∗
21(z) of the DRFO(N )M are shown in Fig. 3.

Here, δ∗
21(z) significantly differs from ∂zδ

∗
00(z), in contrast to

the equilibrium case where they are identical. They exhibit
nonanalytic behavior in the form of

√
1 − z near z = 1. The

numerical method to calculate the fixed function is explained
in Appendix G.

zz
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FIG. 3. Fixed functions δ∗
00(z) and δ∗

21(z) for N = 3, 4, and 5.

3. Fixed line in the case that N = 2 and D = 3

The 3D driven random-field XY model (DRFXYM) is
presented below. The phase parameter u is introduced and
defined by φ = (φ1,φ2) = √

2ρ(cos u, sin u). We denote the
renormalized random force as Fα(φ), which satisfies

Fα(φ1)Fβ(φ2) = �αβ(φ1,φ2). (100)

The tangential component of Fα(φ) is written as

F⊥(u) = (2ρ)−1/2(−F 1(φ)φ2 + F 2(φ)φ1), (101)

whose second cumulant is given by

�(u1 − u2) ≡ F⊥(u1)F⊥(u2)

= z�00 − (1 − z2)�21. (102)

Thus we define a dimensionless cumulant δ(u) as

δ(u) = zδ00(z) − (1 − z2)δ21(z), (103)

with cos u = z. Then, Eqs. (86) and (87) can be reduced to the
following simple equation:

∂lδ(u) = −εδ(u) + δ′′(u)(δ(0) − δ(u)), (104)

which was also obtained by Ref. [44].
In Ref. [44], Eq. (104) was derived from the driven random

manifold model,

	(∂tu + v∂xu) = K∇2u + F (r; u) + ξ (r,t), (105)

which describes the dynamics of the displacement field u(r,t)
of an elastic lattice moving in a random pinning potential. The
random force F (r; u) satisfies

F (r; u)F (r ′; u′) = �(u − u′)δ(r − r ′), (106)

where �(u) is a periodic function. The driven random
manifold model Eq. (105) is equivalent to the DRFXYM if the
topological defects or vortices are ignored. Therefore Eq. (105)
is an effective model that is valid for the weak disorder.

From Eq. (104), at three dimensions (ε = 0), we find that
the beta function of η⊥,l = δl(0) vanishes identically even if
δ(u) has a cusp at u = 0. This result can be also deduced from
Eq. (97). This suggests the existence of a QLRO characterized
by a line of fixed points as in the 2D pure XY model. The
family of fixed points of Eq. (104) at ε = 0 is given by

δ∗(u) = C (107)

or

δ∗
00(z) = Cz, δ∗

21(z) = −C, (108)
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where C is an arbitrary positive constant. These fixed points
are stable in the sense that δ00(z) and δ21(z) flow into Eq. (108)
with an initial value dependent C in the limit l → ∞. It is
worth noting that the beta function of δ(0) does not vanish
in the four-dimensional random-field XY model. In this case,
from Eq. (80), the RG equation is given by

∂lδ(u) = δ′′(u)(δ(0) − δ(u)) − δ′(u)2. (109)

The last term on the right-hand side δ′(u)2 has a finite value at
u = 0 if δ(u) has a linear cusp.

Let us show that limN→2 η⊥/ηDR = 1 at ε = 1, as shown in
Fig. 2. It is convenient to introduce δ̃00(z) = (N − 2)δ00(z) and
δ̃21(z) = (N − 2)δ21(z). The fixed functions δ̃∗

00(z) and δ̃∗
21(z)

are stationary solutions of Eqs. (86) and (87) with ε = (N−2).
Thus, in the limit N → 2, δ̃∗

00(z) and δ̃∗
21(z) are given by

Eq. (108). The constant C can be uniquely determined by
considering a stationary solution of Eq. (97) with ε = (N−2).
Note that a1 vanishes as N → 2 because Eq. (108) does
not have a cusp. Thus we have a0 = C = 1, implying that
limN→2 η⊥/ηDR = 1.

The existence of the fixed line implies that the 3D-
DRFXYM may exhibit a Kosterlitz-Thouless (KT) transition
[41,42]. However, there is a possibility that the beta function
vanishes in the leading order but has a finite contribution in
the higher order as in the case of the RFO(N )M at D = 4 and
N = 2.83 [39]. To verify the existence of the fixed line, all
higher-order contributions of the beta function must vanish.
A detailed investigation concerning this problem is a topic for
future research.

