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We consider ballistic SQUIDs with spin filtering inside half-metallic ferromagnetic arms. A singlet Cooper pair
cannot pass through an arm in this case, so the Josephson current is entirely due to the Cooper pair splitting, with
two electrons going to different interferometer arms. In order to elucidate the mechanisms of Josephson transport
due to split Cooper pairs, we assume the arms to be single-channel wires in the short-junction limit. Different
geometries of the system (determined by the length of the arms and the phases acquired by quasiparticles during
splitting between the arms) lead to qualitatively different behavior of the SQUID characteristics (the Andreev
levels, the current-phase relation, and the critical Josephson current) as a function of two control parameters,
the external magnetic flux and misorientation of the two spin filters. The current-phase relation can change its
amplitude and shape, in particular, turning to a π junction form or acquiring additional zero crossings. The critical
current can become a nonmonotonic function of the misorientation of the spin filters and the magnetic flux (on
half of period). Periodicity with respect to the magnetic flux is doubled, in comparison to conventional SQUIDs.
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I. INTRODUCTION

In the field of superconductivity, SQUID physics is a
direction of great fundamental and applied importance [1].
The operation of the SQUID is based on interference between
Cooper pairs passing through two different arms that comprise
the interferometer loop. The external magnetic flux threading
the loop is a control parameter that determines the Josephson
supercurrent carried by the device; the critical current is
periodic with a period of flux quantum �0 = πh̄c/e. The
presence of two arms allows, at least in principle, processes in
which a Cooper pair is split and the two electrons pass through
different arms (recombining again to form a Cooper pair
afterwards). The transport processes involving pair splitting
generally lead to the critical current that depends on the flux
with doubled periodicity, 2�0 [2–5].

However, the split-pair processes become noticeable only
when the passage of nonsplit Cooper pairs is suppressed. The
role of splitting can be enforced by energy filtering or spin
filtering inside the arms (by means of electrically tunable
quantum dots or ferromagnetic filters, respectively). Corre-
lated transport through the arms of such multiterminal devices
has been studied both theoretically [6–9] and experimentally
[10–13]. Josephson current through the SQUID with two arms
containing quantum dots (where the Coulomb energy impedes
passage of nonsplit Cooper pairs through each arm) was
theoretically studied in Refs. [2–4,14] and recently realized
experimentally [15].

While the main attention up to now has been paid to the
quantum-dot scheme of Cooper pair splitting, the ferromag-
netic realization [7,9] has certain advantages. Half-metallic (H)
ferromagnets (already employed in various superconducting
hybrid structures, see, e.g., Refs. [16–18]) should lead to
highly efficient splitting due to absolute spin filtering (we
imply singlet superconductors with opposite spins of electrons
in a Cooper pair and do not consider spin-active interfaces,
which could lead to singlet-triplet conversion [19]). At the
same time, mutual orientation of magnetizations in the two

arms can be varied by a weak external magnetic field due to
different (geometry-related) coercivities of the ferromagnetic
filters or due to exchange bias applied to one of the arms (it
has been demonstrated that the latter method can be used for
continuous variation of the misorientation angle [20]). This
provides an additional degree of freedom for controlling the
device.

The dependence of Cooper pair splitting on the angle
between magnetizations of the arms has been studied exper-
imentally in an SF setup [21,22]. Two ferromagnetic arms F
were contacted to a superconductor S close to each other and
a voltage was applied to one of the arms. This produced a
current in the other ferromagnetic arm due to crossed Andreev
reflection (which is just another side of Cooper pair splitting).
The current was sensitive to the relative orientation of the
magnetizations.

The Josephson effect in SQUIDs with magnetic arms has
previously been theoretically considered in the diffusive limit
[23–25]. In this case, the disorder-averaged Josephson current
is strongly suppressed due to different phases acquired by
electrons passing through different arms (the difference is
caused by different disorder configuration in the arms) [26].
At the same time, in any particular sample this suppression
is absent, so the current through the system is mainly due to
mesoscopic fluctuations.

