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Frozen mode regime in finite periodic structures
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Periodic structures with a Bloch dispersion relation supporting a stationary inflection point (SIP) can display
a unique scattering feature, the frozen mode regime (FMR). The FMR is much more robust than common
cavity resonances; it is much less sensitive to boundary conditions, structural imperfections, and losses. Using
perturbation theory, we analyze the FMR in a realistic case of a finite fragment of a periodic structure. We show
that in close proximity to a SIP frequency, the character of the FMR is qualitatively different from the known
case of a semi-infinite structure.
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Introduction. The ability to engineer composite structures
with a predefined wave dispersion is extremely important in
acoustics and electrodynamics [1,2]. An outgrowth of this
development was the realization of photonic structures which
are now routinely used to control light propagation, as well as
to modify all kinds of light-matter interactions. An important
example is the possibility to drastically reduce the wave group
velocity vg = ∂ω/∂k in periodic photonic structures, which
is widely used for miniaturization and the enhancement of
light-matter interactions. There are many ways to achieve a
vanishingly small vg . An obvious example is a photonic band
edge, where the Bloch dispersion relation can be approximated
as ω(k) − ω0 ∝ (k − k0)2. Another type of slow wave is
associated with a stationary inflection point (SIP), where the
Bloch dispersion relation has the form ω(k) − ω0 ∝ (k − k0)3.
A SIP is associated with the frozen mode regime (FMR) [3,4]
characterized by a nearly total conversion of an input light into
a slow (frozen) mode with a dramatically enhanced amplitude.
The FMR is not a resonance; unlike common Fabry-Perot
(cavity) resonances, the FMR is not particularly sensitive to
the size of the photonic structure and the boundary conditions.
The FMR can tolerate much stronger losses and structural
imperfections than any known cavity resonance. Finally, in
a combination with nonreciprocity, the FMR can lead to the
phenomenon of electromagnetic unidirectionality [5] which, in
the presence of gain, can result in a cavityless unidirectional
lasing [6]. Due to the underlying mathematical complexity,
the FMR has been fully analyzed only in semi-infinite periodic
multilayered structures [7–9] and multimode waveguide arrays
[10–12].

Here, we are investigating the scattering problem for a finite
multimode structure, whose periodic counterpart displays
SIPs. Using an abstract transfer matrix (TM) formalism,
together with a matrix perturbation approach, we studied the
transmission characteristics of such setups in the FMR. We
derived theoretical expressions for the energy flux carried by
the slow propagating mode(s) and identify a different scaling
behavior with respect to frequency detuning. Specifically, we
find that the energy fluxes, associated with slow propagating
mode(s), undergo a transition at critical sample lengths LC ∝
|ω − ωSIP|−1/3 from an Sp ∼ O(1) behavior (characteristic of
semi-infinite structures) to an Sp ∝ |ω − ωSIP|−2/3 law. The

latter divergence is balanced by a simultaneous development
of an energy flux carried by pairs of evanescent modes.

Transfer matrix formalism near SIPs. We consider (finite)
periodic composite structures whose infinite counterpart has
a dispersion relation ω(k) which supports a SIP at some
frequency ωSIP. In the absence of any nonreciprocal elements,
the dispersion relation is reciprocal, ω(k) = ω(−k), and
therefore an ωSIP is associated with two counterpropagating
slow modes at ±kSIP. In such structures, two sets of three
modes are responsible for SIPs at ±kSIP.

The wave propagation is analyzed using the TM approach.
The TM T (z,z0; ω) connects the wave amplitudes (in mode
space—see Ref. [13] for a coupled mode theory implementa-
tion) � of a monochromatic wave at two different positions
z and z0 through the relation �(z) = T (z,z0; ω)�(z0). For
the specific case of periodic structures, the TM of a unit
cell T (ν) ≡ T (1,0; ω0 + ν) dictates the transport. Here, we
assumed that the length of the unit cell is Luc = 1, ω0 = ωSIP,
and ν is the frequency detuning.

