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Absorption spectra of superconducting qubits driven by bichromatic microwave fields
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We report experimental observation of two distinct quantum interference patterns in the absorption spectra
when a transmon superconducting qubit is subjected to a bichromatic microwave field with the same
Rabi frequencies. Within the two-mode Floquet formalism with no dissipation processes, we propose a
graph-theoretical representation to model the interaction Hamiltonian for each of these observations. This
theoretical framework provides a clear visual representation of various underlying physical processes in a
systematic way beyond rotating-wave approximation. The presented approach is valuable to gain insights into the
behavior of multichromatic field driven quantum two-level systems, such as two-level atoms and superconducting
qubits. Each of the observed interference patterns is represented by appropriate graph products on the proposed
color-weighted graphs. The underlying mechanisms and the characteristic features of the observed fine structures
are identified by the transitions between the graph vertices, which represent the doubly dressed states of the
system. The good agreement between the numerical simulation and experimental data confirms the validity of
the theoretical method. Such multiphoton interference may be used in manipulating the quantum states and/or

generate nonclassical microwave photons.
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I. INTRODUCTION

Superconducting qubits are one of the most promising
candidates for the implementation of circuit quantum electro-
dynamics (QED) platforms. However, the scalability of these
systems remains a major obstacle to continued progress [1,2].
The diagonal coupling (longitudinal coupling) of the system
with driving fields has proven to have a high potential for scal-
ability [2]. Superconducting qubit architectures that interact
with the external field through off-diagonal time-dependent
couplings (transverse couplings) have been extensively stud-
ied [3-5]. On the contrary, the longitudinal couplings have
been investigated mostly with rotating-wave approximation
(RWA) [6,7]. It has been shown that the consideration of
ac Stark level shift and power broadening is significant for
quantitative explanation of multiphoton quantum interference
phenomena in strongly driven superconducting qubits, when
the rotating-wave approximation (RWA) does not work [8].

Due to a wide range of new nonlinear and multiphoton
dynamics, there has been growing interest in going beyond
monochromatic excitation of two-level systems. Recently,
the interaction of a two-level system with two near-resonant
fields has been the subject of both theoretical [9—12] and
experimental interest [12—15]. Driving the system with two
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or more frequencies allows the creation of doubly dressed
states and opens up a multitude of additional possibilities
in the context of quantum simulation and in manipulating
the quantum states and generating nonclassical microwave
photons [16].

The Rabi resonance in bichromatic fields has been observed
in optical experiments. For instance, Saiko et al. [17,18]
showed that in the evolution of a spin qubit driven by the
bichromatic field, consisting of a transverse microwave (MW)
and a longitudinal radio frequency (rf), the accumulation of
dynamic phase during the full period of the slow rf field
appears as a shift of the Rabi frequency of the qubit in the MW
field. Also, Benhelm et al. reported a Mglmer-Sgrensen-type
gate inducing collective spin flips with a bichromatic laser
field [19]. In the study of quantum interference between
coupled transitions, the dynamical cancellation of spontaneous
emission, appearing between different channels of transitions
among the dressed states of the driven atoms, has been
pointed out theoretically [20,21]. This has been experimentally
demonstrated by an exciton transition of a self-assembled
quantum dot exposed to a bichromatic laser field [22,23].
Besides a few experimental investigations on quantum dots
(e.g., [22,23]), these dynamical effects have not been fully
investigated in superconducting quantum circuits.

The commonly used theoretical framework to explain
these kinds of phenomena is the well-known dressed-atom
picture. This formalism was developed by Cohen-Tannoudji
and Haroche [24] to explain the behavior of atoms exposed to
radio-frequency fields described in terms of photons [25]. In
fact, the Floquet quasienergy diagram is equivalent to the fully
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quantized dressed-atom picture in the limit of strong fields [3].
Generalization of the Floquet theory for nonperturbative
treatment of infinite-level systems, including both bound and
continuum states, was reported by Chu and Reinhardt [26].