In this paper, we theoretically study the magnetic spin-
filtering SQUID with splitting of the Cooper pairs in the
opposite limit, when the arms are ballistic. We consider the
system schematically depicted in Fig. 1. Two beam splitters
provide the possibility of Cooper pair splitting processes, and
two half-metallic inserts (filters) block nonsplit processes (in
which a Cooper pair could travel through a single arm). The
Josephson current through the system is governed by two
control parameters that, in principle, can be varied in situ:
the relative orientation of the filters magnetization and the
magnetic flux through the interferometer loop. We aim at
calculating the dependence of the dc Josephson effect on these
parameters.
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FIG. 1. Sketch of the ferromagnetic spin-filtering SQUID with
splitting of Cooper pairs. Gray areas S1,2 are singlet superconducting
reservoirs, blue parts are three-terminal beam splitters (normal
wires), and green insets are half-metallic ferromagnets (spin filters).
Magnetizations of the filters (red arrows) lie in the xz plane and are
chosen to be symmetric with respect to z axis, with angle θ between
them. The interferometer loop is threaded by the external magnetic
flux �. The quantities α/2 and L are the phases accumulated by
quasiparticles when passing the segments of the beam splitter and the
(half-metallic) ferromagnetic insets.

The paper is organized as follows. In Sec. II, we present
a detailed description of the considered model. Sections III
and IV contain the obtained results for the Andreev levels
and the Josephson current, respectively. Discussion of possible
experiments is given in Sec. V, and conclusions are presented
in Sec. VI. Some additional clarifying details are presented in
the appendices.

II. MODEL

The sketch of Fig. 1 implies subdivision of the system into
blocks, which can be conveniently described in the framework
of the scattering matrix formalism [27,28]. From left to right
the blocks are S1N interface (gray/blue boundary), left beam
splitter (blue), ferromagnetic spin filters (green), right beam
splitter (blue), and NS2 interface (blue/gray boundary). The
two interferometer arms (upper and lower) are assumed to be
identical up to the magnetization direction in the spin filtering
parts. In the absence of the superconducting phase difference
ϕ, the system is also assumed to be left-right symmetric.

In order to elucidate the mechanisms of Josephson transport
due to split Cooper pairs in ballistic spin-filtering SQUID, we
assume that the beam splitters and the arms are composed
of highly transmissive single-channel conductors, and the
ferromagnetic inserts are half-metallic (i.e., providing absolute
spin filtering). We also assume zero temperature. Note that
interference effects on normal transport in single-channel
interferometers have already been studied for a long time
[29,30]. Our purpose is to consider supercurrents through
similar structures.

We assume the short-junction limit implying that the length
of the junction (the distance between the superconductors) is
short compared to the coherence length ξ = h̄vF /�; in this
case, the supercurrent is carried by subgap bound states within
the junction [27]. Employing the Bogoliubov–de Gennes
(BdG) equations in the framework of the scattering matrix

formalism, we follow the standard strategy, first calculating
the Andreev spectrum E(ϕ) and then finding the Josephson
current at zero temperature as [27,28,31]

I (ϕ) = − e

h̄

∑
E∈[0,�]

dE

dϕ
. (1)

The Andreev levels should be found from the spin-
dependent BdG equation [32],

HBdG

⎛⎜⎝u↑
u↓
v↑
v↓

⎞⎟⎠ = E

⎛⎜⎝u↑
u↓
v↑
v↓

⎞⎟⎠, (2)

where the BdG Hamiltonian

HBdG =

⎛⎜⎜⎝
H↑↑ H↑↓ 0 �eiϕ

H↓↑ H↓↓ −�eiϕ 0
0 −�e−iϕ −H ∗

↑↑ −H ∗
↑↓

�e−iϕ 0 −H ∗
↓↑ −H ∗

↓↓

⎞⎟⎟⎠ (3)

acts in the direct product of the particle-hole and spin spaces
[(u,v) and (↑ , ↓) structure of the eigenstates, respectively].
Here, the single-particle Hamiltonian Hαβ (acting in the spin
space), the absolute value of the order parameter �, and
its phase ϕ, depend on spatial coordinates. We will actually
consider systems in which magnetism (included into Hαβ)
and superconductivity (described by � and ϕ) are spatially
separated.

