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A force-matched spline-based empirical potential based on the modified embedded-atom method is fit to an
extensive database of highly converged density functional theory calculations for titanium-niobium alloys with
an evolutionary algorithm. Consistency with experiment and existing models is verified through calculations of
structural, elastic, and thermal properties. The potential is used to study the effects of alloying on elastic properties,
the martensite phase of Ti-rich alloys, and the α-β and β-ω transformations. Stress- and temperature-induced
martensitic transitions are demonstrated in Ti-25 at. % Nb by NPT simulation. Last, the effect of alloying on
screw dislocations in hcp-Ti and bcc-Nb is analyzed at 5 at. % solute content with the fitted potential.
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I. INTRODUCTION

Titanium is an important material in many modern indus-
tries. When alloyed with bcc-stabilizing elements (so-called β

alloys), the bcc β phase can be stabilized at room temperature.
One class of β alloys which has garnered much attention is
“gum metals,” which contain about 25 at. % of a primary β

stabilizer and small amounts of other elements, e.g., Ta, Zr, and
O. These alloys have exceptional yield strength, high ductility,
and low elastic modulus [1], and exhibit superelasticity [1–5],
shape memory [3,6], as well as martensitic [7,8] and strain-
glass [9] transitions. The plastic deformation behavior of gum
metals has been explored with great interest in order to explain
these mechanical properties. Proposed mechanisms include
dislocation-free deformation [1,10], stress-induced martensitic
transitions [8,11,12], deformation twinning [11,12], and con-
ventional dislocation-driven plasticity [13,14].

Niobium is commonly used as the major β-stabilizer in
gum metals, and Ti-Nb alloys on their own show promise
in biomedical [15–17] and orthodontic [18] applications, and
are used as superconducting wires for electromagnets in
MRI machines, synchrotrons, and tokamaks. In this work we
develop a classical interatomic potential for Ti-Nb alloys with
focus on properties of the gum metal approximant Ti3Nb.

Classical molecular dynamics (MD) potentials, popular for
their favorable scaling compared to first-principles methods,
were traditionally developed by choosing analytic functional
forms with a handful of free parameters determined by fitting
directly to experimental bulk data such as cohesive energy,
lattice, and elastic constants. The force-matching method of
Ercolessi and Adams [19] has facilitated the development
of interatomic potentials based on ab initio calculations of
relaxed crystallographic defects, metastable structures, and
other nonequilibrium configurations. Combined with spline-
based parametrization of constituent functions first used by
Lenosky et al. [20], this allows the development of empirical or
semiempirical interatomic potentials trained to large portions
of the ab initio potential-energy landscape with minimal bias.

We present an empirical potential force matched to a large
database of ab initio forces, stresses, and energies with an
optimization scheme combining the Powell conjugate direc-
tion [21] and genetic algorithms. Our model is an empirical
extension of the modified embedded-atom method (MEAM)

[22–26] for alloys, with functions parametrized by cubic
splines. Section II C describes the formulation of the model,
the density functional theory (DFT) database, and the iterative
process of fitting, testing, and database refinement. Section III
contains calculations of structural, elastic, and thermal proper-
ties to demonstrate accuracy of the fit and consistency with
existing data. Section IV examines behavior of the fitted
potential for martensitic transitions in pure titanium and Ti-rich
alloys. Section V contains differential displacement maps of
screw dislocation cores in hcp-Ti and bcc-Nb and examines
the effect of alloying therein. Conclusions are given in Sec. VI.

II. OPTIMIZATION OF THE MEAM-LIKE EMPIRICAL
POTENTIAL TO FIRST-PRINCIPLES DATA

Here, we describe the DFT calculations from which we
build the fitting database as well as the global optimization
scheme employed.

A. Density functional theory database

Highly converged DFT calculations performed with VASP

[27–30] using a projector-augmented plane-wave basis [31]
and Perdew-Burke-Erzenhof (PAW-PBE) [32,33] generalized-
gradient exchange-correlation approximation (GGA) com-
prise a database of forces, stresses, and energies for fitting
via the force-matching method of Ercolessi and Adams [19].
Valence configurations are 3p4s3d and 4p5s4d for Ti and Nb
pseudopotentials, respectively. Convergence with respect to
plane-wave basis size, number of k points for Brillouin zone
integration, and first-order Methfessel-Paxton [34] smearing
parameter is achieved to within 1 meV/atom for all structures
in the fitting database. Chosen k-point grids are available in
the Supplemental Material [35]. All electronic self-consistency
loops are converged to 10−6. Ionic relaxations are converged
to 10−5.

The fitting database contains 411 configurations with a total
of 9079 unique force components, stress components, and
energies to be fit. The potential contains 200 fitted parameters.

The remainder of this section describes the contents of
the DFT database. In the first paragraph that follows, we list
structures for which points on the energy-volume curve at 50%,
97.5%, 100%, 102.5%, and 120% equilibrium are included
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in the fitting database. In the second paragraph, we list the
structures for which elastic constants, calculated following the
method of Trinkle [36], are included. In the third paragraph,
given our interest in the martensitic transitions of this system,
we describe structures along the transition pathways. In the
fourth paragraph, we list the various point and planar defect
structures to which the potential is fit. The last two paragraphs
in this subsection describe ab initio MD snapshots at finite
temperature, each of which is run with a 1-fs time step, and
miscellaneous configurations which were added to correct
for spurious results obtained with previous iterations of the
potential. More detail on the iterative process of fitting, testing,
and database refinement is provided Sec. II C.

The fitting database contains energy-volume relations for
multiple phases at each considered stoichiometry, including
those that are dynamically or elastically unstable, in order to
broadly sample the configuration space and train the potential
to nonequilibrium configurations. For pure titanium we include
the hcp α, bcc β, hexagonal ω, fcc, and A15 phases while
for niobium we include bcc, hcp, ω-Ti, A15 (also known as
β-W), and β-Ta phases. Since the solid-solution nature of
alloys is impractical to account for within DFT, representative
supercells for each phase must be used. Structure candidates
for Ti3Nb hexagonal α′, orthorhombic α′′, bcc (β) “G1,” and
hexagonal ω phases are taken from Lazar et al. [37], who
performed a thorough analysis of their stability. Additionally, a
16-atom bcc special quasirandom structure (SQS) [38], the bcc
D03 and L60 structures, the hcp D019, and the A15 structure
are included for this stoichiometry. For TiNb, a [110]-layered
bcc supercell (where [110] alternate between Ti and Nb, space
group Pmmm), bcc, and hcp A3 structures are included.
Finally, a bcc SQS and an A15 TiNb3 phase, which is predicted
by DFT to be elastically and dynamically stable, are included
in the database.

