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Thermodynamic limits for optomechanical systems with conservative potentials
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The mechanical force from light—radiation pressure—provides an intrinsically nonlinear interaction.
Consequently, optomechanical systems near their steady state, such as the canonical optical spring, can display
nonanalytic behavior as a function of external parameters. This nonanalyticity, a key feature of thermodynamic
phase transitions, suggests that there could be an effective thermodynamic description of optomechanical systems.
Here we explicitly define the thermodynamic limit for optomechanical systems and derive a set of sufficient
constraints on the system parameters as the mechanical system grows large. As an example, we show how these
constraints can be satisfied in a system with Z2 symmetry and derive a free energy, allowing us to characterize
this as an equilibrium phase transition.
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I. INTRODUCTION

Phase transitions provide a remarkably powerful frame-
work to study phenomena in many different regimes. While
traditionally phase transitions have been studied in classical,
equilibrium systems, the most fundamental aspect is the
nonanalytic behavior of an observable at large system sizes.
Looking more generally to nonanalytic behavior, others have
considered situations that do not meet the strict require-
ments of thermodynamic equilibrium. In particular, phase
transitions have been proposed or observed in systems that
are nonequilibrium [1], dissipative [2], dynamical [3,4], and
even quantum mechanical [5–9]. In nonequilibrium systems,
numerous analogies with traditional equilibrium phase transi-
tions have been explored, e.g., in lasers [10,11], the Gunn effect
[12], and in tunnel diodes [13,14]. These analogies are fairly
broad in consideration, and are readily generalized to other
nonequilibrium, nonlinear systems, such as those studied in
optomechanics.

In recent years, scientific advances have enabled the
creation of numerous optomechanical systems over a range
of scales (see Ref. [15] for a review). These systems combine
the engineerability and control of optical systems with the
simplicity of a mechanical harmonic oscillator. Impressive
results, including a self-structuring of atoms [6–9] and a
buckling of an optomechanical membrane [16], suggest that
stable structural rearrangements of the mechanical modes can
be described by an order parameter.

Here we show that the dynamics of the slow modes (the
mechanics) can be described by an effective thermodynamic
theory despite being an open, nonequilibrium system. Our
approach works provided that the fast modes (the optics) obey
certain properties, analogous to approaching an optical steady
state, defining our thermodynamic limit. This is conceptually
similar to integrating out high-frequency or short-wavelength
behavior, but here the process takes a nonequilibrium problem
to an equilibrium one, in contrast to the usual formulation of
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phase transitions. Specifically, we construct a sufficient set of
constraints that allow the definition of a thermodynamic limit,
and phase transitions, in optomechanical systems. While the
limit we define is possible in some cases, we also show a
generic optomechanical system may not have such a limit or
even be described by a thermodynamic potential. We illustrate
our general approach with an example, a phase transition
following [16], showing along the way that these constraints
are satisfied. While our approach takes into account quantum
fluctuations, we do not consider quantum phase transitions in
this work.

II. IDENTIFICATION OF THERMODYNAMIC LIMIT

We will consider a driven, dissipative system comprising
many optical modes coupled to many mechanical modes. Such
optomechanical systems have been realized over a wide range
of scales, from LIGO to nanoscale resonators or cold atoms
[15]. Examples of non-adiabatic behavior in these systems
are depicted in Fig. 1. These systems are, however, far from
equilibrium. In the limit that the optics respond instantaneously
with respect to the mechanical modes (i.e., the dynamics for
each optical mode are much faster than any of the mechanical
frequencies), we may consider the behavior of the optical
steady state. Typically, this is accomplished by adiabatically
eliminating the optical modes and replacing them with steady
state values that depend parametrically on the mechanical
modes [17]. Here we show that we can construct a limit
in which the mechanical steady state values are effectively
thermodynamic, and identify order parameters in systems with
phase transitions.

To ensure that a thermodynamic description holds, we need
the system to have conservative dynamics, be stable, have
optical forces that are at least as large as mechanical forces,
and to only couple to bath(s) at a single temperature in the
large size limit. These constraints (C1–C6) are enumerated in
Table I.