For the system of Fig. 1, the single-particle Hamiltonian
has the form

Hαβ =
[

1

2m

(
p − e

c
A

)2
− EF

]
δαβ + U

(exch)
αβ , (4)

where EF is Fermi energy and the exchange part U (exch)

describes the two ferromagnetic arms.
Although the excitation energies E should be positive, it is

sometimes convenient to argue in terms of the “semiconductor
model,” in which the negative-energy states also exist and are
filled in accordance with the Fermi distribution [33]. In this
respect, it is important that the BdG Hamiltonian (3) possesses
the particle-hole symmetry

{HBdG,P} = 0, (5)

where {·,·} denotes the anticommutator and the symmetry
operator is P = σ PH

x σ S
0 K. Here, K is the complex conjugation

operator, and the Pauli matrices act in the particle-hole (PH)
or spin (S) space. As a consequence, the eigenstates always
come in pairs |ψ〉 and P|ψ〉 with mirror-symmetric energies
±E.

Within the scattering matrix formalism, each block of the
structure should be described by the corresponding scattering
matrix linking an incoming (u↑,u↓,v↑,v↓)T state to the
outgoing one [27,28]. For a scatterer with several terminals
labeled by a,b, . . . , we define the scattering states as

(u↑a,u↓a,u↑b,u↓b, . . . ,v↑a,v↓a,v↑b,v↓b, . . . )T . (6)

The scattering matrix for an n-terminal scatterer has dimen-
sions 4n × 4n.

The outmost blocks of our system, Fig. 1, are the S1N
and NS2 interfaces, where subgap quasiparticles inevitably
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experience the Andreev reflection. Each interface by itself
is described by the 4 × 4 scattering matrix containing the
reflection phases:

j = e−iχ

⎛⎜⎜⎝
0 0 0 eiϕj

0 0 −eiϕj 0
0 −e−iϕj 0 0

e−iϕj 0 0 0

⎞⎟⎟⎠, (7)

where

χ = arccos

(
E

�

)
∈ [0,π ], (8)

j = 1,2 indexes the superconducting reservoirs, and ϕ1,2 is
the phase of the superconducting order parameter in the
corresponding reservoir.

When considered together, the two SN interfaces effectively
form a two-terminal scatterer. In the basis of Eq. (6), the
corresponding 8 × 8 scattering matrix has the following form:

S = e−iχ

(
0 Seh

She 0

)
, (9)

where

Seh = −S∗
he =

(
iσ S

y eiϕ1 0
0 iσ S

y eiϕ2

)
. (10)

The rest of the structure is formed by nonsuperconducting
scatterers, in which � = 0. Description of these parts is
especially convenient in basis (6). First, since electrons do
not mix with holes in the absence of superconductivity, the
corresponding scattering matrices are block-diagonal in the
PH space. Second, in the short-junction limit, the difference
between the wave vectors for electrons and holes can be
neglected, hence, the phases accumulated by holes are inverted
with respect to the phases accumulated by electrons. As a
result, the electron and hole blocks are related simply by
complex conjugation:

SnonS =
(

Se 0
0 Sh

)
, Sh = S∗

e . (11)

We discuss nonsuperconducting elements of our system (the
beam splitters and the spin filters) in Secs. II A–II C below.

A. Beam splitters

A quasiparticle, Andreev reflected from a superconductor,
is divided between the two interferometer arms. We describe
this process in terms of three-terminal beam splitters (blue
parts in Fig. 1).

Generally, the scattering matrix of the splitter is unitary. In
addition, we gauge the magnetic field such that the vector
potential exists only inside the spin filters (green regions
in Fig. 1) and vanishes elsewhere. Hence the time reversal
symmetry is preserved for the beam splitters, and the scattering
matrix is symmetric.