Dressed superconducting qubits [27,28], have been theoret-
ically studied [29] and experimentally demonstrated [30,31].
The “dressing” of a qubit by the electromagnetic field splits
each level into two, giving rise to two new qubits with energy
difference equal to the Rabi frequency, €2. The Rabi frequency
is proportional to the amplitude of the electromagnetic field
and is usually much smaller than the energy difference between
the qubit’s states.

In this joint experimental and theoretical work, we reveal
the mechanism of a nonlinear dynamical level splitting of
superconducting circuits driven by a bichromatic microwave
field. The external field possesses two equal amplitude
components with frequencies scanned from large detuning
to resonance frequencies. We focus on the near-resonance
frequencies where subharmonic resonances generate fringe
patterns in the transition probability spectra. We demonstrate
these results theoretically by generalizing an intuitive graph-
theoretical formalism [32] to model the coupling schemes
between the two-level quantum system and the bichromatic
external field by appropriate graph products on the proposed
color-weighted graphs. The transitions between the product
graph vertices, which present the doubly dressed states of the
system, will be analyzed to gain insight into the main features
of the reported experimental results.

II. EXPERIMENTAL SETUP AND THEORETICAL
APPROACH

The quantized energy levels of superconducting qubits
(e.g., artificial atoms) have been experimentally demonstrated
with Josephson junction-based superconducting quantum
circuits (SQCs) [33-35]. SQCs can, therefore, serve as a testing
ground to investigate fundamental atomic-physics phenom-
ena [28,36], like electromagnetically induced transparency
(EIT) [37,38] and the Autler-Townes (AT) effect [33,39—41].
The latter is an example of electromagnetic dressing of
quantum states, and it has been proposed as a basis for fast,
high on/off ratio microwave routers for quantum informa-
tion [42,43]. Multilevel structures in SQCs, that are tunable
and do not entirely rely on the device characteristics of the
junctions, can be constructed by mixing a two-level system
with an external field [44].

Our device consists of a superconducting transmon qubit
coupled to a three-dimensional aluminum cavity as shown in
Fig. 1(a). The length, width, and depth of the cavity are 15.5,
4.2, and 18.6 mm, respectively. The transmon is made via elec-
tron beam lithography and double-angle evaporation [45], in
which a single Al/AlO, /Al Josephson junction is capacitively
shunted by two Al pads on a high-resistance Si substrate. The
schematic of the experimental setup is shown in Fig. 1(b).
The fundamental TE101 mode of the aluminum cavity is
Weav/2m = 10.678 GHz. The device is located in an Oxford
Triton 400 dilution refrigerator below 10 mK with magnetic
shielding. The microwave lines to the cavity are heavily
attenuated at each stage of the dilution refrigerator and sent to
the cavity through low-pass filters with a cutoff frequency of
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FIG. 1. (a) An aluminum cavity used to hold the sample. Its
fundamental TE101 mode is w., /27 = 10.678 GHz. A transmon
qubit on a high-resistance Si substrate is located in the middle of
the cavity as shown in the right part of the cavity. (b) Optical (left)
and SEM (right) images of a transmon qubit. A Josephson junction,
the middle part shown in the SEM image, is capacitively shunted by
two Al pads indicated by the light gray parts in the optical image.
(c) Circuit diagram of setup. Attenuators, filters, and circulators are
used to reduce the external noise. The output signal is then amplified
and down-converted with a local oscillator and digitized.

12 GHz. The output signal from the cavity is passed through
cryogenic circulators and a high-electron-mobility transistor
(HEMT) amplifier located in the dilution refrigerator and
further amplified at room temperature. It is then mixed down
and digitized by a data acquisition card.

Three microwave drives are used in the experiment. Qubit
control waves (denoted as probe and coupler) are continuous
while the readout wave (denoted as cavity) is triggered [46].
Cavity, probe, and coupler waves are combined by two power
splitters at room temperature before being sent to the dilution
refrigerator. In a sampling period, the cavity wave is turned
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FIG. 2. Energy level and microwave drive diagrams repre-
sent one-photon transition (left) and two-photon transition (right),
respectively.

on at time ¢ = 70 ns for 2100 ns and the data acquisition card
starts to record at time ¢+ = 270 ns. The repetition rate is 10 kHz
so the whole sequence is repeated every 100 us.