We adopt a Hamiltonian formulation for the system, then
follow the usual conventions to derive Heisenberg-Langevin
equations of motion. As such, we will not specify many of the
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FIG. 1. Examples of nonanalytic behavior in the steady state
mechanics of optomechanical systems. (a) Competition between
mechanical and optical springs creates bistability as a function of laser
power. The stable (unstable) solution is shown as a solid (dashed) line.
(b) A membrane-in-the-middle system shows a Z2 phase transition
which has either first- (with unstable solutions as dashed lines) or
second-order characteristics. (c) A cartoon of the generic system
with many mechanical (xμ on the left) and optical modes (ai on the
right) coupled optomechanically and with laser drive (�i) on the
optics.

details of the Hamiltonian, instead focusing on the resulting
equations of motion. Still, in principle our system plus bath is
described by

H = Hopt + Hmirror + Hmech + Hoptbath + Hmechbath, (1)

where all terms with optical mode operators are assumed to
be bilinear or linear in such operators, but may also depend
upon the mechanical degrees of freedom. This means that we
can write down equations of motion for the optical modes that
have no troubles with commutator order, but the addition of
optical loss through the mirror into the optical bath will lead to
an effective, non-Hermitian picture in the equations of motion
approach.

The system obeys the following equations (in the frame
rotating with the laser drive frequency for each mode):

ȧi = i�̃ij ({xρ})aj − i�i +
√

�ex
ij ain

j , (2)

ẋμ = M−1
μν pν, (3)

ṗμ = −Kμνxν − �μνpν + a
†
i ∂μ�̃ij ({xρ})aj

+√
�μνp

in
ν , (4)

where we use Einstein summation notation, with optical
modes ai , indexed by roman indices, coupled to the set
of mechanical modes, represented by xμ, pμ, indexed by
Greek indices. �̃ij ({xρ}) = �ij ({xρ}) + i

2κij ({xρ}) is the non-
Hermitian matrix, due to Hopt + Hmirror + Hoptbath, which
describes the dynamics of the optical modes in addition to
all of the couplings to the mechanical modes. We note that this
generic coupling includes standard dispersive couplings (i =
j ), beam-splitter-like terms (i �= j ), and dissipative couplings.
Mμν, Kμν , and �μν are the matrices, due to Hmech + Hmechbath,
giving the effective masses, couplings, and decay rates for the
mechanical modes. �i is the laser drive, �ex

ij is the decay rate
matrix for the optical baths, and ain

j , pin
ν are the fluctuations

of corresponding optical and mechanical bath fluctuations,
respectively. We note that the derivatives of �̃ij with respect
to mechanical coordinates correspond to the vacuum radiation
pressure force. Thus, when the optical modes have finite
occupation, we will have a finite force.

To separate the steady state effects from the fluctuations,
we make the following expansion:

ai = Ai + δai, (5)

xμ = Xμ + δxμ, (6)

pμ = Pμ + δpμ, (7)

where the capital letters (Ai,Xμ,Pμ) represent the noiseless,
classical variables and the δ variables are proportional to the
fluctuations. We can consider the noiseless variables in the
optical steady state (Ȧi = 0) and study the induced force on
the mechanical modes:

F opt
μ = A

†
i ({Xρ})∂μ�̃ij ({Xρ})Aj ({Xρ}). (8)

Our first requirement (C1) is that the curl of this force
vanishes, ερνμ∂νFμ = 0. If this requirement holds, then the
mechanics can be described by a conservative potential. This

TABLE I. The constraints for realizing a thermodynamic limit of an optomechanical system.

C1 The optical force must have a vanishing curl.
C2 The total cavity detuning must remain negative (red detuned).
C3 The optical force must be comparable to the mechanical restoring force.
C4 The linearized optical restoring force must remain comparable to the mechanical restoring force.
C5 The optically induced damping in the linearized equations must vanish.
C6 The optically induced noise in the linearized equations must vanish.
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curl has the form

ερνμ∂νFμ = −ερνμ

(
∂ν�̃

†
il({Xρ}) 1

�̃
†
lm({Xρ})

∂μ�̃mj ({Xρ})

+ ∂μ�̃il({Xρ}) 1

�̃lm({Xρ})
∂ν�̃mj ({Xρ})

)
A

†
i Aj ,

(9)

where we have used the fact that partial derivatives commute.
There are many possible instances where the curl vanishes.
Some example cases are: if there is only a single mechanical
mode, a single optical mode, or if �̃ij ({xρ}) is Hermitian—
though the lack of damping in the optical modes may violate
our adiabatic assumption. We will show a simple case where a
non-Hermitian �̃ij ({xρ}) possesses a potential and describes a
system with a phase transition. Intriguingly, cases with two or
more damped optical modes and multiple mechanical modes
generically have a curl, owing to the matrix nature of �̃ij ({xρ})
and the inclusion of optical loss. Though these cases may
have interesting dynamics, including potentially topological
properties and limit cycle behaviors, we will not focus on
them here.