We assume geometrical “Y symmetry” of each splitter,
meaning that one terminal (the one touching a superconductor;
number 3) is special, while the two others (connecting to the
two interferometer arms; numbers 1 and 2) are equivalent.
The core part of the splitter scattering matrix is a symmetric
unitary 3 × 3 matrix Y describing splitting of (spinless)
electrons between the three terminals. The Y symmetry then

implies two independent relations: Y11 = Y22 and Y13 = Y23.
In order to focus on processes of Cooper pair splitting, we
additionally assume Y33 = 0, meaning that an electron coming
from terminal 3 is not reflected back but only transmitted to
terminals 1 and 2.

The most general form of the 3 × 3 scattering matrix
satisfying the above restrictions is parametrized by two real
phases, α and β, as

Y =

⎛⎜⎝ − eiα

2
eiα

2
ei(α/2+β)√

2
eiα

2 − eiα

2
ei(α/2+β)√

2
ei(α/2+β)√

2
ei(α/2+β)√

2
0

⎞⎟⎠. (12)

Physically, α/2 is the phase accumulated by electrons moving
along the “legs” of terminals 1 or 2 (see Fig. 1), while β is the
corresponding phase for terminal 3.

The 12 × 12 scattering matrix of the beam splitter is an
extension of the Y matrix to include the S and PH degrees of
freedom. The PH structure corresponds to the form determined
by Eq. (11). As there is no exchange field in the splitters, the
matrix is trivial in the spin space, with the electron block given
by

SBS = Yσ S
0 . (13)

All closed quasiparticle trajectories (responsible for the
formation of Andreev levels) include only multiples of 2 ×
α/2 = α, therefore all physically different values of α lie in
the range [0,2π ].

Since any subgap electron falling from leg 3 onto the SN
interface is inevitably Andreev reflected as a hole, and the
phases accumulated by the electron and the hole in leg 3
compensate each other, the corresponding phase β does not
influence our results, dropping out from calculations below.
Therefore, without loss of generality, we put β = 0.

B. Spin filters

To model the effect of spin filtering by ferromagnets (green
insets in Fig. 1), we assume ideal spin filters (the limit of half-
metallic ferromagnets): an incoming quasiparticle with spin s
along the direction n of the filter magnetization is transmitted
without any reflection. In the opposite case, the filter acts as
the infinitely high barrier for the quasiparticle. In terms of the
exchange energy, this implies that

U (exch) =
{

0, s ↑↑ n,

∞, s ↑↓ n.
(14)

Each filter is described by 8 × 8 scattering matrix with the
PH structure determined by Eq. (11). The 4 × 4 electron blocks
has the form

SF =
(

r11 t12

t21 r22

)
. (15)

The reflection blocks in our model are

r11 = r22 = Rn

(
0 0
0 −1

)
R−1

n , (16)

where the Rn matrix takes into account the allowed spin di-
rection inside the filter, n = (sin � cos φ, sin � sin φ, cos �):

Rn =
(

cos �
2 −e−iφ sin �

2
eiφ sin �

2 cos �
2

)
. (17)
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In the geometry of Fig. 1, we have φ = 0, while � = θ/2 and
� = −θ/2 in the upper and lower arms, respectively.

The transmission blocks of SF for the upper arm have the
form

t12(�) = t21(−�) = Rn

(
ei(L+πf/2) 0

0 0

)
R−1

n . (18)

Here, L is the geometric phase (proportional to the length of
the filter) and πf/2 is the magnetic phase, with f = �/�0

being the dimensionless external flux (in our gauge, the vector
potential is nonzero only inside the ferromagnetic insets, where
it equals �/2L). For the lower arm, the sign of the magnetic
phase is inverted.

Physically, the above matrices imply that depending on
its spin, a quasiparticle either passes through the filter
accumulating phase ±(L ± πf/2) (the signs correspond to
electons/holes and upper/lower arm) or is reflected from
infinitely high barrier with phase π .