We consider a minimal model for which the unit TM T (ν)
is 6 × 6 and it is analytic around the SIP. Since a symmetric
spectrum develops two SIPs at ν = 0, T (0) can be represented
by its Jordan normal form as

T (0) = g0(0)

(
J− 0
0 J+

)
g−1

0 (0),

(1)

J± ≡ e±ık0

⎛
⎝1 1

1 1
1

⎞
⎠,

where g0(0) = [j−
0 ,j−

1 ,j−
2 ,j+

0 ,j+
1 ,j+

2 ] is an invertible 6 × 6
matrix with columns given by the Jordan basis vectors and
±k0 = ±kSIP. When ν �= 0 (but still ν → 0), T (ν) reduces to
its normal form [3,14,15],

g0(ν)−1T (ν)g0(ν) =
(

T −(ν) 0

0 T +(ν)

)
, (2)

where T ±(ν) = J± + T ±
1 ν + · · · ≡ e±ık0 [I3 + Z±(ν)] with I3

being 3×3 identity matrix and the matrix g0(ν) depends
analytically on ν in the vicinity of ν = 0.
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Next, we focus on the eigenvalue problem associated
with the individual blocks of the normal form Eq. (2).
Let us consider, for example, the block matrix T −(ν) or
its equivalent problem associated with the matrix Z−(ν).
Simple-minded normal perturbation theory is not useful in
cases such as ours when the leading term of the operation
expansion is nilpotent, i.e., [Z−(0)]3 = 0. Indeed, in such
cases, the standard Taylor series assumed for the eigenvalues
is not the appropriate expansion; rather, one has to develop
the eigenvalue perturbation expansion using a Puiseux series
[14,15]. Nevertheless, a singular perturbation theory provides
a recipe to “reconstruct” the appropriate operator expan-
sion after identifying the correct leading-order term [15].
Using this approach, we have found that Z−(ν) = Z−

0 (ν̃) +
Z−

1 ν̃ + · · · , where Z−
0 (ν̃) ≡

(0 1 0
0 0 1
0 0 0

)
+ ν̃

(0 0 0
0 0 0
1 0 0

)
and

ν̃ ≡ [Z−(ν)]31 = −ı 3!
ω

′′′ (−k0)
ν + O(ν2).

The diagonalization of Z−
0 (ν̃) gives

G−1
0 (ν̃)Z−

0 (ν̃)G0(ν̃) = ν̃1/3�0, �0 = diag(c0,c1,c2), (3)

where cn ≡ eı 2π
3 n and the similarity transformation matrix

G0(ν̃) is a Vandermonde matrix [16] of order 3. Further, the
diagonalization process for Z−(ν̃) [or equivalently T −(ν)]
can be continued order by order, leading to the following
compact form,

e−SG0(ν̃)−1T −(ν)G0(ν̃)eS

= e−ık0 (I3 + ν̃1/3�0 + ν̃2/3�1 + · · · ), (4)

where the matrix S ≡ S(ν̃1/3) = ν̃1/3S1 + ν̃2/3S2 + · · · and
�1, · · · are diagonal matrices. A similar treatment applies for
the eigenvalue problem associated with T +(ν).

This approach allows us to evaluate perturbatively the
eigenvalues θ∓

n (ν) and the eigenvectors f ∓
n (ν) of the unit TM

T (ν). We get

T (ν)f ∓
n (ν) = θ∓

n (ν)f ∓
n (ν), n = 0,1,2,

θ∓
n (ν) ≈ eı(∓k0+λ∓

n ), λ∓
n (ν) ≡ α∓

0 cnν
1/3,

f ∓
n (ν) ≈ [1 − ıσ∓

2 λ∓
n + η∓(λ∓

n )2]j∓
0

+ [ıλ∓
n − σ∓

1 (λ∓
n )2]j∓

1 − (λ∓
n )2j∓

2 , (5)

where α∓
0 = [3!/ω

′′′
(∓k0)]

1/3
, η∓ = γ ∓

3 − γ ∓
1 + 1

2 [(σ∓
1 )2

+ σ∓
1 σ∓

2 − (σ∓
2 )2], σ∓

l = 1
3

[T ∓
1 ]

l+1,l

[T ∓
1 ]31

, γ ∓
l = 1

3

[T ∓
1 ]

l,l

[T ∓
1 ]31

, and j∓
n is

the Jordan basis of T (0).
We assume that ν → 0+ and that the incident wave is

entering the finite structure from the left interface at z = 0;
for an example, see the dispersion relation in Fig. 1(b).
We can now decompose any wave inside the structure to
the forward (backward) propagating f −

0 (f +
0 ) and evanescent

f −
1 ,f +

2 (f +
1 ,f −

2 ) modes and thus evaluate the associated
conversion coefficients. We shall also analyze the energy flux
carried from these modes and determine their scaling with
respect to detuning ν.