The fitting database contains elastic constants for hcp, bcc,
and ω phases of titanium; D03, G1, ω, and α′′ phases of Ti3Nb;
the B2 phase of TiNb and bcc niobium; each at ±0.8% and
±0.4% strains at zero pressure.

Three evenly spaced points on the ω ↔ β pathway (via
splitting of the honeycomb layers into alternate 〈111〉 bcc
planes) are included for pure titanium. For Ti3Nb, where the
fully transformed ω phase corresponds to G1-β as described
in Lazar et al. [37], three additional points on the energetic
barrier identified by Lai et al. [39] are included. A mesh of
nine evenly spaced points on the Burgers [40] energy surface
of the α → β transition in pure Ti and α′′ → β-L60 in Ti3Nb
are included.

For defect structures, we include two points on the easy
and hard prismatic stacking faults in hcp-Ti. Three points on
{112}〈111〉 and one point on {110}〈111〉 faults of bcc-Nb, as
well as an unrelaxed vacancy and (100), (110), and (111) free
surfaces are included.

Finite-temperature structures are included in the database
to ensure accuracy in dynamics simulations, including a 127-
atom ab initio MD snapshot of bcc-Ti containing a vacancy
at 1300 K; 432-atom snapshots of Ti3Nb at (bcc) 300, 1000,
and (liquid) 3000 K; a 256-atom snapshot of α′′ at 300 K; and
snapshots of bcc-Nb at 1200, 2200, and (liquid) 5000 K.

Miscellaneous structures added through the course of fitting
and testing for the purpose of improving specific behaviors

include α′′ Ti3Nb with b and c scaled by 0.95 and 1.05, lattice
constants of bcc-Nb at 50 and 100 GPa, and large-strain (20%
and 40%) configurations for C44 in niobium. Also included are
peaks of the ideal shear curve of bcc-Nb at 0 and 100 GPa.
Last, configurations of bcc-Ti with a single atom displaced by
±0.003 Å are included to improve accuracy of force constants
in this system.

B. MEAM-like spline-based interatomic potentials for alloys

The embedded-atom (EAM) [22,26] and modified
embedded-atom (MEAM) [23–25] methods have been applied
to semiconductor elements [20,22–24,26,41] and compounds
[42], transition metals [25,43–46], and alloys [47–54]. The
original MEAM formalism involves a parametrized analytical
functional form which accounts for bond bending through
angular functions with explicit s-, p-, d-, and f -orbital
characteristics. Lenosky et al. [20] first parametrized the
MEAM formalism through the use of cubic splines for
the study of defects in Si. The use of cubic splines for
parametrizing empirical potentials increases model flexibility
and efficiency, and has been successfully applied to the
study of martensitic transformations in pure titanium [44],
shock loading in niobium [45,55], dislocation dynamics in
molybdenum [46], and stabilization of fcc in tungsten at high
pressure [56].

The MEAM formalism splits the total energy into pair and
embedding terms:

Vtot = 1

2

∑

j �=i

φIJ (rij ) +
∑

i

UI (ni), (1)

where the “electronic density” ni at atom i involves two- and
three-body contributions

ni =
∑

j �=i

ρJ (rij ) +
∑

j > k

j �= i

fIJ (rij )fIK (rik)gJIK (cos θjik), (2)

θjik is the angle of the triplet centered on atom i and the
subscript I denotes the atomic species of atom i. Flexibility of
empirical MEAM-like potentials for alloys can be adjusted by
modifying the atomic species dependence of the ρ, f , and g

functions which contribute to the density n. Here, we choose a
unique f function for each distinct pair of atomic species IJ

and a unique g function for each distinct triplet JIK . Since our
model for ni [Eq. (2)] is not independent of I , it is not strictly
consistent with the Stott-Zaremba [57] corollary to DFT on
which the EAM is based and is thus akin to Finnis-Sinclair
EAM [58] (FS-EAM) empirical potentials, which assign a
pair index to ρ, interpreted as overlap integrals of neighboring
valence wave functions. Nonetheless, we herein refer to the
fitted potential as MEAM.

C. Genetic algorithm optimization

Development of the optimized potential is an iterative pro-
cess of fitting, testing, and database refinement. The foremost
step in this process is to achieve a balance between database
size and the distribution of spline knots to avoid overfitting
or underfitting. Ten fits are performed simultaneously, and
the resultant potentials are tested for accuracy with respect to
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DFT on a range of properties. The fitting database is refined
based on the results of these tests: new structures are added
to correct for spurious behavior, or structures are removed
when underfitting is suspected. To provide two examples, (1)
bcc-Ti phonon structures (via the small displacement method)
were added when the L- 2

3 [111] (ω) phonon was found to be
inaccurate, and (2) α′′ structures strained along the b and c

axes were added when lattice constants were found to vary
heavily between fits.

For each individual fit, a global optimization scheme
combining a genetic algorithm (GA) with a local downhill
optimizer provides a robust method for estimating the optimal
parameters. A detailed description of this scheme is provided
in Nicklas [59]; here, we provide a brief outline.

At each iteration of the genetic algorithm, all potentials
in a population of 10 (distinct from the 10 individual fits
performed in a “batch”) are locally optimized with 60 steps of a
Powell [21] conjugate direction algorithm, then the population
is sorted and bred according to a weighted least-squares error

Z(y) =
∑

i

W 2
i

(
Qi(y) − QDFT

i

)2
. (3)

Here, Qi(y) is an energy, force, or stress component computed
with the potential specified by parameters y, QDFT

i is the
corresponding DFT value, and Wi is a weighting factor
with units to make Z dimensionless. Units employed are

eV, eV/Å, and eV/Å
3

for energies, forces, and stresses in
the database, respectively. Weights are Wforce = 1 (eV/Å)−1,

Wenergy = 1 (eV)−1, and Wstress = √
2 (eV/Å

3
)−1. Weighting

stresses more heavily was found during the course of fitting and
testing to produce more reliable elastic constant predictions
once a balance of spline knots and database size had been
achieved.

