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The single-parameter scaling hypothesis relating the average and variance of the logarithm of the conductance
is a pillar of the theory of electronic transport. We use a maximum-entropy ansatz to explore the logarithm of
the particle, or energy density lnW(x) at a depth x into a random one-dimensional system. Single-parameter
scaling would be the special case in which x = L (the system length). We find the result, confirmed in microwave
measurements and computer simulations, that the average of lnW(x) is independent of L and equal to −x/�, with
� the mean free path. At the beginning of the sample, var[lnW(x)] rises linearly with x and is also independent
of L, with a sublinear increase and then a drop near the sample output. At x = L we find a correction to the value
of var[ln T ] predicted by single-parameter scaling.
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Studies of electronic transport have focused on the scaling
of the conductance. As a result of the equivalence of the
electronic conductance expressed in units of the quantum of
conductance and the transmittance of classical waves, many of
the predictions of mesoscopic physics and localization theory
apply equally to the transport of quantum and classical waves
[1–8]. Classical waves are temporally coherent in random
static samples, so that mesoscopic aspects of propagation are
manifest even in macroscopic samples at room temperature,
and measurements can be carried out in ensembles of sta-
tistically equivalent samples [6,7]. In addition to studies of
conductance and transmission, the statistics of transport inside
random systems has been studied for many years [9–13]. Inter-
est in waves in the interior of random samples has intensified
recently because of the possibility of exploiting measurements
of the transmission matrix [14,15] to control waves transmitted
through and within the interior [16–23] by preparing the
incident wave in specific transmission eigenchannels [24].

A key assumption in the theory of wave transport is that
the scaling and statistics of the transport depend upon a single
parameter. The single-parameter scaling (SPS) hypothesis
holds that, in the localized regime, the distribution of the
logarithm of the conductance or transmittance is a Gaussian
with variance equal to twice the magnitude of its average
value [25], var(ln T ) = −2〈ln T 〉. Here, 〈· · · 〉 indicates the
average over statistically equivalent samples. SPS has aided in
understanding the statistics of the logarithm of transmission.
However, the possibility of finding the expectation value of
the logarithm of the energy density in the interior of random
media and relating it to the corresponding variance has not
been considered. Since SPS would be a special case of such a
general treatment, in which x → L, this allows us to test SPS.
Aside from its fundamental importance, this can provide a
guide to effective strategies for imaging and energy deposition.

In this Rapid Communication, we study the statistics of
particle and energy density in the interior of random samples
applying a maximum-entropy approach (MEA) [26] to
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random-matrix theory. We find the simple result 〈lnW(x)〉 =
−x/�, whereW(x) is the energy density at depth x normalized
so that its value for x = L is T , and � is the elastic mean
free path. Though 〈W(x)〉 at depth x increases as the sample
length increases, since a larger fraction of the wave energy
that reaches x returns to x in samples of larger L, nonetheless,
the expectation value 〈lnW(x)〉 of the self-averaging quantity
lnW(x) is unchanged as L increases. In the localized regime,
the probability distribution function (PDF) of lnW(x) is
Gaussian away from the sample input, its variance increasing
linearly with depth x from the sample input boundary until
it begins to fall near the output surface. In the regime where
the variance of lnW(x) increases linearly with x, it is also
independent of L. These results are confirmed in microwave
measurements and computer simulations in random single-
mode waveguides.

The MEA of Ref. [26] is a random-matrix theory
which leads to a Fokker-Planck equation, known as the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [27,28],
governing the “evolution” with sample length L of the PDF
pL(M) of the system transfer matrix M . The multiplicative
matrix M is the random matrix of this theory. In the MEA
the disordered system is assumed to contain a large number
of weak scatterers. An ansatz is proposed for the PDF of the
transfer matrix for a thin piece of material, a “building block”
of length δL, which contains the physical information relevant
to the problem: The Shannon entropy of pδL(M) of a building
block is maximized under the constraint of normalization and
a given �. The PDF for the full system is then constructed
by successive convolutions. In this dense-weak-scattering
limit, the MEA is expected to give results insensitive to
microscopic details. This is a “local approach,” in contrast
with the so-called “global approach” [29].

The DMPK equation was developed for N (propagating)
modes of the waveguide. For one dimension (1D), the
DMPK equation [28] reduces to Melnikov’s equation [4].
The study of the statistical properties of the intensity profile
inside random 1D samples using Melnikov’s equation was
initiated in Ref. [30]: The expectation value of the energy
density W(x) was obtained and compared successfully with
computer simulations (see also Ref. [31]). In the present
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FIG. 1. Top panel: The scattering problem for the 1D disordered
waveguide of length L described in the text. Lower panels: Theoret-
ical results (solid lines) and computer simulations (various symbols
and dotted lines) for the profiles (a) 〈lnW(x)〉s and (b) var[lnW(x)]s
as functions of x/�, for three values of s = L/�. For the variance,
Eq. (12) was complemented with Eq. (13) when x = L (see the
arrows): Their combination accounts for the “bending” shown by
the simulation. Agreement is excellent. Simulations consist of 105

realizations, with kd = 0.1 and k� = 178.