The states of the transmon are measured by using a
Jaynes-Cummings readout [47]. The cavity wave is applied
at the bare cavity frequency wcy /27 = 10.678. We obtain
the transition resonance frequency w,. /27 = 8.865 GHz and
wer /27 = 8.637 GHz from the spectrum, from which we get
the Josephson energy E;/h = 45.33 GHz and the charging
energy E./h = 228 MHz. Using the pump-probe method we
obtain the energy relaxation time 77 = 0.53 us. The spin-echo
measurement shows the dephasing time 7, = 0.51 us.

To demonstrate the effect of two near-resonance microwave
fields driving, the probe and coupler waves are turned on
continuously, so the system stays at a steady state during the
measurement. By sweeping both A, = w, — wg, and A, =
e — wg, (Which are the detunings of the probe and coupler,
respectively) around zero, we measure the spectrum of the
qubit. As illustrated in Fig. 2, in the one-photon transition ex-
periment, the coupler frequency w, and the probe frequency w,
are both near the transition resonance frequency, w,,, and the
coupling strengths are Q./27w = Q, /27 = 4.16 MHz. In the
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two-photon transition experiment, .. and a);, are near w,, /2
and /27 = Q) /27 = 0.973 MHz.

Natural atoms couple with electromagnetic fields at the
transverse mode due to the well-defined inversion symmetry
of the potential energy. In contrast, transverse and longitudinal
couplings between superconducting qubits and classical mi-
crowave fields coexist [48]. Within the Bloch representation,
the time-dependent Hamiltonian of the system with transverse
coupling (without considering the dissipation processes) is
given by [5]

Hy(t) = _%[wgeo'z + &x(t)ox]. 9]

We define |g) and |e) as the eigenstates, and E, and
E, to be the corresponding eigenvalues of the two-level
system. Atomic units, a.u., are used throughout this paper.
We set i = 1. For simplicity, we normalize the parame-
ters by setting the resonance frequency of the system as
wge =27 x 8.865 GHz = 1.0 a.u during the calculations.
The eigenenergies of the bare states of the system are
denoted as E, = —%wge and E, = %a)ge. In Eq. (1), &,(¢r) =
2bpcos(wpt + ¢p) + 2bccos(wet + ¢p¢) is the bichromatic
oscillating interaction connecting (through off-diagonal cou-
pling) the states of the two-level system. wp and w¢ are the
probe and coupler frequencies, respectively. ¢ p and ¢¢ are the
initial phase of the monochromatic fields. For simplicity we
assume ¢p = ¢¢ = 0. Therefore, bp = Vg(f), and be = Vg(f).
Vg(f ) and Véff) are the electric dipole moment interactions for
the probe and coupler, respectively. For the calculations we use

bp = be =2.12 x 107* a.u.; o, and o, are the Pauli matrices.
By expanding the total wave function () in the basis of
|g) and |e), the unperturbed eigenstates of the Hamiltonian
become [49]

2b[cos (wpt + ¢p) + Rcos (wct + ¢c)]) (gllﬂ(t))> @
E, ely®))

When each cosine in Eq. (2) is replaced by one exponential (in magnetic resonance, when each of the two linearly oscillating

fields is replaced by a rotating field) we obtain

i(glw(t») _ ( E,
dt\ely ()]  \bbexp(—iwpt) + bk exp(—iwct)