Breeding consists of a stochastic combination of spline
knots from two parent potentials. The following constraints
are enforced by introducing a “punishment” error when not
satisfied: (i) |max[fIJ (r)]| = 1 and (ii) ni lies within the
domain of UI (n) for all i. If the latter constraint is violated,
the embedding function is evaluated at its nearest end point.
At each GA step, for every potential in the population, there is
a 30% chance that each embedding function domain and the
total density [Eq. (2)] are rescaled according to

UI (n) → UI (n/α),
(4)

n → αn,

where α is determined by the minimum and maximum
densities at the current step. During this rescaling, additional
symmetries of the three-body terms in Eq. (2) are exploited to
keep the maximal value of fIJ (r) fixed at 1:

fIJ (rij ) → fIJ (rij )/f max
IJ ,

fIK (rik) → fIK (rik)/f max
IK ,

gJIK (cos θjik) → f max
IJ f max

IK gJIK (cos θjik). (5)

While forces and energies are invariant with respect to these
transformations, the total error is not because constraints (i)
and (ii) are always satisfied after rescaling. Furthermore, spline
functions are, in general, not invariant under a transformation
of their argument as in Eq. (4). Performing this rescaling thus

serves as a genetic mutation to the potential. We also include
mutations by, at every GA step, giving each potential a 10%
chance of taking a spline knot from a lower-fitness member of
the population.

The genetic algorithm is exited when between successive
steps the change in total error for each potential in the
population is less than 10−3. Parameters for the fitted potential,
plots of the functions, descriptions of the fitting algorithms, and
lists of k-point grids are shown in the Supplemental Material
[35].

III. ACCURACY OF THE FITTED MEAM POTENTIAL

We demonstrate the accuracy and transferability of the fitted
MEAM potential through the energetics and elastic moduli,
crystallographic defects, and thermodynamic properties for
phases throughout the Ti-Nb phase diagram. All molecular
dynamics calculated presented here were performed with
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) [60] version dated 31 March, 2017. If at any step
during an MD run the density seen by an atom exceeds its
embedding function domain, the embedding energy is linearly
extrapolated from the nearest end point.

A. Structural, elastic, and thermal properties

In this section we examine structural, thermal, and elastic
properties of various Ti-Nb phases with the fitted MEAM
potential. Figure 1 shows energy-volume curves volumetric
scaling with fixed lattice ratios, where MEAM energies are
shown as curves and DFT energies are points. Figure 1(a)
contains energies of pure titanium structures, where MEAM
shows excellent agreement with the ab initio data, including
the nearly degenerate spacing of hcp (α) and ω-Ti. Figures 1(b)
and 1(c) contain structures for bcc (β) and non-bcc Ti3Nb,
respectively. Common bcc intermetallic structures such as D03

and L60 are considered, as well as the G1 structure proposed by
Lazar et al., which contains a chain of niobium atoms along the
body diagonal. A fully relaxed special quasirandom structure
(SQS) for the 3:1 ratio in bcc [38] has the lowest energy of all
bcc structures, and is slightly lower even than the α′′ structure
proposed by Sun et al. [61]. Solid-solution predictions by
MEAM are presented as dashed curves. MEAM agrees with
DFT predictions of bcc structures with the notable exception
of L60, which can be transformed into α′′ by the Burgers [40]
mechanism as described in Sec. IV. In Fig. 1(c), MEAM shows
good agreement with DFT, slightly underestimating the energy
of α′ and the difference between α′′ and ω. Lastly, MEAM
again shows good agreement with DFT for pure niobium
structures in Fig. 1(d), except for the energetic ordering of
high-lying hcp and fcc Nb. Geometric models of the phases
presented here can be found in the Supplemental Material [35].

Figure 2 shows pressure-volume curves for hcp-Ti (top)
and bcc-Nb (bottom) as computed with MEAM and DFT
at 0 K, compared with experimental shock data taken from
Kinslow [62] at room temperature. MEAM tracks DFT and
experiment for bcc-Nb, but underestimates hcp-Ti pressure
by about 10 GPa at 80% equilibrium volume. The origin
of this discrepancy is unclear since DFT agrees well with
experiment. Given this anomaly, one must take care when
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FIG. 1. Energy versus volume curves for (a) Ti, (b) β -Ti3Nb,
(c) α and ω-Ti3Nb, and (d) Nb. MEAM values are shown as solid
curves, while DFT values are presented as points. Zero energy is
defined for (a) as hcp-Ti, for (b) and (c) as G1 Ti3Nb, and for (d) as
bcc-Nb. Values are given relative to these zeros for the two methods
presented. For the Ti3Nb stoichiometry, fully relaxed solid-solution
(S.S.) curves are shown for MEAM.

applying the fitted potential to high-pressure phenomena in
titanium-rich systems. Below 10 GPa, however, the difference
between MEAM and DFT is negligible.

Table I displays linear thermal expansion coefficients
(TECs) predicted by the fitted MEAM potential and compared
with limited experimental data for Ti, Nb, and two alloy

FIG. 2. Pressure-volume relations for hcp-Ti and bcc-Nb. DFT
shows good agreement with room-temperature experimental data [62]
obtained by shock measurements, but MEAM underestimates hcp-
Ti pressure for compression below V/V0 = 0.7 and overestimates
pressure at higher compression.

stoichiometries. Calculation of the TECs is done using 8788-
atom NPT ensemble simulations with a time step of 1 fs,
where the pressure is kept at zero and the temperature ramped
up, starting at room temperature (RT), over one nanosecond.

TABLE I. Linear thermal expansion coefficients (TECs), in units
of 10−6 K−1, calculated with MEAM and compared with experiment.
MEAM overestimates the TEC at each considered concentration, but
shows a decrease with niobium content with experiment.

at. % Nb MEAM Expt.

0 11.7 9.50a, 9.90b

2.64 10.9 9.35a

11.41 10.8 9.37a

100 7.87 7.0c

aExperimental data for Ti and Ti-Nb from Han et al. [63].
bExperimental data for Ti from Zinelis et al. [64].
cExperimental data for Nb from Argent et al. [65].
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TABLE II. Single-crystal elastic constants of Ti3Nb phases by
MEAM and DFT compared with data from the literature.

Phase Cij MEAMa DFTa DFTb DFTc EAMd

C11 162 172 189
C12 61 84 74

hcp-Ti C13 68 74 68
C33 197 190 192
C44 62 44 50

C11 147 142 149 176
β-G1 C12 121 112 111 153

C44 34 34 37 66

C11 115 122 131 117 106
β-D03 C12 122 121 119 105 59

C44 20 19 −8 20 15

C11 169 204 226 162 226
C12 82 102 117 125 −97

ω-G1 C13 72 67 81 85 28
C33 173 250 276 212 212
C44 30 30 39 19 39
C66 43 51 55 22 52

C11 122 146 148 130 105
C12 103 92 93 91 142
C13 103 124 124 127 115
C22 183 182 171 148 212

α′′ C23 78 84 80 69 140
C33 200 176 175 136 149
C44 53 51 65 28 67
C55 49 34 45 23 48
C66 53 69 32 40 62

C11 235 251 243
bcc-Nb C12 156 133 130

C44 17 22 28

aMEAM and GGA-DFT results of this work.
bGGA-DFT results of Lazar et al. [37].
cGGA-DFT results of Sun et al. [61].
dResults from EAM Nb-Ti-Al potential of Farkas et al. [73]
(calculations by present authors).