VI. SUMMARY

In this paper, we have studied the critical behavior of the
DRFO(N )M at zero temperature. From naive phenomenologi-
cal arguments, we have introduced a dimensional reduction
property, which states that the critical behavior of the D-
dimensional DRFO(N )M at zero temperature is identical to
that of the (D − 1)-dimensional pure O(N ) model at finite
temperature. By employing the NPRG formalism, we found
that the dimensional reduction breaks down for 2 < N < 10
near three dimensions. The deviation of the critical exponents
from their dimensional reduction values is calculated in the
first order of ε = D − 3. It is worth noting that η/ηDR for
the (3 + ε)-dimensional DRFO(N )M is smaller than that
for the (4 + ε)-dimensional RFO(N )M. This implies that
the nonperturbative effect responsible for the failure of the
dimensional reduction in driven disordered systems is weaker
than that in equilibrium.

It is an intriguing question to ask whether the 2D driven
random-field Ising (DRFIM) model exhibits LRO. The di-
mensional reduction implies that it does not have any ordered
phase because it is identical to the one-dimensional pure Ising
model. However, the lower critical dimension of the RFIM is
two. Since the driving reduces the lower critical dimension, it is
expected that the 2D-DRFIM should exhibit LRO in the weak
disorder and strong driving regime. To clarify this question, the
NPRG formalism developed in this study provides a promising
approach.

The conventional dimensional reduction in equilibrium
is a consequence of the supersymmetry (super-rotational

invariance) of the stochastic field equation [2] and its break-
down can be understood as the spontaneous breaking of the
supersymmetry [9]. However, in Sec. III, the dimensional
reduction for driven disordered systems is derived without
introducing the supersymmetric formalism. To obtain a clear
insight into the underlying physics of its breakdown, we need
to identify a hidden symmetry responsible for the dimensional
reduction in driven disordered systems.

Finally, let us consider the role of temperature. The
thermal fluctuations lead to the local averaging of the disorder
and thermally activated motion between different metastable
states. At a finite temperature, the diffusionlike terms, which
are proportional to T̃k ≡ Tkτkz̃

−1/2
‖,k , appear in the RG equation

for the renormalized cumulant and they smooth out the cusp. In
equilibrium, the temperature is irrelevant near the fixed point
controlling the critical behavior, T̃k = kθ with θ = 2 + O(ε).
However, in nonequilibrium cases, there is a possibility that a
fixed point with nonzero temperature T̃ ∗ �= 0 may occur due
to the additional terms, which result from the violation of the
fluctuation-dissipation theorem, in the RG equation for Tk . For
example, in the case of the DRFXYM, the RG flow of T̃k is
given by

dT̃k

dl
= [−1 − ε − δ′′(0)]T̃k, (110)

where δ(u) is defined by Eq. (103) with cos u = z [44,45].
Since −δ′′(0) diverges as T̃k decreases to zero, the competition
between the first two terms and the last term in the brackets
leads to a nonzero fixed point. The critical behavior of the
DRFO(N )M at finite temperature could be also controlled
by such nonzero temperature fixed points. This implies that
an infinitesimal thermal noise qualitatively changes the large-
scale structure of the system. A detailed investigation of finite
temperature cases will be conducted in future studies.
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APPENDIX A: FIELD THEORETICAL FORMALISM FOR
THE DRIVEN DISORDERED SYSTEM

In this Appendix, we derive the disorder averaged action
Eqs. (13) and (14) from the Langevin equation (3). We
introduce n replicas of the system, {φa}na=1, with the same
disorder. The dynamics are given by

	(∂t + v∂x)φa = K∇2φa − U ′(ρa)φa + h + ξ a, (A1)

where the thermal noise satisfies〈
ξα
a (r,t)ξβ

b (r ′,t ′)
〉 = 2	T δαβδabδ(r − r ′)δ(t − t ′). (A2)

The average of a function of the field A[{φa}] over the thermal
noise is written as

〈A[{φa}]〉 =
∫

DξP [ξ ]
∫ ∏

a

Dφaδ(φa − φa[ξ ])A[{φa}],

(A3)

184202-12



DIMENSIONAL REDUCTION AND ITS BREAKDOWN IN . . . PHYSICAL REVIEW B 96, 184202 (2017)

where φa[ξ ] is the solution of Eq. (A1) for a realization of the noise ξa . This average can be calculated as

〈A[{φa}]〉 =
∫

DξP [ξ ]
∫ ∏

a

DφaJ [{φa}]A[{φa}]δ[	(∂t + v∂x)φa − K∇2φa + U ′(ρa)φa − h − ξ a]

=
∫
DξP [ξ ]

∫ ∏
a

DφaDφ̂aJ [{φa}]A[{φa}] exp

[
−

∑
a

∫
rt

iφ̂a · {	(∂t + v∂x)φa − K∇2φa + U ′(ρa)φa − h − ξ a}
]

=
∫ ∏

a

DφaDφ̂aJ [{φa}]A[{φa}] exp

[
−

∑
a

∫
rt

iφ̂a · {	(∂tφa + v∂xφa − T iφ̂a) − K∇2φa + U ′(ρa)φa − h}
]
,

(A4)

where J [{φa}] is the Jacobian, which is set to unity [52]. We
next take the average over the disorder h,

〈A[{φa}]〉 =
∫ ∏

a

D�aA[{φa}] exp(−S[{�a}]), (A5)

where the disorder averaged action S[{�a}] is given by
Eqs. (13) and (14). For simplicity, we have omitted i in iφ̂a .