Note that in our model, we have introduced two geometrical
phases, α and L, determined by the lengths of the segments
that can belong to the same arm of the interferometer loop.
This may seem redundant; however, their role is different
due to nontrivial interference effects caused by them. For
instance, if try to get rid of α putting α = 0, the interferometer
loop effectively becomes completely opaque due to destructive
interference [29] (in the special case of θ = π , this effect has
a simple explanation, see Appendix A). At the same time, at
L = 0, the behavior of the system loses many characteristic
features. We therefore keep both the phases as geometrical
parameters of our system.

C. Scattering matrix of the interferometer

Combining the scattering matrices of the two spin filters
and the two beam splitters, we calculate the 8 × 8 scattering
matrix of the whole interferometer loop:

Sinterf =
(

See 0
0 Shh

)
. (19)

The electron and hole blocks have the following structure:

See = S∗
hh =

⎛⎜⎝ r↑ r t↑ t

−r r↓ t t↓
t↑ −t r↑ −r

−t t↓ r r↓

⎞⎟⎠, (20)

with the following symmetry relations for the elements:

r(−�) = −r(�), r↑,↓(−�) = r↑,↓(�),

t(−�) = −t(�), t↑,↓(−�) = t↑,↓(�). (21)

The matrix elements in Eq. (20) are straightforwardly obtained
within our formalism; however, their explicit form is cumber-
some, and we do not provide the corresponding expressions
here.

III. ANDREEV LEVELS

Having found the scattering matrix of the interferometer,
we reduced the problem to a very general formulation, in
which a nonsuperconducting [i.e., diagonal in the PH space,
see Eq. (19)] scatterer provides Josephson coupling between

two superconductors. In the short-junction limit, when the
energy dependence of the scattering matrix can be neglected,
we can obtain explicit analytical expressions for the Andreev
levels inside the junction for arbitrary nonsuperconducting
scatterer.

A. General analytical expression

In this section, we find the Andreev levels in the case of
arbitrary nonsuperconducting scatterer between the supercon-
ductors in the short-junction limit. We still use notation of
Eq. (19); however, the calculation below is not specific for
our setup, and requires only the diagonal PH structure of the
scattering matrix and the short-junction limit. In particular,
the scattering matrix can have arbitrary spin structure (due to
ferromagnetism, spin-orbit interaction, etc.).

The standard procedure requiring existence of nontrivial
solution in the matching problem for the scattering states (in
other words, existence of an eigenstate of HBdG) [27,28], yields
the spectral equation

det

[̂
18×8 − e−iχ

(
0 Seh

She 0

)(
See 0
0 Shh

)]
= 0, (22)

with Seh and She given by Eq. (10).
Taking the determinant in the PH space, we can rewrite the

spectral equation as

det[e2iχ · 1̂4×4 − SehShhSheSee] = 0. (23)

In this equation, energy E of Andreev levels is encoded in χ

[see Eq. (8)]. Denoting λ = e2iχ , we see that in order to find
the Andreev levels, we need to calculate the eigenvalues λ1,...,4

of matrix M = SehShhSheSee (at this point, it is important that
the short-junction limit is assumed so that M does not depend
on E).

Due to the BdG symmetry (5), the Andreev levels always
come in pairs ±E, hence the eigenvalues of M come in
conjugate pairs:

λ1 = �1, λ2 = �∗
1, λ3 = �2, λ4 = �∗

2, (24)

where |�1,2| = 1 [this structure of the eigenvalues can be
explicitly seen from relations (10) and (11), implying that
M is a special unitary matrix with det M = 1].