Every 100 ps, the average temperature and volume over the
last 10 ps are computed. The TEC is determined by fitting
these to a linear function in the temperature range considered
in experiment. MEAM results are consistently higher than
experimental fits, but the difference shrinks as niobium content
increases. Notably, experimental data show a slight increase
in TEC between 2.64 at. % and 11.41 at. % Nb, but MEAM
values monotonically decrease across the range of niobium
content.

Table II contains elastic constants of Ti, Nb, and Ti3Nb
computed in this work and compared with other ab initio
and EAM results. Moduli in this work are calculated using
the methodology described by Trinkle [36] using strains of
±0.2%, ±0.4%, ±0.6%, ±0.8%. MEAM matches present
DFT calculations to within 20 GPa for most phases, the
most notable exceptions being a much softer C11 and C33

for ω-Ti3Nb and a negative C ′ = (C11 − C12)/2 predicted for
the D03 structure. Since the elastic constants of pure ω-Ti
are generally softer than those computed for the alloy, it is

FIG. 3. Elastic constants (in GPa) of bcc-Ti x at. % Nb as a func-
tion of niobium concentration x. Solid lines are from a 31 250-atom
solid solution as calculated with the fitted MEAM potential using a
maximum strain of 0.5%. Open symbols are from DFT calculations
of this work and others, while filled symbols are experimental data.
MEAM shows good agreement with experiment across the range of
niobium concentration, but in general overestimates C12 compared to
previous ab initio work (open symbols). This gives a smaller value
for C ′ = (C11 − C12)/2, meaning the potential is more elastically
anisotropic as measured by the anisotropy ratio A = C44/C ′. The
superscript letters in the inset denote the following: (a) MEAM and
GGA-DFT results of this work; (b) GGA-DFT results of Karre et al.
[37]; (c) EMTO-CPA results of Nikonov et al. [61]; (d) two gum metal
results of Talling et al. [67]; (e) experimental results of Ledbetter et al.
[68]; (f) experimental results of Hermann et al. [69]; (g) experimental
results of Reid et al. [70]; (h) experimental results of Carroll [71];
(i) experimental results of Jeong et al. [72].

possible the discrepancy for ω-Ti3Nb is due to the lack of any
strained ω-Ti niobium configurations in the fitting database.
Given the solid-solution nature of alloys, however, elastic
constants of intermetallic structures do not necessarily give
reliable predictions of bulk elasticity.

Figure 3 shows elastic constants of solid-solution bcc-Ti-Nb
as a function of niobium concentration at 0 K, compared with
experiment and previous calculations. Solid lines are MEAM
predictions from a 31 250-atom solid solution. To prevent
martensite formation and breaking of cubic symmetry, internal
relaxations are not allowed. MEAM results are compared with
DFT calculations (open symbols) and experimental data for
Ti-Nb alloys (filled symbols) as well as gum metals (half-filled
symbols). MEAM predicts elastic instability (C12 > C11) for
xNb < 10% because the bcc phase is only stable at high
temperatures (experimental results for pure Ti from Ledbetter
et al. are at 1000 ◦C). The majority of experimental elasticity
data for Ti-Nb alloys is between 20 at. % and 40 at. % niobium,
where MEAM predictions are accurate. Existing DFT data
obtained from various intermetallic structures are also accurate
compared to experiment. DFT calculations by Nikonov et al.
[66] using the effective muffin-tin orbital (EMTO) basis
within the coherent potential approximation (CPA) tend to
overestimate C44 relative to experiment, particularly in the
Ti-rich region.
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TABLE III. Vacanacy (Vac.) and self-interstitial formation en-
ergies in bcc-Nb and hcp-Ti. Interstitial configurations for bcc-Nb
are octahedral (O), tetrahedral (T), crowdion (C), and split (or
“dumbbell”) structures indicated by angle brackets. Geometry of
these defects can be found in Fellinger et al. [45]. In addition to
O, T, and C, basal octahedral (BO), basal tetrahedral (BT), basal
crowdion (BC), basal split (BS), and c-axis split (CS) configurations
are presented for hcp-Ti. These geometries can be found in Raji et al.
[74]. Structures which relax to another interstitial configuration are
shown by table entries containing the relaxed structure abbreviation.

MEAMa DFTa EAMb DFTcd MEAMef

bcc-Nb
Vac. 2.74 2.72 2.77 2.67 2.91
O 〈001〉 4.89 2.17 5.08 5.27
T 〈011〉 4.56 〈011〉 4.90 5.38
C 4.73 3.99 〈111〉 4.35 4.17
〈001〉 5.80 4.76 2.31 5.02 5.27
〈011〉 4.88 4.31 2.21 4.65 5.10
〈111〉 C 3.95 2.30 4.34 4.16

hcp-Ti
Vac. 2.26 1.38 1.53 1.970 2.26
O BO 1.57 C 2.13 2.00
T CS CS BS CS CS
C BO 2.16 2.24 2.53 2.30
BO 2.41 1.51 BS 2.25 2.02
BT BO 3.01 BS BO 3.69
BC BO BO 2.19 BO BO
BS 2.85 1.87 2.19 2.45 2.22
CS 2.88 1.91 2.78 2.48 2.21

aMEAM and GGA-DFT results of this work.
bResults from EAM Nb-Ti-Al potential of Farkas et al. [73].
cGGA -DFT results for bcc Nb of Cerdeira et al. [75].
dGGA -DFT results for hcp Ti of Raji et al. [74].
eNb MEAM potential of Fellinger [76].
fTi MEAM potential of Hennig et al. [44].

B. Planar and point defects

In this section we examine behavior of the fitted MEAM
potential for point defects and stacking faults in hcp-Ti and
bcc-Nb. Table III contains vacancy and interstitial point-defect
formation energies for bcc-Nb and hcp-Ti as calculated in this
work and compared with an existing EAM potential and DFT
work from the literature. Present DFT calculations employ
250(±1)-atom supercells while MD calculations use 1024(±1)
atoms. Only vacancy structures are included in the fitting
database of the present potential.