APPENDIX B: EXACT FLOW EQUATIONS FOR � p,k

In this Appendix, we derive the exact flow equations for
	p,k , Eqs. (26) and (27). To calculate the inverse of 	

(2)
k + R̂k

with respect to the replica indices, we rewrite it as(
	

(2)
k + R̂k

)
ab

= Pk[a]−1δab − A[a]δab − B[a,b],

(B1)

where Pk[] is the one-replica propagator defined by Eq. (25).
A[a] and B[a,b] can be expanded in an increasing number
of free replica sums,

A[a] =
∑

c

A[1][a|c]

+ 1

2

∑
c,d

A[2][a|c,d ] + · · · , (B2)

B[a,b] = B[0][a,b] +
∑

c

B[1][a,b|c]

+ 1

2

∑
c,d

B[2][a,b|c,d ] + · · · , (B3)

where the vertical bar in each term A[p][a|c1 , . . . ,cp
]

is introduced to distinguish between the “explicit” index a

and the dummy indices c1, . . . ,cp, which run from 1 to n as
the summation is taken. In the following, we use simplified
notations such as,

	
(200)
3 [1,2,3] = δ2	3[1,2,3]

δ1δ1
,

	
(110)
3 [1,2,3] = δ2	3[1,2,3]

δ1δ2
. (B4)

From Eq. (24), A[p] and B[p] are written as

A[1][a|c] = 	
(20)
2 [a,c],

A[2][a|c,d ] = −	
(200)
3 [a,c,d ],

. . . , (B5)

and

B[0][a,b] = 	
(11)
2 [a,b],

B[1][a,b|c] = −	
(110)
3 [a,b,c],

B[2][a,b|c,d ] = 	
(1100)
4 [a,b,c,d ],

. . . (B6)

The inverse of Eq. (B1) reads(
	

(2)
k + R̂k

)−1
ab

= Pk[a]δab + Pk[a](A[a]δab + B[a,b])Pk[b]

+ Pk[a](A[a]δac + B[a,c])Pk[c]

× (A[c]δcb + B[c,b])Pk[b] + · · · (B7)

By substituting Eqs. (B2) and (B3) into the above equation,
we have∑

a

(
	

(2)
k + R̂k

)−1
aa

=
∑

a

Q1[a] + 1

2

∑
a,b

Q2[a,b]

+ 1

3!

∑
a,b,c

Q3[a,b,c] + · · · , (B8)

where Q1 and Q2 are given by

Q1[a] = Pk[a] + Pk[a]B[0][a,a]Pk[a], (B9)

Q2[a,b] = Pk[a]{A[1][a|b] + B[1][a,a|b]

+B[0][a,b]Pk[b]B[0][b,a]

+A[1][a|b]Pk[a]B[0][a,a]

+B[0][a,a]Pk[a]A[1][a|b]}Pk[a]

+ perm(a,b). (B10)

From Eqs. (B5), (B6), (B9), and (B10), we obtain the exact
flow equations for 	1 and 	2, Eqs. (26) and (27).

APPENDIX C: RG EQUATION FOR Fk

In this Appendix, the RG equation for Fk(ρ) is derived,
which is given by Eq. (38). To do this, the exact flow equation
for 	

(1)
1 is required. It is convenient to introduce a graphical

representation. The flow equation for 	1 Eq. (26) is rewritten
as

∂l	1 = 1
2 [γ1,a + γ1,b], (C1)
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γ1,a γ1,b

γ1,a-1
(1) γ1,b-1

(1) γ1,b-2
(1)

FIG. 4. Graphical representations for the flow equations of 	1

and 	
(1)
1 .

where γ1,a and γ1,b are given in Fig. 4. A scale parameter
l = − ln(k/�) is introduced. The flow equation for 	

(1)
1;ψ̂1 =

δ	1/δψ̂
1 is then written as

∂l	
(1)
1;ψ̂1 = 1

2

[−γ
(1)
1,a−1 − 2γ

(1)
1,b−1 + 2γ

(1)
1,b−2

]
. (C2)

where γ
(1)
1,a−1, γ

(1)
1,b−1, and γ

(1)
1,b−2 are also given in Fig. 4. The

rule for the graphical representation is as follows: (1) An inner
line denotes the propagator P[]. (2) A filled circle represents

a vertex obtained from a derivative of the one-replica action
	

(p)
1 []. (3) Two open dots linked by a dashed line represent

vertex obtained from a derivative of the two-replica action
	

(p1p2)
2 [1,2]. (4) A cross symbol denotes ∂lRk(q).