The eigenvalues �1,2 can be found with the help of the
following trick. On one hand, straightforward calculation of
the determinant yields

det[λ · 1̂4×4 − M] = λ4 − λ3 · tr M + · · · + 1, (25)

while, on the other hand, in terms of the eigenvalues we can
write

det[λ · 1̂4×4 − M] = (λ − �1)(λ − �∗
1)(λ − �2)(λ − �∗

2)

= λ4 − λ3 · (2 Re �1+2 Re �2)+ . . . +1. (26)

Comparing the coefficients in front of λ3 and denoting T =
tr M , we obtain the first equation for �1,2:

T = 2 Re �1 + 2 Re �2. (27)

The second equation can be obtained from Eq. (26) if we
consider λ as a free variable and put, for example, λ = i.
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Then, denoting D = det [i · 1̂4×4 − M], we find

D = −4 Re �1 · Re �2. (28)

Expressing Re �1,2 from Eqs. (27) and (28) and recalling
that Re � = Re e2iχ = 2(E/�)2 − 1, we find analytical ex-
pression for two positive Andreev levels,

E = �

2
√

2

[
T + 4 ±

√
T 2 + 4D

]1/2
, (29)

while the two negative levels only differ by the sign. In total,
as a consequence of the short-junction limit, we have only four
Andreev levels (while in the general case, their number can be
larger and grows with the junction length).

Equation (29) is a general expression for the Andreev levels
in the case of arbitrary nonsuperconducting scatterer in the
short-junction limit. In order to show its relation to known
results, we can consider the special case of a spin-independent
scattering matrix,

See =
(

ree t ′ee
tee r ′

ee

)
σ S

0 . (30)

This results in T 2 + 4D = 0, so that the square root in
Eq. (29) vanishes, leading to double degeneracy of the levels.
Considering the general case of possibly broken time-reversal
symmetry, such that t ′ee = teee

iδ with nonzero δ, we find

T = 4

(
1 − 2T sin2 ϕ + δ

2

)
, (31)

with T = |tee|2 being the transparency of the channel. As a
result, Eq. (29) yields

E = �

[
1 − T sin2 ϕ + δ

2

]1/2

, (32)

which in the time-reversal-symmetric case (δ = 0) reproduces
the well-known result for the quantum point contact (QPC)
[27].

Below, we apply the general analytical expression (29) for
the Andreev spectrum in short Josephson junctions to the
SQUID system of Fig. 1.

B. Special cases

Dependence of the Andreev spectrum on the interferometer
control parameters θ and � is shown in Figs. 2(a) and 2(c)
for two different sets of geometrical parameters α and L.
Keeping Figs. 2(a) and 2(c) in mind, we first present and
discuss analytical results for the spectrum in special cases in
Secs. III B 1–III B 4. Numerical results for the general case are
then discussed in Sec. III C.

1. Parallel magnetizations, θ = 0

When the magnetizations of the two filters are parallel,
transport of split Cooper pairs is completely suppressed, and
the supercurrent is zero. Indeed, transfer of a Cooper pair
across the system from S1 to S2 is equivalent in the BdG
language to transfer of an electron from S1 to S2, its Andreev
reflection into a hole and subsequent transfer of the hole back
from S2 to S1. This process is impossible at θ = 0: if the
electron has passed through a spin filter, this means that its
spin is along the allowed direction of both the filters, hence the
Andreev reflected hole with opposite spin cannot travel back
to S1, being trapped between S2 and the filters.

The trajectory can finally be closed after another Andreev
reflection, turning the hole into electron near S2 (see Fig. 3).
However, this process and, hence, the energy levels are
insensitive to the phase difference ϕ, and depend only on
the magnetic flux � and the geometrical parameters α and
L. Such levels do not carry supercurrent; still, it is instructive
to consider them in order to get some insight into physical
processes specific for our system.

From Eq. (29), we obtain

E = �√
2

[
1 + sin2

(
π
2 f

)[
cos(α + 2L) − cos α cos2

(
π
2 f

)] ± 2 cos
(

π
2 f

)
sin(α + L)

[
sin α cos2

(
π
2 f

) + sin(α + 2L)
]

sin4
(

π
2 f

) + 4 cos2
(

π
2 f

)
sin2(α + L)

]1/2

.