In the case where the curl vanishes, we need to ensure
additional constraints hold to use equilibrium statistical me-
chanics to describe our system. We need the optical modes
to remain red detuned overall (C2) otherwise instability (via
gain) will result. We also require that the optically induced
forces remains comparable to the mechanical restoring force
in {Xρ} (C3) and in {δxρ} (C4) otherwise the system simply
becomes mechanical. While C3–C4 are identical in linear
systems, they are distinct in more complicated systems. In
stable, open systems considered here, there are (at least)
two baths, one optical and one mechanical. For a well-
defined (single-temperature) thermodynamic limit, we need
the mechanical system to experience a single temperature
bath. These restrictions (C5–C6), linked by the fluctuation-
dissipation theorem, mean that both the optically induced
mechanical damping and optically induced mechanical noise
must vanish in our limit.

To find the optically induced forces and the corresponding
damping and noise, we study the linearized dynamics of the
fluctuations (δai,δxμ,δpμ) which contain the influence from
optical and mechanical noise. To first order, the linearized
variables have the following equations of motion:

δȧi = i�̃ij ({Xρ})δaj + i∂μ�̃ij ({Xρ})δxμAj +
√

�ex
ij ain

j ,

(10)

δẋμ = M−1
μν δpν, (11)

δṗμ = −Kμνδxν + A
†
i ∂μ�̃ij ({Xρ})δaj

+ δa
†
i ∂μ�̃ij ({Xρ})Aj

+A
†
i ∂ν∂μ�̃ij ({Xρ})δxνAj

−�μνδpν + √
�μνp

in
ν , (12)

where ain
i , pin

μ are the bath-induced fluctuations in the optical
and mechanical modes, respectively.

This is a set of linear equations and can be solved. The
solution determines the local stability of the system, and can
include both damping and gain, depending upon the sign of
the real part of eigenvalues of �̃ij ({Xρ}). We note that this
linearized theory is entirely compatible with the full quantum
system, but may not capture the full phase diagram of the
system outside of our area of focus—particularly in the regime
of limit cycle or oscillator behavior.

We now examine the linear regime in detail. In both
the noiseless and linearized equations, we need the optical
forces to be comparable to the mechanical forces (C3–C4).
Following our steady state assumption for the optical modes,
Ai = �̃ij ({Xρ})−1�j , we can Fourier transform the equations
for the fluctuations, δai(t) = ∫

dωãi(ω)e−iωt , expanding in ω:

ãi = −1

ωδij + �̃ij ({Xρ})
(
Ak∂μ�̃jk({Xρ})x̃μ − i

√
�ex

jkã
in
k

)
(13)

≈ −1

�̃ij ({Xρ})
(
Ak∂μ�̃jk({Xρ})x̃μ − i

√
�ex

jkã
in
k

)

+ω
1

�̃ij ({Xρ})
1

�̃jk({Xρ})
∂μ�̃kl({Xρ})x̃μAl, (14)

where we assume the noise fluctuations are small compared to

the optomechanical term (|
√

�ex
jkã

in
k | < |Ak∂μ�̃jk({Xρ})x̃μ|).

Now, inputting the expanded “steady state” optical modes
into the Fourier transform of Eq. (12), we see a coupling
to the optical bath which could disrupt the emergence of
a thermodynamic limit. These damping and noise effects
from ãi must vanish for the mechanics to have a single bath
(C5–C6). These six requirements, listed in Table I, form a
set of conditions which must be satisfied as the mechanical
modes go to their thermodynamic limit (we envision Xμ ∝ V α ,
α > 0, where V is the volume of the mechanical resonator
and V → ∞). In Fig. 2 we show a simplified view of our
approximation and thermodynamic limit process.