This is the starting equation normally adapted for the
problem of a two-level system interacting with two classical
monochromatic fields having frequencies wp and wc¢ very
close to the qubit’s transition frequency, w,,.. The replacement
of Eq. (2) by Eq. (3) is called the generalized rotating-wave
approximation (GRWA). In the GRWA limits, i.e., when
|wge — wp| K wge and |wge — wc| K wg,, the perturbation
approach can be employed if the coupling strengths of the
system with the fields are extremely small (since we know
that the frequencies of the fields are extremely close to the
resonance frequency). As we are pursuing in this work, the
inclusion of both counter-rotating components of the two linear
fields, i.e., Eq. (2), not only accounts for various processes,
besides GRWA allowed transitions, but also provides the
correct prediction of various nonlinear features, e.g., the
resonance shift, the resonance linewidth, etc., of the resonance

bpexp(+iwpt) + bc exp (—}—ia)d)) (gW(l))) 3)

E, ely (1))

(

transition. The importance of the antirotating factors becomes
more pronounced when the detuning of the fields, |w,, — wp|
and |wg. — wc|, is large, and, therefore, cannot be ignored in
the calculations.

The potential energy of the transmon qubit has inversion
symmetry (parity) but not rotational symmetry [50,51]. Hence
angular momentum is not conserved (unlike hydrogen atoms).
The eigenstates of transmon qubits have definitive parity
which determines allowed dipole transitions (only between
states with different parities). In general, since the potential
energy for superconducting qubits can be tuned, the inversion
symmetry for these artificial atoms can be broken and the parity
restriction is lifted [48,50,51]. Therefore, the two adjacent
energy levels can be coupled by an even number of photons,
and the even-valued multiphoton processes can also be
observed. The existence of the longitudinal coupling between
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superconducting qubits and applied magnetic fields has been
shown theoretically [52], when the inversion symmetry of the
potential energy of the superconducting qubit is broken. When
a superconducting qubit is driven by a strong ac field, the
time-dependent Hamiltonian, which describes the longitudinal
coupling (without considering dissipation), is given by

Hi(t) = —i[Ao, + &,(t)o:], )

where &.(t) = go+2bpcos(w pt + ¢pp) +2bcos(w'ct + Pc).
Here, the parameter A = 6.25 x 1073 a.u. is called the tunnel
splitting and &y is the detuning energy. The amplitudes of
the probe and coupler fields are b, = by = 1.125 x 107! a.u.
This is parametrized in the energy unit and is proportional to
the ac flux bias [53]. For simplicity we assume ¢p = ¢¢c =0
because they produce no observable effect on the absorption
spectra of the qubit.

One should note that the longitudinal coupling, when
the unperturbed Hamiltonian has only off-diagonal matrix
elements, is equivalent to the transverse coupling when the
unperturbed Hamiltonian has only diagonal matrix elements
(they both produce the same time evolution). In that case, the
Hamiltonian for longitudinal qubit-field coupling, Eq. (4), can
be obtained from the transverse form, Eq. (1), if a unitary

transformation is applied,
R
NZAR 1)

The situation, however, is different if the interaction Hamil-
tonian H(t) contains both the longitudinal and transverse

H ) =U"Hr®OU, U= 3)
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terms, i.e., H(t) = b(t)o, + c(t)o,. As is the case for the
transmon qubit [50,51], such system cannot be transformed
into a model with only longitudinal or only transverse
coupling. Thus both coupling schemes must be considered.

Recently, we have proposed [32] a graph-theoretical for-
malism to study generic circuit quantum electrodynamics
systems consisting of a two-level qubit coupled with a single-
mode resonator in arbitrary coupling strength regimes beyond
the rotating-wave approximation. Here, we extend the method
to investigate the dynamics of the two-level superconducting
artificial atoms driven by two microwave fields. The two
above-mentioned interacting designs, i.e., Egs. (1) and (4), are
modeled by different graph products on color-weighted graphs
which represent the quantum system and the two discrete
driving microwave fields.

Figure 3 schematically illustrates the generation of dressed
quasienergy levels as different schemes of graph products
between a complete graph, K,, representing the two-level
system, and the probe and coupler fields, represented by two
subsequent path graphs of PL and PS, respectively. To il-
lustrate the Fourier components of such discretized oscillating
external fields, the vertices of the path graphs are assigned with
the weights of nfiw, where n =0, £ 1, £2, + 3, .. .. (please
see the Supplemental Material A [54] for more details).