For example, γ
(1)
1,b−1 is written as

γ
(1)
1,b−1 = Tr

[
∂lRk(q)P[]	(11)

2 [,]P[]	(3)
1;ψ̂1 []P[]

]
,

(C3)

where 	
(3)
1;ψ̂1 = δ	

(2)
1 /δψ̂1. All functional derivatives are

evaluated for a uniform field ψ rt ≡ t (
√

2ρ,0, . . . ,0), ψ̂ rt ≡
t (0, . . . ,0).

The following notation is introduced:

	
(3)
1;ψ2ψ2ψ̂1 (q1,q2,q3) = δ2	1[]

δψ2(q1)δψ2(q2)δψ̂1(q3)
,

	
(21)
2;ψ2

1 ψ̂2
1 ψ̂1

2
(q1,q2,q3) = δ2	2[1,2]

δψ2
1 (q1)δψ̂2

1 (q2)δψ̂1
2 (q3)

.

From Eqs. (29) and (30), they are calculated as

	
(3)
1;ψ1ψ1ψ̂1 (q1,q2,q3) = −

√
2ρ(3F ′(ρ) + 2ρF ′′(ρ))(2π )D+1δ(q1 + q2 + q2)δ(ω1 + ω2 + ω2),

	
(3)
1;ψνψνψ̂1 (q1,q2,q3) = −

√
2ρF ′(ρ)(2π )D+1δ(q1 + q2 + q2)δ(ω1 + ω2 + ω2), (ν = 2, . . . ,N),

	
(11)
2;ψ̂1

1 ψ̂1
2
(q1,q2)

∣∣
1=2=

= �L(ρ)(2π )D+2δ(q1 + q2)δ(ω1)δ(ω2),

	
(11)
2;ψ̂ν

1 ψ̂ν
2
(q1,q2)

∣∣
1=2=

= �T (ρ)(2π )D+2δ(q1 + q2)δ(ω1)δ(ω2), (ν = 2, . . . ,N ),

	
(21)
2;ψ1

1 ψ̂1
1 ψ̂1

2
(q1,q2,q3)

∣∣
1=2=

= 1

2

√
2ρ�′

L(ρ)(2π )D+2δ(q1 + q2 + q3)δ(ω1 + ω2)δ(ω3),

	
(21)
2;ψν

1 ψ̂1
1 ψ̂ν

2
(q1,q2,q3)

∣∣
1=2=

= 1√
2ρ

(�21(ρ) + �11(ρ))(2π )D+2δ(q1 + q2 + q3)δ(ω1 + ω2)δ(ω3), (ν = 2, . . . ,N),

where we have used the notations �...(ρ) = �...(ρ,ρ,z = 1), �T (ρ) = �22(ψ,ψ) = �00(ρ), and �L(ρ) = �11(ψ,ψ) =
�00(ρ) + �12(ρ) + �21(ρ) + �11(ρ) + �22(ρ). From these expressions, we obtain

γ
(1)
1,a−1 =

√
2ρT

[
(N − 1)F ′

k(ρ)L(T )
2 (ρ) + (3F ′(ρ) + 2ρF ′′(ρ))L(L)

2 (ρ)
]
,

γ
(1)
1,b−1 =

√
2ρ

[
(N − 1)F ′(ρ)�T (ρ)I (T )

12 (ρ) + (3F ′(ρ) + 2ρF ′′(ρ))�L(ρ)I (L)
12 (ρ)

]
,

γ
(1)
1,b−2 = −

√
2ρ

[
(N − 1)

1

2ρ

(
�21(ρ) + �11(ρ)

)
J

(T )
11 (ρ) + 1

2
�′

L(ρ)J (L)
11 (ρ)

]
,

where we have already calculated the ω-integral. The functions L, I , and J are defined by Eqs. (F6)–(F8) in Appendix F,
respectively, and simplified notations such as I

(T )
nn′ (ρ) = I

(T )
nn′ (ρ,ρ) are used. From Eqs. (38) and (C2), we have the RG equation

for F (ρ),

∂lF (ρ) = ∂lF
(1)(ρ) + ∂lF

(2)(ρ), (C4)

where ∂lF
(1)(ρ) and ∂lF

(2)(ρ) are the contributions from the one and two-replica parts, respectively,

∂lF
(1)(ρ) = 1

2
T

[
(N − 1)F ′(ρ)L(T )

2 (ρ) + (3F ′(ρ) + 2ρF ′′(ρ))L(L)
2 (ρ)

]
, (C5)