If all of these conditions (C1–C6) are met, then the
mechanical modes will experience a potential modified by
the optics but will not have any additional damping or noise
contributions. In this case, the modes will thermalize only
to the mechanical reservoir, with no contribution from the
optical reservoir. In such a situation, we can compute the
partition function and upon integration of the mechanical
modes, determine a free energy for an order parameter if one
exists in the system.

There are interesting systems which do not meet these
conditions, however, we restrict ourselves to the case where
our effective thermodynamic theory applies. In particular,
we demonstrate the existence of a Z2 phase transition
in the defined thermodynamic limit of an optomechanical
membrane-in-the-middle system.

III. THE THERMODYNAMIC LIMIT
FOR THE Z2 SYSTEM

We consider an optomechanical system with two optical
modes a1,2 coupled oppositely to a single mechanical mode
x with resonant frequency �m, where each optical mode
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FIG. 2. A schematic view of the thermodynamic limit we con-
struct. (a) The original system is a generic, driven optomechanical
system with an arbitrary number of optical and mechanical modes. (b)
Using our adiabatic assumption, we use the steady state values for the
optical modes, which results in an effective force on the mechanics,
including a thermal component from the optical bath. (c) Following
the constraints, we ensure that the force in (b) is conservative (C1),
stable (C2), comparable to the mechanical force (C3–C4), and that
the optical bath fluctuations are negligible (C5–C6), resulting in a
mechanical system with a modified potential.

has equal drive and decay (�1,2 = �, κ1,2 = κ). Explicitly,
we define �11 = �1 + gx and �22 = �2 − gx, where �1 =
�2 = � is the detuning of the modes when x = 0. As an
example, one can consider a cavity with a dielectric membrane-
in-the-middle [16,18–20] where we drive two modes with
opposite responses to the membrane motion, depicted in

FIG. 3. Two possible realization of the thermodynamic limit for
the membrane-in-the-middle system. In the upper figure, we imagine
the cavity growing with the membrane, while the finesse decreases
to ensure κ stays large. In the lower figure, we consider shrinking the
cavity, which meets our constraints so long as the finesse does not
increase more quickly than the cavity shrinks. In each case, the power
required to satisfy the other constraints grows.

Fig. 1(b). This system has been realized experimentally and
shows the characteristics of a phase transition [16], which we
expand upon.

To demonstrate that such a system has a thermodynamic
limit, we need to determine how the above constraints (C1–C6)
are held. We choose the “bad cavity limit” κi � �m,γ , such
that the optical decay is much faster than any mechanical
frequency. C1 is satisfied immediately because the curl of a
one-dimensional force vanishes identically. We expand the
variables (a1,a2,x,p) and imagine that X ∝ V α → ∞, as
above. We also consider the scaling of the membrane mass
m = ρV , the coupling g = ωcd

−1, and the cavity decay
κ = cd−1F−1 where ρ is the mass density and ωc, d, F are
the cavity frequency, length, and finesse, respectively. We can
consider a variety of options for the cavity length d and adjust
the other parameters, such as finesse and cavity frequency, to
ensure the following scaling arguments hold. Two options for
the cavity scaling are depicted in Fig. 3. With C1 automatically
satisfied, the rest of the constraints become a set of scaling
relations that determine a region of parameter space in which
the defined thermodynamic limit exists.

To ensure the cavity stays red detuned (C2) we must
impose that � ∝ −|gX|. Taking the steady state solutions for
Ai,ãi as described above, we can derive the optically induced
force, damping, and noise in order to quantify the remaining
constraints. The optical and linearized optical forces (C3–C4)
are

F opt = − 4h̄g2�|�|2(
�2 + κ2

4

)2 + 2g2X2
(

κ2

4 − �2
) + g4X4

X, (15)

f opt = −4h̄g2�|�|2[(�2 + κ2

4

)2 + 2g2X2
(
�2 + κ2

4

) − 3g4X4
]

[(
�2 + κ2

4

)2 + 2g2X2
(

κ2

4 − �2
) + g4X4

]2 δx. (16)
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The optical force must be comparable to m�2
mX, while the linearized optical force must be comparable to m�2

mδx. Since m�2
m

remains finite in 2D, the coefficient of these optical springs must not vanish. Given the linear nature of the coupling, C3 and C4
are identical constraints which are satisfied when |�|2 � c3|gX|3 and κ � c4|gX|, where c3,c4 are fixed constants, and we used
C2 to achieve this result.