Rapid Communication, we extend this analysis to investigate
the statistics of the self-averaging quantity lnW(x), not
contemplated in Ref. [30]. These studies may provide a path
for the extension to quasi-1D disordered systems supporting
more than a single open channel.

Consider the scattering within a 1D random distribution
of scatterers, as illustrated in the top part of Fig. 1. This
situation may arise (i) in a quantum-mechanical (QM) problem
describing electronic scattering in a disordered conductor, or
(ii) in the problem of an electromagnetic (EM) wave in a
disordered waveguide supporting a single transverse mode, or
of a plane wave impinging upon a random layered medium.
The amplitudes of the incident, transmitted, and reflected
waves are also indicated. We imagine opening a gap, which
is small compared to the wavelength, at the point x inside the
sample, as shown in Fig. 1, where the amplitudes of the waves
traveling to the right and left are shown (continuity of the wave
function and its derivative are imposed).

Inside the gap, the intensity is

W(x) = |aeikx + be−ikx |2. (1)

Writing the transfer matrices of the two segments as

Mi =
[

αi βi

β∗
i α∗

i

]
, i = 1,2, (2)

with |αi |2 − |βi |2 = 1, we satisfy the requirements of time-
reversal invariance and flux conservation. When no index i is
employed, we refer to the system as a whole. The intensity of
Eq. (1), denoted here as W(x; M1,M2), is [30]

W(x; M1,M2) = |α∗
2e

ikx − β∗
2 e−ikx |2

|α2α1 + β2β
∗
1 |2 ≡ T Fx(M2), (3)

where k denotes the wave number and T (M1,M2) the transmis-
sion coefficient of the full sample. In the polar decomposition

defined in Ref. [26], the transfer matrices Mi can be writ-
ten in terms of “radial parameters” λi � 0 [Ti = 1/(1 +
λi)] and two phases, θi and μi , as αi = √

1 + λi exp(iθi),
βi = √

λi exp[i(2μi − θi)]. The function Fx(M2) in Eq. (3)
is then

Fx(M2) = A(λ2) − B(λ2) cos 2(μ2 − θ2 + kx), (4)

with A(λ2) = 1 + 2λ2 and B(λ2) = 2
√

λ2(1 + λ2).
The above expressions refer to a single configuration of

disorder. Assuming the disorder is uncorrelated, quantities
associated with the two sections of the sample are statistically
independent of one another. The expectation value over an
ensemble of configurations of a function f (W(x)) can be
computed using the PDF of the transfer matrices for the
two sections, px(M1) and pL−x(M2). For samples of length
L, Melnikov’s diffusion equation governs the evolution with
s = L/� of the marginal PDF ws(λ) of the radial parameter
λ as

∂ws(λ)

∂s
= ∂

∂λ

[
λ(1 + λ)

∂ws(λ)

∂λ

]
. (5)

Equation (5) is solved with the initial condition ws=0(λ) =
δ+(λ), where δ+(λ) is a one-sided delta function. In what
follows, the statistics of each one of the radial parameters λ1,λ2

of the two statistically independent sections of the wire will be
described by Eq. (5): For the left segment, s will be replaced
by s1 = x/�, and for the right segment, by s2 = (L − x)/�.

From Eq. (3), we find for the ensemble average

〈lnW(x)〉s = 〈ln T 〉s + 〈ln Fx(M2)〉s2 . (6)

The first term is given by the well-known expression [25]

〈ln T 〉s ≡
∫ ∞

0
ln T ws(λ)dλ = −L

�
. (7)

From Eq. (4), the second term can be written as

〈ln Fx(M2)〉s2

=
∫ ∞

0
dλ2

∫ 2π

0
dθ2ws2 (λ2,θ2)

∫ 2π

0

dμ2

2π

× ln {A(λ2) − B(λ2) cos[2(μ2 − θ2 + kx)]} = s2, (8)

where we used Eq. (4.224.9) of Ref. [32] to evaluate the angular
integral in Eq. (8). The final result is

〈lnW(x)〉s = −x

�
. (9)

Notice that the L dependence has dropped out from this
result. A simple demonstration of this independence for x = 0
is given in the Supplemental Material (SM) [33]; it uses
the statistics of the reflection amplitude r of Ref. [34]. For
x = L, Eq. (9) reduces to Eq. (7) for the full sample. We
may alternatively use the identity (26) of Ref. [3] to show the
independence of the result on L.