∂lF
(2)(ρ) = (N − 1)F ′(ρ)�T (ρ)I (T )

12 (ρ) + (3F ′(ρ) + 2ρF ′′(ρ))�L(ρ)I (L)
12 (ρ) − (N − 1)

1

2ρ
(�21(ρ) + �11(ρ))J (T )

11 (ρ)

− 1

2
�′

L(ρ)J (L)
11 (ρ). (C6)

184202-14



DIMENSIONAL REDUCTION AND ITS BREAKDOWN IN . . . PHYSICAL REVIEW B 96, 184202 (2017)

It can be easily checked that, in the equilibrium case (v = 0),
the equation can be reduced to that of the RFO(N )M, which
is given in Ref. [8].

APPENDIX D: RG EQUATIONS FOR Xkvk AND Zk

1. Graphical representation for ∂l�
(2)
1

In this Appendix, we derive the RG equations for Xkvk and
Zk , which are given by Eqs. (35) and (37), respectively. From
Eq. (C1), we have the exact flow equation for 	

(2)
1;(p), ′(p′) =

δ2	1/δ(p)δ ′(p′), where  represents ψμ or ψ̂μ and p =
(p,ωp), as follows:

∂l	
(2)
1;(p), ′(p′) = 1

2

[
2γ

(2)
1,a−1 − γ

(2)
1,a−2 + 2γ

(2)
1,b−1(+)

+ 2γ
(2)
1,b−1(−) + 2γ

(2)
1,b−2 − 2γ

(2)
1,b−3(+)

−2γ
(2)
1,b−3(−) − 2γ

(2)
1,b−4(+) − 2γ

(2)
1,b−4(−)

−2γ
(2)
1,b−5 + 2γ

(2)
1,b−6 + 2γ

(2)
1,b−7

]
. (D1)

The graphical representation of each term is shown in Fig. 5.
All functional derivatives are evaluated for a uniform field

Ψ(p) Ψ'(p')

γ1,b-5
(2)

Ψ(p) Ψ'(p')

γ1,b-6
(2)

Ψ(p)
Ψ'(p')

γ1,b-4(+)
(2)

Ψ(p)

Ψ'(p')

γ1,b-4(-)
(2)

Ψ(p) Ψ'(p')

γ1,b-2
(2)

Ψ(p)

Ψ'(p')
γ1,b-3(+)

(2)

Ψ(p)

Ψ'(p')

γ1,b-3(-)
(2)

Ψ(p)
Ψ'(p')

γ1,b-1(+)
(2)

Ψ(p)
Ψ'(p')

γ1,b-1(-)
(2)

Ψ(p) Ψ'(p')

γ1,a-1
(2)

Ψ(p) Ψ'(p')

γ1,a-2
(2)

Ψ(p) Ψ'(p')

γ1,b-7
(2)

FIG. 5. Graphical representation for the flow equation of 	
(2)
1 .

ψ rt ≡ t (
√

2ρm,0, . . . ,0), ψ̂ rt ≡ t (0, . . . ,0), where ρm is the
renormalized spontaneous magnetization defined by Eq. (39).
We set  = ψ̂2,  ′ = ψ2, and p′ = −p for the calculation of
∂l(Xkvk) and ∂lZk . Note that γ

(2)
1,a−2, γ

(2)
1,b−5, γ

(2)
1,b−6, and γ

(2)
1,b−7

do not depend on the external momentum p, thus they do not
contribute to the RG equations for Xkvk and Zk .

2. Leading order contributions to ∂l Xv and ∂l Z

As mentioned in Sec. IV E, near the lower critical dimension
D = Dlc + ε, γ (2)

1 is expanded in terms of ρ−1 ∼ ε. When γ
(2)
1

is expanded, we can see that γ
(2)
1,b−3 and γ

(2)
1,b−4 are subleading

compared to γ
(2)
1,b−1 and γ

(2)
1,b−2. Indeed, the former term’s

vertices yield a contribution of 2ρF ′(ρ)�′(ρ), while the latter
term’s vertices yield a contribution of 2ρF ′(ρ)2�(ρ), which
is larger than that of the former if we assume that F̃ ′(ρ̃m) has a
value of O(1) at the fixed point. Thus we consider only γ

(2)
1,a−1,

γ
(2)
1,b−1, and γ

(2)
1,b−2.