Conversion coefficients. We consider that the finite struc-
ture consists of N periods of the unit cell. In contrast
to the semi-infinite case [3,10], finite structures involve
two interfaces at z = 0 and z = N and therefore both
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FIG. 1. (a) Schematic of the tight-binding model. The couplings
κ1,2 = 5 and the on-site potential κ0 = 5 are indicated in the figure.
(b) A pair of symmetric SIPs at ω(±k0 = ±π/2) = −5. (c) The
absolute value of the normalized (to the net flux) modal energy
flux for the total propagating |Sp| = |Sf

p + Sb
p| and the two pairs of

evanescent |Sev| = |S−
ev + S+

ev| modes vs ν for three different sample
lengths N1 = 32, N2 = 64, N3 = 128. Vertical solid lines indicate
νC ∝ 1/N 3

C [see Eq. (8)]. (d) The normalized modal energy fluxes
(linear scale) associated with each of the propagating Sf/b

p and a pair
of evanescent S∓

ev modes for N = 128. The superindices ∓ in Sev

indicate that the corresponding pair is associated with the T ∓ blocks
[see Eq. (2)].

forward and backward modes can participate in the scat-
tering process. When ν → 0+, the eigenmodes Eq. (5)
associated with different blocks in Eq. (2) become de-
generate within the specific block. This observation forces
us to construct a different “well-behaved” basis Bf b =
{f −

0 , f̃ −
1 , f̃ −

2 ,f +
0 ,f̃ +

1 ,f̃ +
2 }, where the basis vectors f̃ ∓

1 =
f ∓

1 −f ∓
0

ıα∓
0 ν1/3(c1−1)

and f̃ ∓
2 = − 1

3(α∓
0 )

2
ν2/3

(c2f
∓
2 + c1f

∓
1 + f ∓

0 ), to-

gether with f ±
0 , are independent in the limit of ν → 0+.

Next, we couple semi-infinite leads to the left and right of
the structure. We assume that the leads do not develop any
spectral singularity around ω0. We then request continuity of
�(z) at the interfaces at z = 0,N , together with the scattering
condition that the incident wave enters the structure from
the left, i.e., that the coefficients of the backward modes
on the right leads are zero. Finally, the identification of
the appropriate (nondegenerate in the ν → 0 limit) basis
guarantees that the scattering problem has a unique solution
and that the expansion coefficients {ϕ+

1 ,ϕ+
2 ,ϕ−

3 ,ϕ−
1 ,ϕ−

2 ,ϕ+
3 } of

�(z = 0+) in the basis Bf b exists for any incident wave.
Obviously, the specific values of the expansion coefficients

depend on the particular form of the incident wave. Neverthe-
less some features are independent of the incident wave form;
we find, for example, that ϕ±

l (ν) = ϕ±
l (0) + O(ν1/3) while the

envelopes scale as |ϕ±
3 (0)| ∼ O(N−1) and |ϕ±

j (0)| ∼ O(N0),
j = 1,2, in the large N limit. Correspondingly, in terms of the
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eigenmodes of T (ν), the expansion of �(z = 0+) is given as

�(z = 0+) =
∑
σ=±

[
−ϕ−σ

3

3
(
λ−σ

0

)2 + −ϕσ
2

ı(c1 − 1)λ−σ
0

+ ϕσ
1

]
f −σ

0

+
[

−c1ϕ
−σ
3

3
(
λ−σ

0

)2 + ϕσ
2

ı(c1 − 1)λ−σ
0

]
f −σ

1

+
[

−c2ϕ
σ
3

3
(
λσ

0

)2

]
f σ

2 , (6)

where σ = +/− correspond to forward/backward modes.
Substitution of the scaling expressions for the expansion
coefficients ϕ±

l , together with λ−σ
0 [see Eq. (5)] in Eq. (6),

allow us to estimate the scaling of the conversion coefficients.
Specifically, we find that each of the square bracket terms in
Eq. (6) scale as

[· · · ]
ν→0−−→ β2/(Nν2/3) + β1/ν

1/3, (7)

where β1,2 are some constants independent of N and ν.
Equation (7) signifies a scaling transition from 1/ν2/3 (small
samples) to 1/ν1/3 (large samples) at some critical sample
length,

LC = LucNC ∝ Luc/ν
1/3. (8)

While the latter scaling law for the conversion coefficients
is already known from the case of semi-infinite structures, the
former one is completely different and a trademark of the finite
length nature of the scattering setting.