After solving the eigenvalue problem for the color-weighted
adjacency matrices of the direct and Cartesian products, the
time-averaged transition probability between |g) and |e) can
be calculated as the probability to go from a single initial
vertex on the product graph to a final vertex, summed over all
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FIG. 3. Illustration of (a) transverse, and (b) longitudinal couplings of a two-level system, represented by the K, complete graph, with
the probe, represented by the P2 path graph, and coupler, represented by the PS path graph, external fields. The direct product (a), and the
Cartesian product (b) are presented as a schematic exhibition of subsequent interactions of the two-level system with the bichromatic external
field. For clarity, the second production is shown only onto the small part of the first product graph, inside the green box. The lighter blue
rectangle box in the final product in (a) is to make the pattern easier to follow, and is not representing any real edges.
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FIG. 4. (a) Experimental measurement of the single-photon tran-
sitions in a transmon superconducting qubit. (b) Two-mode Floquet
result of the transverse coupling of a two-level system with the
bichromatic external field. (c) Experimental measurement of the
double-photon transitions in a transmon superconducting qubit. (d)
Two-mode Floquet result of the longitudinal coupling of a two-level
system with the bichromatic external field. The dynamics of the
system along the diagonal dashed green line will be analyzed later
to reveal the mechanism for the central fine pattern. The smaller
transition probability of experimental spectra is due to dissipation
which was not taken into account in our theoretical calculation.

the paths containing the intermediate vertices in the product
graph. This can be numerically calculated as [49,46]

Pg—>€ = Z Z |<e’n1n2|al’j1.i2)<ayjljz | g,00)

niny y jija

EG!
where ny, n, (and also ji, j,) are the Fourier index that runs
over all the integers. y = g,e are the system indices. The
dressed states in the Floquet Hilbert space are |y,ni,n;) =
l¥) ® |n1) ® |n2). The quasienergy eigenvalues of the product
adjacency matrix are a, j, j, = ayo0 + jiwp + jowc. The cor-
responding normalized eigenvectors are |a,, j, ;,). Assuming the
initial state of the system at time #; is |g), Eq. (6) would be
representing the transition probability averaged over (r — fy)
and will be always less than or equal to % This is associated
with the probability of finding the excited state of the qubit in
the experiment.

III. RESULTS AND DISCUSSION

The experimental and theoretical transition probabilities are
presented, when a transmon superconducting qubit is subject
to two near-resonance to resonance microwave fields.

Figures 4(a) and 4(b) correspond to the case when the
single-photon transition condition is satisfied. The dynamics
of such process is modeled by the Hamiltonian given in
Eq. (1). This system, therefore, can be illustrated by the direct
graph product, K, x P2 x PS, as shown in Fig. 3(a). As
can be seen in this figure, under a monochromatic field, the
direct product, K, x POZ, only allows odd-walks transitions in
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the graph between the single-dressed states. This resembles
the population transfer in a Hilbert space splitting in two
unconnected subspaces or parity chains, P = +1, — 1 [45].
The mechanism for the appearance of multiple near-resonance
peaks, as can be seen in Figs. 4(a) and 4(b), will be revealed by
examining the role of the coupler tone in connecting the single-
dressed manifolds when the doubly dressed states form as
the vertices of the new direct product graph, K, x P x PS.
For computational simplicity, the probe frequency is scanned
at the adjacency of wp = 1.0 a.u. while the two states of
the qubit are also separated by wg, = 1.0 a.u. The main
wide vertical and horizontal absorption lines in both the
calculated and measured spectra indicate the single-photon
transition due to the probe and coupler tones, respectively.
As a Supplemental Material B [54], we attach a video of our
calculations showing the time evolution of this plot, Fig. 4(b),
when the intensity of the coupler microwave is gradually
increased. At this point, it is instructive to look at this result
from the intuitive perspective of GRWA. One understands
that the time-independent Schrédinger equation of a two-level
system in the presence of a single rotating field is equivalent
to a 2x2 time-independent Floquet eigenvalue problem with
the 2x2 Floquet Hamiltonian [5],

@x2) _ —O.Sa)ge bp
Hy —< by 05we —wp) 7

Therefore only one photon can be absorbed or emitted at
a time. By introducing a second field (rotating in the same
direction as the first one) these 2x2 single-field Floquet
Hamiltonians are coupled to one another via the second field
in such way that the multiphoton process under investigation
can take place only by absorbing (emitting) a photon of the
one field, then emitting (absorbing) a photon of the other.