Vacancy formation energies of bcc-Nb are very consistent
between the methods considered here, but the EAM potential
of Farkas et al. tends to underestimate all interstitial formation
energies. We also found that the crowdion configuration
collapses with this potential if neighboring atoms are not artifi-
cially shifted away from the interstitial atom before relaxation.
The present MEAM prediction that octahedral interstitials
relax to 〈001〉 dumbbells is consistent with the degenerate
energies predicted by Fellinger [76]. MEAM predicts the bcc
crowdion to be the energetically favorable contrary to the
DFT results, which find 〈111〉 dumbbells to have the lowest

energy. However, the ab initio energies of these two defects
differ by 40 meV in this work and only 10 meV according to
Cerdeira et al. [75]. This is unsurprising, given their structural
similarity. Indeed, the MEAM prediction of crowdion stability
is compatible with the known high mobility of interstitials in
nonferromagnetic bcc metals [77,78], recently found to result
from migration of 〈111〉 defects in tungsten [79].

The fitted MEAM potential tends to overestimate interstitial
formation energies in hcp Ti compared to the present DFT
calculations, but correctly predicts the BO configuration
to have the lowest energy. T and BC configurations are
unstable with respect to CS and BO, respectively, in both
methods. We find that the EAM potential of Farkas relaxes
many of the interstitials to the BS configuration, which is

FIG. 4. Low-index stacking faults for (a) hcp-Ti and (b) bcc-Nb
as predicted by MEAM (solid curves) and the present DFT (points)
calculations. Faults relaxed with MEAM are shown as dashed
curves. Relaxation of the easy prismatic ({011̄0}〈112̄0〉) fault in
hcp-Ti reveals a local minimum indicating the formation of partial
dislocations consistent with Ghazisaiedi and Trinkle, and Tarrat et al.
[80,81]. No metastable fault structures are found for niobium.
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energetically degenerate with BC despite being structurally
distinct after relaxation. We find the present MEAM potential
to be consistent with that of Hennig et al. [44] for the vacancy
formation energy and the instability of T with respect to CS.
We note that the formation energies calculated in this work
using the MEAM potential of Hennig et al. differ from their
published results by as much as 0.64 eV. We suspect this is due
to a difference in defect concentrations; their published values
correspond to a concentration of about 1% while the present
values are for roughly 0.1%.

Figure 4 shows low-index generalized stacking-fault energy
(GSFE) curves for (a) hcp-Ti and (b) bcc-Nb. Unrelaxed DFT
values are shown as points while MEAM results are shown as
solid lines (unrelaxed) and dashed lines (relaxed). For hcp-Ti
[Fig. 4(a)], the 〈112̄0〉{0001} prismatic stacking fault relevant
to partial dislocation formation is shown in easy (red) and
hard (black) configurations. MEAM predicts a stable partial
dislocation as a result of the local minimum at 0.5. Figure 4(b)
shows {110}〈111〉 (red) and {112}〈111〉 (black) GSFE curves
for bcc-Nb. MEAM predicts a much broader curve for the

{112} fault than DFT, and reduces energy by about 5 meV/Å
2

upon relaxation. For the {110} fault, MEAM tracks DFT
quite well and shows a similar reduction in energy of about

5 meV/Å
2

upon relaxation.
In summary, the fitted MEAM potential shows good

agreement with existing data on elastic and defect structures
near zero pressure. The pressure-volume relation of hcp-Ti
(Fig. 2) does not track experiment as well as DFT, but
the difference below 10 GPa is negligible. Linear ther-
mal expansion coefficients (Table I) are generally overesti-
mated but decrease with niobium content in agreement with
experiment.

FIG. 5. Transition energy barriers for the ω to β transition in
G1-Ti3Nb and (inset) pure Ti via the planar collapse mechanism
for MEAM and DFT. The atomic motion during this transition
corresponds to a longitudinal 2/3[111] phonon in the bcc lattice
as shown schematically in the top left. The c/a ratio is mapped
with ξ from the optimal value for ω to the ideal value in β. The
overall lattice constant a is an average of the appropriate values in
the end-point phases. MEAM accurately describes the transition in
both systems, including the 5 meV/atom DFT barrier from G1-β to
-ω first identified by Lai et al. [39].

IV. MARTENSITIC TRANSFORMATIONS

Much of the interest in Ti-Nb alloys near the 3:1 stoi-
chiometry comes from their multiphase nature and martensitic
transformations. In this section, we examine the energetics
of these transitions for intermetallic structures and solid
solutions. In the end, an NPT simulation of the shape-memory
effect in Ti-25 at. % Nb is performed with the fitted potential.

Figure 5 shows the ω ↔ β transition pathway for the G1
structure in Ti3Nb and (inset) pure titanium. The reaction
coordinate ξ represents a splitting of the sublattices of ω

honeycomb planes into bcc 〈111〉 planes. The axial ratio
c/a is mapped with ξ from the optimal value in ω to the
required value in β. The overall lattice constant a is an average
of the corresponding values in the endpoint phases. While
MEAM overestimates the energetic spacing between ω- and
β-G1 by 1 eV compared to DFT, a barrier height of about
5 meV/atom from β to ω is predicted by both methods. This
is consistent with the work of Lai et al. [39], who investigated
the energetics of this transformation and the presence of ω

at β twin boundaries and β − α′′ interfaces with DFT. The
fitted potential also agrees well with present DFT calculations
for pure titanium, where the energetic spacing between β and
ω is an order of magnitude higher than in the Ti3Nb system.
Since the G1 supercell is but one of many possible chemical
decorations of the ω-Ti lattice, we next consider the effect of
alloying.

Figure 6 shows the MEAM ω ↔ β transition at 0 K for
multiple niobium concentrations in solid solution, labeled on
the curves. The energy of ω is taken as zero, and the right-hand
side of the curve represents a complete transition to bcc.
This is accomplished by splitting the honeycomb layers of
an orthorhombic ω supercell into 〈111〉β planes. At each step,
the supercell lattice parameters are relaxed to zero pressure.
The equivalent six-atom orthorhombic cell parameters (shown
in bottom left) for the lowest-energy structure are plotted in the
inset, and curves in the main figure are colored according to the
equilibrium structure for that stoichiometry. The fitted MEAM
potential does not display a transition barrier from β to ω at any
of the considered concentrations, unlike the G1 intermetallic
transition shown in Fig. 5 and that computed by Lai et al.
[39]. By 30 at. % Nb, the bcc phase is energetically favorable
at 0 K. Despite the shift in energy, lattice parameters remain
nearly constant due to the inherent structural compatibility
between bcc and ω-Ti. No stable configurations are found at
partial transformations, indicating that the trigonal ω phase
will not exist in bulk at 0 K with the present MEAM potential.
It is worth noting that solutes in beta titanium alloys have
been observed to be ejected from the isothermal ω phase
into the β matrix upon aging [82,83] but not in quenched
ω precipitates where the planar collapse is incomplete [82], so
the composition and structure of the ω phase depend heavily
on thermal history. The fitted potential should provide a useful
tool for atomistic investigation of these effects.