Modal energy flux. We now turn our focus on the conse-
quences of the scaling (7) in the modal energy flux. First,
we recall that near a SIP the Bloch dispersion relation takes
the form ω − ω0 ∝ (k − k0)3. The group velocity of the slow
propagating mode(s) is

vg = ∂ω

∂k
∝ (k − k0)2 ∝ (ω − ω0)2/3, (9)

while the associated energy flux contribution Sp is

Sp = Wpvg ∝ Wpν2/3, (10)

where Wp is the energy density of the slow propagating mode.
An estimation for the scaling of Wp is provided from the
behavior of the conversion coefficients associated with f ±

0

[see Eqs. (6) and (7)], i.e., Wp ∝ |β2/Nν2/3 + β1/ν
1/3|2. In

other words, Wp undergoes a transition from an 1/ν4/3 (for
N < NC) to an 1/ν2/3 (for N > NC) scaling with respect to
the detuning ν.

In the latter limit of “semi-infinite” samples the sole
contribution to the energy flux comes from the slow mode and
thus S = Sp = Wpvg ∼ O(1), as expected also from previous
studies [3,10] (see Ref. [17]). In contrast, in finite scattering
setups, the contribution Sp from the slow propagating mode(s)
to the total energy flux S is

Sp = Wpvg ∝ Wpν2/3 ∝ ν−2/3, (11)

where we have used Eq. (10) together with the scaling behavior
of Wp for short samples.

The anomalous scaling Eq. (11) of the modal energy flux of
the propagating modes near the SIP can be balanced only by the

same type (but different in sign) of divergence of modal energy
flux Sev carried by the two pairs of forward and backward
evanescent modes. This is necessary in order to get a total
energy flux S ∼ O(1) and it is a feature associated with the
fact that the scattering setup is finite. Below, we will check
these predictions using some simple numerical examples.

Tight-binding model. We first consider a tight-binding (TB)
model supporting a symmetric dispersion relation with two
SIPs [see Figs. 1(a) and 1(b)]. This system can be realized as
a quasi-one-dimensional array of coupled resonators [18–20].
The system consists of M = 3 chains of coupled resonators
where the resonators of each chain have equal nearest-neighbor
coupling (set to be 1 as the coupling unit). The vertical
interchain coupling between the nearest chains is κ1. In
addition, the resonators at the first two chains have an on-site
potential contrast κ0 (with respect to the resonators of the third
chain) and they are also coupled via an interchain diagonal
coupling κ2. In this TB model a monochromatic wave is
described by

ωE
(1)
l = E

(1)
l−1 + E

(1)
l+1 + κ1E

(2)
l + κ2E

(2)
l+1 + κ0E

(1)
l ,

ωE
(2)
l = E

(2)
l−1 + E

(2)
l+1 + κ1

(
E

(1)
l + E

(3)
l

) + κ2E
(1)
l−1 + κ0E

(2)
l ,

ωE
(3)
l = E

(3)
l−1 + E

(3)
l+1 + κ1E

(2)
l , (12)

where E
(m)
l is the field amplitude at the site l of the chain m.

Substituting E
(m)
l = A(m)eıkl in Eq. (12), we get

ωuA = DuA, D ≡
⎛
⎝ ε(k) v(k) 0

v∗(k) ε(k) κ1

0 κ1 2 cos k

⎞
⎠, (13)

where ε(k) = 2 cos k + κ0, v(k) = κ1 + κ2e
ık , and uA =

(A(1),A(2),A(3))
T

. Then, the dispersion relation ω(k) is ob-
tained by setting det (D − ωI3) = 0. Generally, there are three
bands for this model and we mainly focus on the band
supporting SIPs characterized by ω′(±k0) = ω′′(±k0) = 0 and
ω′′′(±k0) �= 0. An example is given in Fig. 1(b), where for the
parameter values κ0 = κ1 = κ2 = 5 and SIPs at ±k0 = ±π

2
and ω0 = −5.