The term γ
(2)
1,a−1 is given by

γ
(2)
1,a−1 = 4ρmF ′(ρm)2XT

∫
q,ωq

∂lRk(q)
[
2M1(q)D1(q,ωq)−2

×P
(T )
12 (p + q,ωp + ωq) + P

(L)
21 (q,ωq)2

×D0(p + q,ωp + ωq)−1 + (T ↔ L)
]
, (D2)

where M(q), D(q,ωq), and P (q,ωq ) are defined in Appendix F.
The symbol (T ↔ L) means that M0, D0, and P (T ) are
exchanged by M1, D1, and P (L), respectively. The term γ

(2)
1,a−1

is the same as the corresponding contribution in the pure O(N )
model because the velocity v can be eliminated by changing
the integral variable ωq → ωq + qxv. Since we are interested
in the zero temperature case, this term can be omitted. γ

(2)
1,b−1,

and γ
(2)
1,b−2 are given by

γ
(2)
1,b−1(±) = 2ρmF ′(ρm)2�00(ρm)

×
∫

q
∂lRk(q)P (T )

21 (q,0)2P
(T )
12 (q,0)P (L)

12 (p ± q,ωp),

(D3)
γ

(2)
1,b−2 = 2ρmF ′(ρm)2�00(ρm)

×
∫

q
∂lRk(q)P (T )

12 (−p + q,0)P (T )
21 (−p + q,0)

×P
(L)
12 (q,ωp)2, (D4)

where we have ignored the subleading terms of ρ−1. The
propagators P (q,ωq) are evaluated at ρ = ρm. The momentum
derivatives of Eqs. (D3) and (D4) lead to the RG equations for
Xkvk and Zk .

APPENDIX E: RG EQUATION FOR �k

1. Graphical representation for ∂l�
(11)
2

In this Appendix, we derive the RG equation for
�k(ψ1,ψ2), which is given by Eq. (40). To do this, the exact
flow equation for 	

(11)
2 is required. Eq. (27) is rewritten as

∂l	2[1,2] = − 1
2 [γ2,a + γ2,b + 2γ2,c + perm], (E1)
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1

1

2

2

1

2 1

1

2

1

γ2,a γ2,b γ2,c

FIG. 6. Graphical representation for the flow equation of 	2.

where γ2,a , γ2,b, and γ2,c are given in Fig. 6 and “perm” denotes
the permutation between the indices 1 and 2. The flow equation
for 	

(11)
2;ψ̂μ

1 ψ̂ν
2

= δ2	2/δψ̂
μ

1 δψ̂ν
2 is then written as

∂l	
(11)
2;ψ̂μ

1 ψ̂ν
2
[1,2] = − 1

2

[−2γ
(11)
2,a−1 + γ

(11)
2,a−2 − 2γ

(11)
2,b−1

− 2γ
(11)
2,b−2 + 2γ

(11)
2,b−3 + 2γ

(11)
2,b−4 − 2γ

(11)
2,b−5

+ 2γ
(11)
2,b−6 − 2γ

(11)
2,c−1 − 2γ

(11)
2,c−2 − 2γ

(11)
2,c−3

+ 2γ
(11)
2,c−4 + 2γ

(11)
2,c−5 + 2γ

(11)
2,c−6 + perm

]
,

(E2)

where γ
(11)
2,a−1, . . . ,γ

(11)
2,c−6 are shown in Fig. 7 and “perm”

denotes the permutation between the indices 1 and 2, μ and ν.
For example, γ

(11)
2,b−1 is written as

γ
(11)
2,b−1 = Tr

[
∂lRk(q)Pk[1]	(3)

1;ψ̂μ

1
[1]Pk[1]

×	
(12)
2;ψ̂ν

2
[1,2]Pk[2]	(11)

2 [2,1]Pk[1]
]
. (E3)

All functional derivatives are evaluated for a uniform field
ψ1,rt ≡ ψ1, ψ̂1,rt ≡ 0, ψ2,rt ≡ ψ2, and ψ̂2,rt ≡ 0.
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1
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2

2

1
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2

1

1

2

1
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1
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1

1

1

2

1

1

1

2

1

1

1

2

1

1

1

2

1
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(11) γ2,c-4

(11) γ2,c-5
(11) γ2,c-6

(11)

γ2,c-1
(11) γ2,c-2

(11)

γ2,b-1
(11) γ2,b-2

(11) γ2,b-3
(11) γ2,b-4

(11)

γ2,b-5
(11) γ2,b-6

(11)

γ2,a-1
(11) γ2,a-2

(11)

FIG. 7. Graphical representation for the flow equation of 	
(11)
2 .