Crystal structure of the α martensite in β-titanium alloys
varies with β-stabilizer content. A four-atom orthorhombic
cell with space group Cmcm and Wyckoff positions (0,0,0),
(1/2,1/2,0), (0,1 − 2y,1/2), and (1/2,1/2 − 2y,1/2) can be
used to describe β and all variants of the α martensite by
changing y and the axial ratios. More detail about this cell
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FIG. 6. Evolution of the ω ↔ β transition pathway at 0 K with
niobium in solid solution. A six-atom orthorhombic ω cell is repeated
10 × 10 × 5 (3000 atoms in total) and atomic decoration is randomly
assigned to match the niobium concentration shown on the right-hand
side of the curves. The horizontal axis represents the displacement
as the two 2D sublattices of the bipartite honeycomb layers are
shifted up and down along [0001]ω, as shown by upward-facing and
downward-facing triangles, respectively, until they become different
〈111〉β planes. At each point, the cell dimensions are relaxed to
zero pressure. The parameters of the lowest-energy structure for each
concentration are plotted in the inset. Curves are colored according
to the equilibrium structure, where black represents ω-Ti and red
represents bcc. The lack of any local minima indicates the potential
will not form a trigonal ω phase at equilibrium in any of the considered
concentrations. The cell parameters remain relatively unchanged due
to the inherent structural compatibility of the β and ω phases.

is provided in Lazar et al. [37]. The Burgers [40] mecha-
nism describing the α ↔ β transition has two independent
variables: one which changes the parameter y and another
which changes axial ratios. As such, we can obtain potential
energy surfaces for α ↔ β and α′′ ↔ β-L60 transitions via
the Burgers mechanism by tuning this four-atom unit cell.

Figure 7 shows contour plots of energetic surfaces for
the α ↔ β transition via the Burgers mechanism. MEAM
calculations are shown in the left column, with present DFT
work in the right column. Plots on the top row are for pure
titanium and plots at the bottom represent a transition from a
bcc L60 structure to the α′′ structure proposed by Sun et al.
[61]. The bcc β structures are located at η = ξ = 0 and the
α and α′′ structures are located at η = ξ = 1. Energies are
measured relative to the minimum in each plot.

Shear (ξ ) represents simultaneous elongation along [011]β
and [01̄1]β , which maps in a linear fashion both the b/a and
c/a ratios of the orthorhombic cell from

√
2 to their optimal

values in the martensite. Varying the axial ratios with the same
parameter is an approximation. EMTO-CPA results of Li et al.
[84], who examine the optimal relationship between b/a and
c/a, indicate that the induced error of the present assumption
is on the order of 1 meV/atom for pure Ti. Their results also
suggest that the optimal relationship between c/a and b/a

becomes more linear with increased niobium content, so this
error should decrease.

FIG. 7. Potential energy surfaces for the α ↔ β transition by
the Burgers mechanism as calculated with MEAM (left) and DFT
(right) for pure Ti (top) and Ti3Nb (bottom). In all cases, ξ = η = 0
is the location of the bcc β phase (L60 structure for Ti3Nb) while
α or α′′ is located at ξ = η = 1. Calculations were performed on a
50 × 50 grid for which η and ξ each vary from −0.125 to 1.125. The
energy surfaces are fitted to seventh-order polynomial functions for
the purpose of drawing smooth contours.

Shuffle (η) represents a shift of alternating (011)β planes
in a [01̄1]β direction, described by changing y from 1

4 in the
bcc lattice (η = 0) to y = 1

6 (η = 1) in the hcp lattice. In α′′,
the value of y corresponding to η = 1 is taken from Sun et al.
to be y = 0.2, but present DFT calculations find an optimal
value of y = 0.204. Axial ratios corresponding to ξ = 1 are the
optimal values in this DFT work. The overall lattice constant a
is an average of the appropriate values of the β and martensite
lattices.

MEAM and DFT are in good agreement for the Burgers
transition in pure titanium, and are consistent with the LDA-
DFT and EAM results of Masuda-Jindo et al. [85]. MEAM
underestimates the difference in energy between β-L60 and
α′′ as it assigns L60 an energy about 15 meV/atom lower
than DFT. Furthermore, MEAM predicts an α′′ phase with
incomplete shuffle and shear compared to the DFT structure,
indicating a difference in lattice constants and parameter y.
Fully relaxed DFT cell parameters of α′′ are a = 3.33 Å, b =
4.77 Å, c = 4.41 Å, and y = 0.204 while MEAM predicts
a = 3.24 Å, b = 4.78 Å, c = 4.48 Å, and y = 0.208. Despite
this fitting error, the discussion of Fig. 8 shows that the lattice
constants of solid solution α′′ predicted by the fitted potential
agree well with experiment.

The evolution of martensite phases in β or near-β titanium
alloys is important to their morphology and mechanical
behavior. The hcp-Ti α phase becomes distorted when alloying
with β-stabilizing elements, eventually leading to the α′′
orthorhombic phase. This distortion follows the same shuffle
mechanism employed in Fig. 7, and the position of the
minimum-energy state changes with niobium content. We now
investigate this deformation in solid-solution Ti-Nb.
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FIG. 8. Evolution of the 0-K equilibrium structure with nio-
bium in solid solution as calculated with MEAM. The four-atom
orthorhombic hcp unit cell is repeated 10 × 10 × 5 (2000 total
atoms) and atomic decoration is randomly assigned to match the
niobium concentration shown on the right-hand side of the curves. The
horizontal axis represents displacement in angstroms as alternating
basal planes are shifted along [11̄00]α . The displacement for the
completed transformation to bcc is labeled on the right for pure
Ti; because the lattice parameter b increases with Nb content, other
curves slightly exceed this value. At each point, the simulation cell
parameters are relaxed to zero pressure. Curves are colored according
to the lowest-energy structure along the transition path where black
is α (hcp), purple is α′, red is α′′, and blue is β (bcc). Cell dimensions
from this structure at 18 concentrations are plotted in the inset with
phase boundaries. Only select stoichiometries are plotted in the main
figure for clarity. Niobium induces a strain in the hexagonal structure,
destabilizing it in favor of α′ by ∼7.5 at. % Nb, α′′ between ∼12.5
at. % and ∼35 at. % Nb, and bcc beyond 35 at. % Nb.