The scattering sample is attached to the left and to the
right with semi-infinite leads, which are composed of three
decoupled chains with constant nearest-neighbor coupling
κL in each chain. Thus the leads support a traveling wave
whenever its frequency is within the band ω(kL) = 2κL cos kL,
where −π � kL < π . The field amplitude in each lead chain
can be written as a sum of two counterpropagating waves, i.e.,
E

(m)
l = a(m)eı|kL|l + b(m)e−ı|kL|l . In the simulations, we assume

κL = 4 so that b(m) represents the amplitude of incoming waves
since vg ≡ ∂ω

∂kL
|−|kL| > 0.

Finally, the energy flux through a section l in the scattering
domain is defined using the continuity equation,

d

dt

[∑
m

E
(m)∗
l E

(m)
l

]
= Fl−1→l − Fl→l+1, (14)

where Fl−1→l ≡ 2 Im[
∑

m E
(m)
l−1E

(m)∗
l + E

(1)
l−1κ2E

(2)∗
l ] denotes

the flux flowing from section l − 1 to l. At the same time
the field amplitudes can be parametrized as E

(m)
l−1 = a

(m)
l−1 +

b
(m)
l−1 and E

(m)
l = a

(m)
l−1e

ık + b
(m)
l−1e

−ık , where ω = 2 cos k and
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FIG. 2. (a) A multilayered photonic structure with ω(k) �= ω(−k)
[17]. (b) The dispersion relation of the structure supports one SIP with
one forward slow propagating and two evanescent modes. (c) Scaling
of modal energy flux for the (sum of) propagating |Sp| = |Sf

p + Sb
p|

and the pair of evanescent |Sev| modes vs the frequency detuning ν for
three different sample lengths N1 = 32, N2 = 64, N3 = 128. Vertical
lines indicate the scaling law Eq. (8). (d) The modal energy fluxes
associated with each of the propagating Sf/b

p and pair of evanescent
S−

ev modes for N = 128.

k is generally a complex number. The self-consistency re-
quirements impose E

(m)
l ≡ a

(m)
l−1e

ık + b
(m)
l−1e

−ık = a
(m)
l + b

(m)
l ,

which, together with Eq. (12), allow us to calculate the
unit TM T (ν) such that �l = T (ν)�l−1, where �l ≡
(a(1)

l ,b
(1)
l ,a

(2)
l ,b

(2)
l ,a

(3)
l ,b

(3)
l )

T
.

We now analyze numerically the scaling of the modal
energy fluxes of the TB model Eq. (12). First, we have

verified that Eq. (1) is valid for T (0) using the aforementioned
parameters. In Fig. 1(c) we report our numerical findings for
the modal energy flux associated with the slowly propagating
Sp and evanescent Sev modes for three different system sizes N .
We find that while for ν → 0 these quantities scale according
to the scaling law Eq. (11), the modal fluxes saturate to a
constant value at different νC ∝ 1/N3, in accordance with our
theoretical prediction [see Eq. (8)]. In Fig. 1(d) we report
the data for one of the N values referring to a linear-linear
plot. We find that S∓

ev, associated with each of the two pairs of
evanescent modes [corresponding to the T ∓ blocks in Eq. (2)],
balances the divergent of the Sp contribution so that the total
flux S ∼ O(1). Finally, we have checked numerically the
robustness of FMR and of Eq. (11) in the presence of losses
and disorder [17,21].

Nonreciprocal layered structures. It is straightforward to
reproduce Eqs. (7), (8), and (11) for finite setups with spectral
nonreciprocity, i.e., ω(k) �= ω(−k). Here, instead, we confirm
numerically the validity of these equations for the example
case of a multilayer periodic magnetic photonic crystal (PC)
with proper spatial arrangement [see Fig. 2(a)] [3,6]. We find
that the forward slowly propagating mode carries an energy
flux which scales according to Eq. (11) while the pair of
associated evanescent modes balanced this divergence in a
similar manner [see Figs. 2(c) and 2(d)]. The remaining (fast)
backward propagating mode does not show any flux divergence
and makes a minimal contribution to the total energy flux [see
Fig. 2(d)].

Conclusions. The character of the FMR in finite structures
undergoes a transition which is reflected in a change of the
scaling behavior (with detuning ν) of the modal energy flux of
the slow propagating modes at critical lengths LC ∝ 1/ν1/3.
As opposed to the semi-infinite case, below this length scale,
the energy flux is carried even by (pairs of) evanescent modes.
Our results might have important applications to nonreciprocal
transport.
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