From Eq. (3), the second moment of lnW(x) is

〈[lnW(x)]2〉s = 〈(ln T )2〉s + 〈[ln Fx(M2)]2〉s2

+ 2〈(ln T )[ln Fx(M2)]〉s,s2 . (10)

Although we have not succeeded in computing the three terms
in Eq. (10) for arbitrary s = L/�, we have found approximate
expressions for the case when the wave in the right segment is
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localized: s,s2 	 1. We obtain

〈(ln T )2〉s = s2 + 2s − 2C + ω1(s), (11a)

〈[ln Fx(M2)]2〉s2 = s2
2 + 2s2 +

(
π2

3
− 2C

)
+ ω2(s2),

(11b)

2〈(ln T )[ln Fx(M2)]〉s,s2 = −2s2s − 4s2 + 4C + ω3(s2),

(11c)

where [35] C ≡ ∫ ∞
0 〈T 〉sds = π2/6. Collecting terms and

using Eq. (9), we find for the variance of lnW(x),

var[lnW(x)]s = 2
x

�
+ π2/3 + ω4(s2), s,s2 	 1. (12)

In Eqs. (11) and (12), ωi(s) are functions that tend to 0 as
s → ∞ (e.g., ω1 = ∫ s

0 〈T 〉sds − π2/6). For x = L, we cannot
apply the above result, Eq. (12), since this would violate the
condition s2 	 1. Since, for x = L, W(L) = T , one finds,
from Eqs. (11a) and (7),

[var(ln T )]s = 2
L

�
− π2/3 + ω1(s), s 	 1. (13)

To leading order in s 	 1, Eq. (13) can be approximated
by its first term, which represents the well-known result
that the variance of the logarithm of the transmission scales
as twice (the absolute value of) its expectation value; in
addition, ln T has a normal probability distribution [25,36],
with 〈ln T 〉 = −s, [var(ln T )]s = 2s. The next term in Eq. (13),
i.e., −π2/3, represents a correction to [var(ln T )]s of order
s0. Earlier studies were restricted to lowest order in s; this
correction may not be negligible if s is not large [see, e.g.,
Fig. 1(b), explained below].

It is well known that the quantity ln T of Eqs. (7) and
(13) is self-averaging [37], whereas T is not. Similarly, when
x 	 �, one can show that lnW(x) of Eqs. (9) and (12) is
self-averaging, whereas W(x), studied in Ref. [30], is not
(see details in the SM of Ref. [33]). This is the main reason
for studying lnW(x) in the present Rapid Communication.

To check these results, we have carried out computer
simulations of random waveguides supporting a single prop-
agating mode. These simulations can be applied to both
the QM and EM cases: (i) In the QM case, the disordered
potential is a random function of position; we chose sequences
of equidistant barriers with random strength (idealized as
delta-function potentials), with separation d small compared
with the wavelength; (ii) in the EM case, it is the index of
refraction n appearing in the Helmholtz equation which is a
similar random function of position.

The profiles of 〈lnW(x)〉s and var[lnW(x)]s , Eqs. (9)
and (12), are shown, as functions of x/�, for three values
of s, in Figs. 1(a) and 1(b). The results in Fig. 1(a) show
that 〈lnW(x)〉s is insensitive to s = L/�, while the results in
Fig. 1(b) show that var[lnW(x)]s is insensitive in the linear
regime. Simulations are in excellent agreement with theoretical
results. From Eq. (12), the theoretical variance for x = 0 has
the universal value π2/3 in the localized regime, which agrees
with simulation. A simple derivation of this result is given in
the SM [33]. The first moment and variance of lnW(x) are
shown as functions of s for fixed values of x/L in Figs. 1(a)
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FIG. 2. Evolution of the statistical distribution of lnW(x) for
x/L = 1.0, 3/4, 1/2, and 1/16, x = L corresponding to ln T .
The histograms are the results of computer simulations with 105

realizations each, and kd = 0.1, k� = 178. All cases are in the
localized regime, as s = L/� = 22.4. The ordinate gives the number
of events Ni falling in box i of the histogram. The continuous curves
are Gaussians with the parameters discussed in the text. For x not too
close to zero, the agreement between the theoretically constructed
Gaussians and the computed generated histograms is excellent.

and 1(b), respectively, of the SM [33]: They continue to the
interior of the sample the results at x = L for 〈ln T 〉s and
var[ln T ]s .