(33)

In the case of � = 0, the expression (33) simplifies as

E = �| cos(L/2)|, E = �| sin(L/2)|, (34)

while at � = �0 (i.e., at f = 1) we find a doubly degenerate
level

E = �| cos(L + α/2)|. (35)

In both the cases, the scattering matrix of the interferometer
simplifies considerably. Namely, at � = 0, the matrix elements
(20) are as follows:

r↑ = 0, r↓ = −eiα, r = 0,

t↑ = ei(α+L), t↓ = 0, t = 0,
(36)

while at � = �0, we obtain

r↑ = −e2i(L+α), r↓ = −eiα, r = 0,

t↑ = 0, t↓ = 0, t = 0.
(37)

As a result, energy levels (34) and (35) can be understood by
calculating the phase along closed quasiparticle trajectories
(see Fig. 3).

2. Antiparallel magnetizations, θ = π

When the two spin filters are magnetized in opposite
directions (θ = π ), the scattering matrix of the interferometer,
Eq. (20), has the following simplified structure:

See =
⎛⎝ r0σ

S
0 t0 exp

(
−iσ S

x
πf

2

)
t0 exp

(
iσ S

x
πf

2

)
r0σ

S
0

⎞⎠, (38)
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FIG. 2. Dependence of the Andreev spectrum [(a) and (c)] and the current-phase relation [(b) and (d)] on angle θ between the magnetizations
of the filters and on the magnetic flux � for two different sets of geometrical parameters (upper and lower rows). Each panel is a collection
of many tiles, each built at the values of θ and � corresponding to the position of the tile. In each tile, the horizontal axis corresponds to the
phase difference ϕ ∈ [−π,π ]. The vertical axes correspond to the energy (E ∈ [0,�]) and the supercurrent I (measured in units of maximal
critical current Imax

c for the corresponding geometry) for the left and right columns, respectively. The dependence on � is 2�0-periodic. Only
two positive Andreev levels are shown (the two negative levels differ by sign). For some geometries, the behavior is simple [(a) and (b),
corresponding to α = 0.25π and L = 0.8π ]; as θ decreases, the Andreev levels become flatter, and the critical current decreases, reaching zero
for parallel magnetizations. For some geometries, the behavior is much more complicated [(c) and (d), α = 0.5π , L = 0.4π ]; as θ decreases,
level crossings at zero energy may appear, leading to discontinuities in the current-phase characteristics. For some values of θ , the system
demonstrates a π -junction-type current-phase relation [see, e.g., θ = 0.4π , � = 0 in (d)].

where r0 and t0 are complex reflection and transmission
amplitudes.

The spin structure of Eq. (38) implies that reflection is trivial
in spin, while transmission rotates it by flux-dependent angle
πf around the x axis (which is collinear to the magnetization
directions at θ = π ).

As a consequence of this rotation, the Andreev bound
states are “spin-twisted.” An electron with spin-up near S1

is transformed into electron rotated by the angle πf near S2

(each electron is accompanied by the corresponding Andreev-
reflected hole). In the limiting case of zero magnetic flux,
� = 0, the rotation disappears, while at � = �0, the rotation
angle is equal to π , hence the spins near the left and right
superconductors (S1 and S2) are flipped with respect to each
other.

Although the magnetic flux strongly modifies the structure
of the Andreev bound states, it does not influence the spectrum.
Indeed, the rotation angle πf drops out from the product M =
SehShhSheSee [see Eq. 23], thus the magnetic flux does not
enter the final expression (29) for the spectrum. The physical
reason is that an electron, rotated after passing the interfer-
ometer, is then Andreev-reflected, and when traveling back,
the hole undergoes compensating rotation. Consequently, for
calculating the spectrum, we may put � = 0 for simplicity.