The functional derivatives of 	1[] and 	2[1,2] are
calculated as

	
(3)
1;ψαψβψ̂μ

(q1,q2,q3) = {−F ′′(ρ)ψαψβψμ − F ′(ρ)(δαβψμ + δαμψβ + δβμψα)}(2π )D+1δ(q1 + q2 + q2)δ(ω1 + ω2 + ω2),

	
(11)
2;ψ̂μ

1 ψ̂ν
2
(q1,q2) = �μν(ψ1,ψ2)(2π )D+2δ(q1 + q2)δ(ω1)δ(ω2),

	
(21)

2;ψα
1 ψ̂

β

1 ψ̂
μ

2

(q1,q2,q3) = ∂ψα
1
�βμ(ψ1,ψ2)(2π )D+2δ(q1 + q2 + q3)δ(ω1 + ω2)δ(ω3),

	
(31)

2;ψα
1 ψ

β

1 ψ̂
μ

1 ψ̂ν
2

(q1,q2,q3,q4) = ∂ψα
1
∂
ψ

β

1
�μν(ψ1,ψ2)(2π )D+2δ(q1 + q2 + q3 + q4)δ(ω1 + ω2 + ω3)δ(ω4),

	
(22)

2;ψα
1 ψ̂

μ

1 ψ
β

2 ψ̂ν
2

(q1,q2,q3,q4) = ∂ψα
1
∂
ψ

β

2
�μν(ψ1,ψ2)(2π )D+2δ(q1 + q2 + q3 + q4)δ(ω1 + ω2)δ(ω3 + ω4),

where �μν(ψ1,ψ2) is expressed as Eq. (31).

2. Leading order contribution to ∂l�

As mentioned in Sec. IV E, near the lower critical dimension D = Dlc + ε, γ (11)
2 is expanded in terms of ρ−1 ∼ ε. In addition,

γ
(11)
2 is rewritten as

γ
(11)
2 = γ

(11)
2,00δ

μν + (4ρ1ρ2)−1/2
[
γ

(11)
2,12ψ

μ

1 ψν
2 + γ

(11)
2,21ψ

μ

2 ψν
1 + γ

(11)
2,11ψ

μ

1 ψν
1 + γ

(11)
2,22ψ

μ

2 ψν
2

]
. (E4)

Each coefficient of Eq. (E4) can be calculated in the leading order of ρ−1. For example, γ
(11)
2,b−1,00 and γ

(11)
2,b−1,21 are given by

γ
(11)
2,b−1,00 = −(4ρ1ρ2)−1/2

(
�12 +

√
ρ2/ρ1z�22

)
�00I

(T )
21 (ρ1,ρ2),

γ
(11)
2,b−1,21 = −(4ρ1ρ2)−1/2

[{−z�00 + (1 − z2)�21}(∂z�00 + �21 + z∂z�21 +
√

ρ1/ρ2∂z�11)

+�21(�12 +
√

ρ2/ρ1z�22)
]
I

(T )
21 (ρ1,ρ2).

184202-16



DIMENSIONAL REDUCTION AND ITS BREAKDOWN IN . . . PHYSICAL REVIEW B 96, 184202 (2017)

The function I is defined by Eqs. (F7) in Appendix F. We have
used ψαP

αβ

12 = P
(L)
12 ψβ � −(2ρF ′(ρ))−1ψβ and ψαP

αβ

11 =
P

(L)
11 ψβ � 2XT (2ρF ′(ρ))−2ψβ , where the propagators Pij are

also defined in Appendix F. The other terms are straightfor-
ward to calculate. γ

(11)
2,00 and γ

(11)
2,21 yield the RG equations for

�00 and �21, respectively. In the leading order of ρ−1, �12,
�11, and �22 do not appear in γ

(11)
2,00 and γ

(11)
2,21 . Thus the RG

equations for �00 and �21 compose a closed set of equations.

APPENDIX F: PROPAGATORS

In this Appendix, we show the expression for the one-
replica propagator Eq. (25). The functional derivative 	

(2)
1,k[]

is evaluated for a uniform field ψ rt ≡ t (ψ1, . . . ,ψN ) and
ψ̂ rt ≡ 0. 	1,k[] is given by Eq. (29). For simplicity, we omit
the subscript k in the following. We introduce P (q; ψ) as

P[]q1,q2 = P (q1; ψ)(2π )D+1δ(q1 + q2), (F1)

where q = (q,ω) and δ(q) = δ(q)δ(ω). P (q; ψ) is a 2N ×
2N matrix, thus we write its element as P

μν

ij , where i,j =
1,2 represent the two conjugate fields ψ and ψ̂ , and μ,ν =
1, . . . ,N are the field component indices.