Figures 4(c) and 4(d) present the experimental and theoret-
ical results for the observation of the two-photon transitions.
In this case the system is described by the longitudinal
coupling Hamiltonian, Eq. (4). As illustrated in Fig. 4(b),
the time-independent Floquet matrix for such system can,
therefore, be modeled by the subsequent Cartesian products
of the two-level system by the probe and coupler microwave
fields, K, & PL [ Po%. As shown in Figs. 4(c) and 4(d), the
population transfer can occur by two-photon absorption from
a single field (vertical and horizontal absorption lines), or
from two different fields (diagonal absorption line). Again,
for computational simplicity, the probe frequency is scanned
at the adjacency of wp = 0.5 a.u. while the two states of the
qubit are separated by w,, = 1.0 a.u. Later, we will investigate
the underlying mechanism of the fine structure of the fringes
at the middle of these plots by scanning wp and w¢ along the
dashed green line in Fig. 4(d).

Figure 5(a) provides a schematic representation of the dou-
bly dressed states to explain the appearance of the swallowtail
butterfly-like patterns in the transition probability contour
plots presented in Fig. 4. This figure shows the splitting of the
energy levels due to multiphoton coupling between the singly
dressed states. The quasienergies and transition probability
along the diagonal dashed green line are given in Figs. 5(b)
and 5(c), respectively. In this case, the transition probability
spectrum consists of a symmetric series of dispersionlike
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FIG. 5. (a) Schematic illustration of the doubly dressed two-level
system. The multiphoton resonances, due to the coupler tone, between
the single-dressed states are shown by green edges. The numeric
label on each edge indicates the required number of photons to
make that resonance happen. (b) The quasienergies, and (c) transition
probabilities along with the dashed green line in Fig. 4(d). This result
corresponds to the case of a superconducting qubit with longitudinal
coupling to the bichromatic microwave field.

sidebands. These subharmonic resonances occur when the
detuning of the second field is an integer fraction of the Rabi
frequency of the resonant field. In other words, the second
field is resonant with a n-photon interaction between the single
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dressed states [9]. These resonances are illustrated by the green
edges in Fig. 5(a). On each edge, the numeric label indicates
the number of photons required to cause the resonance between
the two states to take place. The avoided crossings in Fig. 5(c)
at the position of these subharmonic peaks indicate that the
lower and upper eigenstates are strongly connected, and that
the resonance transitions are well pronounced between the
states of the two-level system.

IV. SUMMARY

In summary, we report experimental observation of two
distinct quantum interference patterns in the absorption spectra
when a transmon superconducting qubit is subject to a
bichromatic microwave field. We propose a graph-theoretical
representation to model the interaction Hamiltonian. The
generalized graph-theoretical method provides a clear physical
picture of and gains insight into this intriguing phenomenon.
We showed that while the observed absorption spectrum near
the single-photon resonance can be produced by transverse
and/or longitudinal coupling between a two-level system
and a bichromatic field the observed absorption spectrum
near the two-photon resonance can only be produced by a
longitudinal coupling between the qubit and the bichromatic
microwave field. These coupling schemes can be modeled by
different graph products on color-weighted graphs. In each
case, the intuitive picture provided by the doubly dressed
states is used to explain the mechanism and to demonstrate
the characteristic features of each case of study. The good
agreement between the numerical simulation and experimental
data confirms the validity of the proposed graph-theoretical
approach. These observations and interpretation may be used
not only to generate multilevel tunable energy structures, but
also to explore nonclassical microwave photons, which are
the fundamental elements in quantum information processing,
especially in microwave quantum photonics.
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