Having established that the force is relevant for the steady state position and its fluctuations, we can consider dissipative
effects. The damping and noise will be carried into the mechanical equations from ã. These terms must vanish if we are to
achieve the desired single temperature bath (C5–C6). The damping is

γ opt = −4h̄g2|�|2�κ
[
5g6X6 + g4X4

(
5�2 + 9κ2

4

) + 3g2X2( κ4

16 − 1
2�2κ2 − 3�4) − (

�2 + κ2

4

)3]
m

[(
�2 + κ2

4

)2 + 2g2X2
(

κ2

4 − �2
) + g4X4

]3 , (17)

which, following C1–C4, scales at most as �2
m

|gX| and thus
vanishes as X → ∞, satisfying C5.

Finally, we consider the optically induced noise (C6). These
noise terms have the form

bini
= h̄g|�|√κai,in[

(� ± gX) + iκ
2

]2 , (18)

where bini
is the noise term in ṗ and i = 1,2 determines the

sign of the gx.
These terms should be considered in relation to the

mechanical noise, i.e., we should compute 〈b†inbin〉
〈p†

inpin〉
where pin is

the noise from the mechanical bath. Assuming the mechanics
have an ohmic bath, this ratio is

〈b†inbin〉
〈p†

inpin〉
= h̄2g2|�|2κ[

(� ± gX)2 + κ2

4

]2

1

2mγkbT
, (19)

where the plus (minus) corresponds to b1(2).
Following the scaling from above, this term is proportional

to h̄�2
mκ

2gXγ kbT
= Qmqκ

gX
, where Qmq = h̄�2

m

γ kbT
is the quantum Q for

the oscillator. From above, we need κ � c4|gX| but we also
need to consider how Qmq behaves in the thermodynamic limit.
From the scaling of X, we have Qmq ∝ 1

V 2αγ
which vanishes so

long as γ > c5V
−2α , i.e., if the mechanical noise stays finite,

it will overwhelm the optically induced noise and form the
dominant noise contribution.

With this final constraint in place, we have demonstrated
that our optomechanical system has a well defined potential
with only relevant coupling to a single bath in the thermody-
namic limit, which can be described by equilibrium statistical
mechanics.

IV. THE FREE ENERGY OF THE Z2 SYSTEM

We generalize this analysis to include many mechanical
modes, such as those present in a membrane, each coupled
to the optics in the same fashion (though, potentially with
different values of g). We compute the partition function for
these membrane modes and the optically induced potential.
We will consider a membrane with the displacement field
u(r,t), conjugate momentum π (r,t), a mass density ρ, and
a Young’s modulus Y . As an order parameter, we identify
O(t) = ∫

d2xg(r)u(r,t), which appears in the optical po-
tential V (O). We can write the classical membrane Hamil-
tonian and the full partition function including the optical

potential:

H =
∫

d2r

[
π (�r,t)2

2ρ
+ Y [∂μu(�r,t)]2 + f (r,t)u(r,t)

]
, (20)

Z =
∫

DuDπdOdλe−β{H [u,π]+V (O)}eiλ[O−∫
dd rg(r)u(r,t)],

(21)

where f (r,t) is an external force that might break the
symmetry, and we have added the order parameter O in as
an auxiliary field.

After transforming to Fourier space and integrating out the
membrane momentum π , displacement, u, and λ, we can
rewrite the partition function (up to normalization factors)
purely in terms of the order parameter O, renaming the

effective “spring constant” k = (
∑

�k
g2

−k

�2
mk

)
−1

:

Z′ =
∫

dO

⎛
⎝exp

⎧⎨
⎩−β

⎡
⎣k

2

(
O −

∑
k

gkfk

�2
mk

)2
⎤
⎦

⎫⎬
⎭

× exp [−βV (O)]), (22)

where gk,fk are the Fourier components of the optomechanical
coupling and external forces, respectively. From Eq. (22) we
can perform the integral and compute the free energy F :

F = − 1

β
log Z′. (23)

Since O grows with system size (and the potential along with
it), only the minima of the effective potential will have finite
energy in the thermodynamic limit. These correspond to the
usual saddle points in steepest descent approximations.