Figure 8 reports the MEAM α ↔ β transition energy as a
function of displacement in the [11̄00]α direction of alternating
basal planes (0002)α for various niobium concentrations
(labeled on the curves) at 0 K. At each displacement, the
cell is relaxed to zero pressure. The equivalent four-atom
orthorhombic cell (bottom left) lattice constants of the lowest-
energy structure for 18 concentrations are plotted in the inset.
For clarity, only select concentrations are plotted in the main
figure. At 10 at. % Nb, no significant minimum develops
with respect to the shifting of atomic planes, but a slight
change in lattice constants a and b indicates a breaking of
the perfect hexagonal symmetry, consistent with the forma-
tion of an α′ martensite phase [86]. With a concentration
20 at. % niobium, a partial displacement of (0002)α planes
is energetically favorable by about 12 meV/atom. This local
minimum represents the orthorhombic α′′ phase, which is the
equilibrium structure up to 35 at. % Nb. Lattice constants of
this solid-solution α′′ structure at 25 at. % Nb are a = 3.15 Å,
b = 4.84 Å, and c = 4.58 Å, very close the experimental
values of a = 3.19 Å, b = 4.80 Å, and c = 4.64 Å reported
by Sun et al. [61]. Beyond 35 at. %, bcc is the lowest-energy
structure. At this point, niobium has completely stabilized the
bcc phase as can be seen by the lattice parameters where
c = b = a

√
2.

FIG. 9. 364 500-atom NPT simulation of stress- and temperature-
induced martensitic transitions in Ti-25 at. % Nb using the fitted
MEAM potential with a time step of 1 fs. (a) Shows the cell
microstructure at 150 K and 0 GPa with atoms colored by local
crystal structure. Gray atoms are identified as bcc and red atoms as
α′′. (b) Shows an increase in α′′ martensite upon shearing. (c) Shows
that a subsequent heating of the cell to 800 K destroys the martensite
domains, releasing most of the accumulated shear stress as shown
in (e). Martensite domains grow upon cooling (d), but account only
for 5.8% of atoms, compared to 20.9% in the precycle structure (f).
Structure identification is done by polyhedral template matching [90]
as implemented in the current version of OVITO [91,92].

The shape-memory effect (SME) is known to exist in binary
Ti-Nb alloys [87,88], gum metals [3,6], and other titanium
and Ti-Nb alloys [17,86,89]. The SME is characterized by a
recovery of initial geometric shape after deformation at a low
temperature and subsequent heating. The physical processes
that underlie this effect are stress- and temperature-induced
martensitic phase transitions. Upon straining, a stress-induced
transition grows the martensite domains. Subsequent heating
of the material induces a reverse transition wherein martensite
domains are destroyed and the accumulated stress and strain
are recovered. Below, we demonstrate the ability of the fitted
MEAM potential to model the stress- and temperature-induced
martensitic transitions that underlie the SME in Ti-25 at. % Nb.

Figure 9 displays results of a 364 500-atom constant-NPT
simulation of stress- and temperature-induced martensitic
transitions in Ti-25 at. % Nb using the fitted MEAM potential
with a time step of 1 fs. The simulation cell is a 45 × 45 × 45
supercell of the four-atom orthorhombic hcp cell. Atoms
are assigned chemical species randomly, and the cell is first
equilibrated at 150 K and 1 atm pressure. At the top of the
figure, cross sections of the cell are shown at significant
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points in the simulation. The plane of the page corresponds
to (001)α′′ or (110)β . Atoms are assigned a color based on
local crystal structure as determined by polyhedral template
matching (PTM) [90] as implemented in OVITO [91,92]. Gray
atoms are austenite (β) and red atoms are martensite (α′′). Note
that the PTM method does not distinguish between α, α′, or α′′,
but we refer to the martensite structure as α′′ consistent with
the stoichiometry used here and the results presented in Fig. 8.
Figure 9(e) plots shear stress and simulation temperature as
functions of time and Fig. 9(f) shows the fraction of atoms
identified as martensite and austenite as functions of time.

Between 200 and 400 ps, a shear strain of 5% is applied
to the [100]β (01̄1)β shear system. As a result, the fraction of
atoms in α′′ domains increases by 15%. A total of 4.5 GPa
of shear stress is accumulated by the cell, and this holds
constant between 400 and 600 ps. The simulation cell is
heated from 150 to 800 K between 600 and 800 ps. As can
be seen in Fig. 9(f), martensite domains begin transforming to
austenite (bcc) immediately upon heating. By 640 ps, when the
temperature is roughly 410 K, the β phase has been saturated
at about 95% coinciding with a nearly complete release of the
accumulated shear stress. This gives us an estimate of 410 K
for the austenite finish temperature predicted by MEAM,
consistent with the experimental value of 390 K reported by
Al-Zain et al. [88]. Cooling the cell does not cause austenite to
revert to martensite until the temperature reaches about 300 K,
and the recovered volume fraction of martensite is only 5.8%.
This is not a complete cycle of the shape-memory effect but
nonetheless demonstrates the ability of the fitted potential to
model stress- and temperature-induced martensitic transitions
in Ti-25 at. % Nb.

In summary, we have analyzed the ω ↔ β and α ↔ β

transitions in Ti-Nb alloys. The potential was shown to be
consistent with present and past DFT calculations, and was
used to investigate the effect of alloying on these transitions.
The ω ↔ β transition in solid solution was found to lack
the 5 meV/atom barrier present in Fig. 5. The α phase was
found to distort when alloyed with niobium, first breaking
perfect hexagonal symmetry to form α′ at ∼7.5 at. %, then
becoming the orthorhombic α′′ phase between ∼12.5 at. % and
∼35 at. %. The stress- and temperature-induced martensitic
transitions between α′′ and β that underlie the SME in Ti-Nb
alloys were demonstrated by NPT simulation.

V. DISLOCATION CORE STRUCTURES

We consider screw dislocations in bcc Nb and hcp Ti and
analyze the effect of alloying on the core structure. In both
cases, we employ a large supercell with periodicity along
the dislocation line and fixed boundary conditions in the
other two directions. Atoms are displaced in this direction
according to the strain field solution from linear elasticity,
uz = (b/2π )tan−1y/x, as described in Hirth and Lothe [93].
Fixing atoms at the boundary ensures that the relaxed cell
satisfies the long-range boundary conditions imposed by the
dislocation. We have employed this method in our previous
work on niobium [45], molybdenum [46], and tungsten [56],
where more information is available.