We have not succeeded in finding the PDF of lnW(x)
analytically, but only numerically (Fig. 2): (i) When x is not
too close to 0, e.g., for x/L = 3/4 and 1/2, lnW(x) has a
normal PDF with the theoretical centroid and variance given
in Eqs. (9) and (12). When x/L = 1, the PDF is normal, with
〈lnW(L)〉 = 〈ln T 〉 and var[lnW(L)]s = var[ln T ]s . (ii) For
x = 0, unitarity restricts lnW(0) � ln 4 (inset in Fig. 2). The
PDF cannot be fit by a truncated Gaussian: The dashed curve
is the best “half-Gaussian” fit (with the maximum at ln 4)
to the histogram. (iii) When x 
= 0,L, unitarity imposes no
restriction on lnW(x). Close to the left end, x/L � 1, the
PDF of lnW(x) admits nonzero values for lnW(x) > ln 4.
(iv) For x/L = 1/16 (body of the figure) and 1/100 (inset),
the dashed curves show the best fit to the histograms by two
“half Gaussians” on either side of the maximum, using two
different sets of parameters; however, the left tail is longer
than the Gaussian fit.

We have carried out microwave experiments to explore the
statistics of lnW(x) inside random single-mode waveguides.
Since lnW(x) self-averages, we are able to obtain sufficient
sampling to compare the measurements to theoretical predic-
tions in 100 random configurations. Waves are launched from
one end of the waveguide and the signal is detected by an
antenna just above a slit along the length of the waveguide.
The sample is composed of randomly positioned elements
contained within a rectangular copper waveguide, with width
and height of 2.286 and 1.016 cm, giving a cutoff frequency
of 6.56 GHz. The sample is made up of ceramic slabs with
a dielectric constant ε = 15, a thickness of 0.66 cm covering
93% of the waveguide cross section, and U-shaped Teflon
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FIG. 3. Results from microwave experiments for (a) 〈lnW(x)〉,
(b) var[lnW(x)]. The solid line in (a) shows a comparison to the
theoretical prediction of a linear fall-off as in Eq. (9). (c) Experimental
results for the PDF of lnW(x) at different locations for s = 5. Lines
are Gaussian fit curves.

elements which are essentially air. The elements in each
configuration are randomly selected with an equal probability
of being either a dielectric or air layer. The air layers may have
thicknesses of 1.275, 2.550, or 3.825 cm with equal probability.
The incident frequency ranges from 8.50 to 8.59 GHz in
400 frequency steps. The sample is of length L = 60 cm.
The impact of absorption is removed by Fourier transforming
the spectrum into the time domain, multiplying by a factor
exp(�at/2), and then transforming back into the frequency
domain; �a = 0.011 ns−1 is the decay rate of energy within
the sample due to absorption and leakage through the slot
along the sample length. It is obtained from the measurement
of the linewidth in angular frequency units of the narrowest
mode when copper reflectors are placed at the ends of the
sample with only a small opening in the reflector on the
left-hand side of the sample to admit energy from the source

antenna. Absorbers are placed in the waveguide between
the source antenna and the sample input and following the
sample output to reduce reflection back into the sample. The
experimental results for 〈lnW(x)〉s shown in Fig. 3(a) are
well fit by the line 5.06x/L + 0.02. This linear behavior is in
agreement with the fit s = L/� ≈ 5 and � ≈ 12 cm. Results
for var[lnW(x)]s are shown in Fig. 3(b): It increases linearly
near the beginning of the sample and bends as x approaches
the output boundary, as in the theoretical result of Fig. 1(b).
However, var[lnW(0)]s ∼ 5 is larger than the predicted value
of π2/3 = 3.29. This is a consequence of reflection by the
source antenna. We find in 1D simulations for a layered sample
with an initial layer with a high value of index of refraction
nr , and hence of reflectivity, that the slope of 〈lnW(x)〉s is
not affected by reflection from the boundary, but var[lnW(0)]s
increases with nr . The PDF of lnW(x) is shown in Fig. 3(c). At
the beginning of the sample the distribution is not symmetric;
the fit shown in Fig 3(c) utilizes different Gaussian functions
above and below the peak value of the distribution. However,
for x = L/2 and x = L, the PDFs for lnW(x) are Gaussians,
as seen in Fig. 3(c). These results are consistent with features
seen in Fig. 2.

In summary, we have used random-matrix theory to
calculate the statistics of lnW(x). Since W(L) = T , SPS
corresponds to the particular case x = L, in the local-
ized regime s 	 1. Our analysis leads to the correction
to SPS of Eq. (13). Extending the MEA into the inte-
rior of 1D samples provides a starting point for analyz-
ing the intensity inside systems supporting several open
channels.
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