P
μν

ij (q; ψ) = P
μν

ij (q,ω; ψ) can be written as

P
μν

ij (q,ω; ψ) = P
(T )
ij (q,ω; ρ)

(
δμν − ψμψν

2ρ

)

+P
(L)
ij (q,ω; ρ)

ψμψν

2ρ
, (F2)

where the transverse and longitudinal parts are given by

P
(T )
11 (q,ω; ρ) = 2XT

D0(q,ω; ρ)
,

P
(T )
12 (q,ω; ρ) = M0(q; ρ) − i(ω − qxv)X

D0(q,ω; ρ)
,

P
(T )
21 (q,ω; ρ) = M0(q; ρ) + i(ω − qxv)X

D0(q,ω; ρ)
,

P
(T )
22 (q,ω; ρ) = 0, (F3)

P
(L)
11 (q,ω; ρ) = 2XT

D1(q,ω; ρ)
,

P
(L)
12 (q,ω; ρ) = M1(q; ρ) − i(ω − qxv)X

D1(q,ω; ρ)
,

P
(L)
21 (q,ω; ρ) = M1(q; ρ) + i(ω − qxv)X

D1(q,ω; ρ)
,

P
(L)
22 (q,ω; ρ) = 0. (F4)

M(q; ρ) and D(q,ω; ρ) are defined as

M0(q; ρ) = Z‖q2
x + Z⊥q2

⊥ + Rk(q) − F (ρ),

M1(q; ρ) = Z‖q2
x + Z⊥q2

⊥ + Rk(q) − F (ρ) − 2ρF ′(ρ),

D0(q,ω; ρ) = M0(q; ρ)2 + (ω − qxv)2X2,

D1(q,ω; ρ) = M1(q; ρ)2 + (ω − qxv)2X2. (F5)

In Sec. IV E, we also use the simplified notation D(q; ρ) =
D(q,ω = 0; ρ).

To express the RG equations in a compact form, we
introduce the following integrals:

L(T )
n (ρ) = −

∫
q
∂lRk(q)M0(q; ρ)−n, (F6)

I
(T )
nn′ (ρ1,ρ2) = −

∫
q
∂lRk(q)P (T )

21 (q; ρ1)nP (T )
12 (q; ρ2)n

′
, (F7)

J
(T )
nn′ (ρ1,ρ2) = −

∫
q
∂lRk(q)P (T )

21 (q; ρ1)nP (T )
21 (q; ρ2)n

′
, (F8)

where ∂l = −k∂k ,
∫

q = ∫
dDq/(2π )D , and all frequencies ω

in P (T )(q; ρ) are set to zero. L(L)
n , I

(L)
nn′ , and J

(L)
nn′ are also

defined by replacing M0 and D0 in Eqs. (F6)–(F8) with M1 and
D1, respectively. These integrals are used in Eqs. (69), (72),
and (73).

APPENDIX G: NUMERICAL METHOD TO OBTAIN
NONANALYTIC FIXED FUNCTIONS

In this Appendix, the numerical method used to obtain
the fixed functions δ∗

00(z) and δ∗
21(z) is presented. Since

the solution exhibits a nonanalytic behavior near z = 1,
standard numerical techniques are not applicable. We define
δ̃00(z) = (N − 2)δ00(z) and δ̃21(z) = (N − 2)δ21(z), and the
trial functions δ̃

(t)
00(z) and δ̃

(t)
21(z) as follows:

δ̃
(t)
00(z) = a0 +

nmax∑
n=1

an(1 − z)n/2, (G1)

δ̃
(t)
21(z) = b0 +

nmax∑
n=1

bn(1 − z)n/2. (G2)

We rewrite Eqs. (86) and (87) as

∂lδ00(z) = β00[δ00,δ21; ε](z),

∂lδ21(z) = β21[δ00,δ21; ε](z). (G3)

Then, the fixed functions δ̃∗
00(z) and δ̃∗

21(z) satisfy

β00[δ̃∗
00,δ̃

∗
21; ε = N − 2](z) = 0,

β21[δ̃∗
00,δ̃

∗
21; ε = N − 2](z) = 0. (G4)

The integral S({an},{bn}) is introduced,

S({an},{bn}) =
∫ 1

−1

{
β00

[
δ̃

(t)
00,δ̃

(t)
21; N − 2

]
(z)2

+β21
[
δ̃

(t)
00,δ̃

(t)
21; N − 2

]
(z)2

}
dz, (G5)

which vanishes if the true fixed functions are attained. The
set of optimal parameters {an} and {bn} can be obtained by
minimizing S({an},{bn}). From Eq. (97), a0 and a1 satisfy
−a0 + a2

0 − (1/2)a2
1 = 0. Since a0 = 1 when a1 = 0, we

obtain the following constraint:

a0 = 1
2

(
1 +

√
1 + 2a2

1

)
, (G6)

which enables us to avoid the trivial solution {an} = {bn} = 0.
Note that the integral S({an},{bn}) has several local minima.
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One is chosen such that it recovers the fixed function Eq. (108)
at N = 2. The truncation number is fixed at nmax = 4. The
inclusion of the higher order terms only changes η⊥ = δ∗

00(1)
by less than one percent.

By employing a similar method, the anomalous dimension
η for the RFO(N )M can be also calculated from Eq. (80). We
have checked that it agrees with the known value given in
Refs. [7,35].
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