Figure 10 contains differential displacement maps of a
1/2[111] screw dislocation in (a) bcc-Nb and (b), (c) two

FIG. 10. Core structure of a 1/2[111] screw dislocation in (a) pure
niobium and (b), (c) two configurations of Nb95Ti5. Traces of planes,
which are labeled in (a), cross at the origin of the elastic solution. Only
screw components (displacements parallel to the Burgers vector) are
plotted. Niobium atoms are shown in black and titanium atoms are
shown in white. MEAM predicts a symmetric core in pure niobium,
with little effect on the structure from the presence of titanium solute
atoms.

configurations of a bcc-Nb-5 at. % Ti alloy. Traces of atomic
planes, labeled in Fig. 10(a), cross at the origin of the elastic
solution. The simulation cell has directions [12̄1], [1̄01],
and [111] along x, y, and z repeated 114 × 190 × 8 for a
total of 1 042 109 atoms with 5 at. % Ti in solid solution.
A cylindrical region containing 435 168 atoms, concentric
with the dislocation, is relaxed to obtain the core structure.
In pure Nb, only a single periodic unit is used along the z
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FIG. 11. Core structure of a 1/3[11̄20] screw dislocation in (a)
pure titanium and (b), (c) two configurations of Ti95Nb5. Traces of
planes, which are labeled in (a), cross at the origin of the elastic
solution. Only screw components (displacements parallel to the
Burgers vector) are plotted. Partial dislocations are represented by
closed triads of atoms, shaded in red to guide the eye. Niobium atoms
are shown in black and titanium atoms are shown in white. The
structure of this symmetric core is consistent with previous DFT and
MEAM calculations by Ghazisaeidi and Trinkle as well as Tarrat et al.
[80,81]. The presence of Nb near the core breaks the mirror symmetry
and causes spreading, primarily into basal planes, but preserves the
dissociated structure.

direction. MEAM predicts a symmetric core for pure niobium
[Fig. 10(a)], which is found to be very resilient to alloying with
Ti in Figs. 10(b) and 10(c). Even when the titanium solute atom
lies on the central triad around the dislocation, as in Fig. 10(c),
only slight distortion of the symmetric core is observed. While
the sixfold symmetry around the core is broken, the core does

not become a threefold-“degenerate” core such as that found
for niobium in Fellinger et al. [45]. The fitted potential thus
predicts titanium solute atoms to have little effect on the slip
behavior of bcc niobium.

Figure 11 shows differential displacement maps of a
1/3[12̄10] prismatic dislocation in (a) hcp-Ti and (b), (c) two
configurations of an hcp-Ti-5 at. % Nb alloy. In these maps, a
closed triad of atoms represents a displacement of b/2, i.e., a
partial dislocation. These triads are shaded in red to guide the
eye. Traces of atomic planes, labeled in Fig. 11(a), cross at the
origin of the elastic solution. The simulation cell has directions
[1̄100], [0001], and [12̄10] along x, y, and z, repeated
155 × 144 × 8 for a total of 714 240 atoms with 5 at. % Nb in
solid solution. For the dislocation in pure Ti [Fig. 11(a)], only
a single periodic unit is used in the z direction. Of the possible
locations for the elastic origin, we place it in the lower-energy
“mirror” configuration as determined by previous ab initio
studies [80,81]. A cylindrical region containing 366 912 atoms,
concentric with the dislocation, is relaxed to obtain the core
structure.

MEAM predicts the dislocation to dissociate in the pris-
matic plane, separated by an (easy) {011̄0}〈112̄0〉 stacking
fault with symmetry across the basal, consistent with DFT and
MEAM results from Ghazisaeidi and Trinkle [80] and DFT
results of Tarrat et al. [81]. Figures 11(b) and 11(c) are different
(12̄10) cross sections of the same cell, and show significant
distortion of the dissociated core structure relative to that in
pure titanium. In Fig. 11(b), the presence of Nb atoms near the
elastic core causes a spreading into the basal plane. The atoms
causing this distortion are the closest solute atoms to the elastic
origin, but do not lie on either of the partial dislocation triads.
In Fig. 11(c), where niobium atoms are on and near the bottom
partial in a pyramidal plane, spreading is less pronounced.
Solute atoms appear to have the most significant effect when
located near the elastic core on basal planes between the partial
dislocations.

The fitted MEAM potential predicts niobium solutes to
have a more significant effect on dislocation core structure in
titanium than the converse. This is sensible given that hcp-Nb
is roughly four times higher in formation energy than bcc-Ti.
The fundamental structure of the dislocations is not affected
at 5 at. % solute content in either alloy.

VI. CONCLUSIONS

We present a MEAM-like empirical potential for Ti-Nb
alloys, fitted to data across the range of concentrations
but focused on martensitic transformations and multiphase
properties of gum metal approximants near 25 at. % Nb.
The fitted potential is shown to be consistent with previous
calculations and measurements of elastic constants, thermal
expansion, point defects, stacking faults, and martensitic
transitions.

We study the impact of alloying on the energetics of
martensitic phase transition pathways at 0 K. For the β- to
ω-Ti transition (Fig. 6), a lack of transition barrier in contrast
to the DFT results of Lai et al. [39] and this work (Fig. 5),
both of which employed a G1 supercell, is found. The fitted
MEAM potential predicts a distortion of the α martensite with
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niobium content, estimated by calculations along the Burgers
transformation pathway (Fig. 8), consistent with experiment.
The α′′ structure is found to persist in solid solution until 40
at. % Nb at 0 K. Stress- and temperature-induced transitions
between β and α′′ which underlie the shape-memory effect in
Ti-25 at. % Nb are demonstrated by NPT simulation (Fig. 9)
in a cell with a single β grain.

The effect of solute atoms, with concentrations of 5 at. %,
on dislocation cores in hcp-Ti and bcc-Nb is also examined.
Symmetric cores of the 1

2 〈111〉 screw dislocation in bcc-Nb
(Fig. 10) are found to be mostly unaffected by titanium
solutes, with small amounts of distortion but no significant
spreading or change of core structure. The 1

3 〈11̄20〉 dislocation
in hcp-Ti (Fig. 11), which dissociates in the prismatic plane,
is seen to spread primarily into basal planes depending on the

location of niobium solutes, but the dissociated structure is
preserved.

The fitted potential is suitable for the study of plastic de-
formation, martensitic transitions, ω-phase formation, defect
structures, and their interplay in Ti-Nb alloys.
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