The locations of the minima of F change nonanalytically
as a function of laser power, resulting in a phase transition in
the steady state of the coupled mode. Intriguingly, the order
and onset of the phase transition are strongly dependent on
the detuning of the optical modes from the cavity. To see this
behavior, we study the values of the order parameter O which
give zero “force.” We compute the zero force condition:

0 = kO

(
1 − A

O4 + 2O2
(

κ2

4 − �2
) + (

�2 + κ2

4

)
)

, (24)

where we define A = −4h̄g2|�|2�
k

, where � is the coupling to the
laser drive. This quantity is positive since we are considering
red detuning (� < 0) and is proportional to the input laser
power. We also note that the second term has even parity, so
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solutions with O �= 0 will appear in pairs, providing the Z2

symmetry of the steady states solutions we anticipated.
The general solution for the nontrivial phase (O �= 0) is

O2 = �2 − κ2

4
±

√
A − �2κ2. (25)

For the solution to be valid, the right-hand side needs to be real
and positive. Enforcing realness A > �2κ2. Recalling that A is
proportional to laser power, this constraint gives the minimum
laser power for a transition to occur. To ensure positivity, we
have to consider two cases, |�| < κ

2 and |�| > κ
2 . In the first

case, the square root term must be larger than the first two
terms, so only the positive root can be a solution. For that to
be the case, we need

A − �2κ2 >

(
κ2

4
− �2

)2

,

A >

(
κ2

4
− �2

)2

+ �2κ2,

A >

(
κ2

4
+ �2

)2

. (26)

When this equation is satisfied, there is only one solution
for O2. This case corresponds to a double well potential
where the wells split from O = 0 as power is increased. The
O = 0 solution becomes unstable and represents the peak of
the barrier between the two wells at O = ±Os . However,
in the case where |�| > κ

2 , once A > �2κ2, a triple well
develops with minima at O = 0, ± Os+, where Os+ is the
larger solution. We will show below that the smaller solution
Os− is unstable and forms the peaks of the barriers.

To study the stability of the solutions, necessary for
the steepest descents approximation, we determine the local
curvature of the potential at each of these critical points by
computing the second derivative of the potential ∂2

OV (O).
Defining u = O2 and D(u) = u2 + 2u( κ2

4 − �2) + (�2 + κ2

4 )
for convenience,

∂2
OV (O) = k

[
1 − A

D(u)

]
+ kOA

D(u)2
D′(u)2O. (27)

The Os = 0 solution is stable but decreasingly so until A
D(0) =

1 (which is the power at which as the |�| < κ
2 case buckles)

and the solution becomes unstable.

In the buckled state, we see the mechanical spring constant
drops out immediately and the curvature is controlled by the
optical response. The sign of the curvature is determined
by D′(O2

s±) = ±2
√

A − �2κ2. Therefore, when |�| > κ
2 , the

smaller solutions are unstable, leading to a first-order phase
transition, while the outer solutions and the solutions for |�| <
κ
2 are stable with a new optically determined spring constant.
Thus, as a function of laser power, the steady state of the
membrane will either experience a first- or second-order phase
transitions which spontaneously breaks theZ2 symmetry of the
potential.

V. CONCLUSION

We have developed a set of constraints on optomechanical
systems under which an effective equilibrium thermodynamic
phase transition can be defined. These constraints, described in
Table I, allow the mechanics to explore an optically modified
potential in a regime where the effects of optical fluctuations
are overwhelmed by mechanical ones such that it equilibrates
to the mechanical bath temperature. Exploring this limit, we
define a system which possesses a phase transition of either
first or second order, controlled by the system parameters.
Specifically, our theory supports the experimental observation
of spontaneous Z2 symmetry breaking corresponding to the
buckling of the mechanical spring [16].

We also find, more generally, that optomechanical systems
which do not have conservative dynamics are generic, and are
not well understood in our thermodynamic limit. Analysis of
these systems may point to topological physics and connect
with other related optomechanical systems, such as those
with exceptional points [21]. While experimental efforts have
included the ability to cool the mechanical system to its ground
state [22], determining whether our framework for phase
transitions persists at the quantum level will require further
analysis to handle the effects of quantum fluctuations. How-
ever, the possibility of observing quantum phase transitions
which spontaneously break symmetry remain quite compelling
and will drive future theoretical work.
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