Next, at � = 0, the angle πf vanishes and the scattering
matrix of the interferometer (38) becomes trivial in spin. The
time-reversal symmetry is therefore effectively restored and
spectrum of our system should reproduce the well-known
result for the quantum point contact (QPC) Josephson junction
[27] [similarly to Eqs. (30)–(32) with δ = 0]. Indeed, from
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FIG. 3. Quasiparticle trajectories in the case of parallel spin filters
and the magnetic flux 0 or �0. The blue and red lines are electrons
and holes, respectively. At � = 0, the interferometer is perfectly
transparent for up spins and completely opaque for down spins [see
Eq. (36)]. As phase −4χ + 2L, accumulated along closed trajectory,
must be a multiple of 2π , the corresponding energy levels are given
by Eq. (34). At � = �0, the loop is effectively opaque for up spins
as well [beams from the upper and lower arms interfere destructively,
see Eq. (37)]. The phase along the loop is −2χ + 2L + α, and the
level is given by Eq. (35).

Eq. (29), we obtain

E = �
[
1 − T0 sin2 ϕ

2

]1/2
, (39)

with effective transparency T0 = |t0|2 determined by the
geometrical parameters of our system:

T0 = 16 sin4 α
2

16 sin4 α
2 + 4 sin2 α

2 + sin2 L + 4 sin
(
2L + 3α

2

)
sin α

2

.

(40)

3. Zero external flux, � = 0

The interferometer scattering matrix is nontrivial in
spin. At the same time, since the filters’ magnetizations
are symmetric with respect to the z axis (see Fig. 1),
and at � = 0 the two arms are equivalent from the or-
bital point of view, the z component of spin is con-
served. Indeed, the scattering matrix of the interferometer,
Eq. (20), takes the following form:

See = eiA

⎛⎜⎝
ρ↑ 0 iτ↑ 0
0 ρ↓ei� 0 iτ↓ei�

iτ↑ 0 ρ↑ 0
0 iτ↓ei� 0 ρ↓ei�

⎞⎟⎠. (41)

Here, ρ↑,↓, τ↑,↓, �, and A are real quantities, which depend
on the system parameters θ , α, and L.

Coefficients ρ↑,↓ and τ↑,↓ describe reflection and trans-
mission (we can choose ρ↑ and ρ↓ to be positive, then the
signs τ↑ and τ↓ can be arbitrary). Phase � is the difference
between the phases accumulated by electron with spin up
and down, when passing through the interferometer (the
reflection amplitude has the same phase as the corresponding
transmission amplitude due to unitarity). Phase A is a common
phase of all the matrix elements and it does not enter the final

expression for the spectrum. Explicit expressions for these
parameters in terms of θ , α, and L are extremely cumbersome.

However, the general expression (29) for the Andreev levels
can still be written in terms of the new parameters:

E = �√
2

[
1 + (ρ↑ρ↓ + τ↑τ↓ cos ϕ) cos �

± sin �

√
1 − (ρ↑ρ↓ + τ↑τ↓ cos ϕ)2

]1/2
. (42)

Note that while this result is valid at � = 0 and arbitrary
angle θ between magnetizations, the case of parallel magneti-
zations (θ = 0) also falls into the scope of Sec. III B 1, there-
fore Eq. (42) should reproduce Eq. (34) in this limit. Indeed,
at θ = 0 in Eq. (41), we obtain ρ↑ = τ↓ = 0, ρ↓ = τ↑ = 1,
� = −L − π/2, and A = α + L − π/2, thus reproducing the
scattering matrix given by Eqs. (20) and (36). Consequently,
Eq. (42) reproduces Eq. (34).

Similarly, in the case of � = 0 and antiparallel magneti-
zations (θ = π ), the result of Eq. (42) should be consistent
with Eqs. (39) and (40) of Sec. III B 2. In this limit, the
parameters determining the scattering matrix (41) take the
following values: ρ↑ = ρ↓ = √

1 − T0, τ↑ = τ↓ = √
T0, and

� = 0 (the overall phase A is nontrivial but drops out from
physical quantities, and we omit it for brevity). As a result,
Eq. (42) reproduces Eqs. (39) and (40). In Appendix B, we
demonstrate how some of regimes shown in Fig. 2 for � = 0,
can be explained qualitatively.

4. Half-period external flux, � = �0

At � = �0, the scattering matrix of the interferometer,
Eq. (20), takes the following form:

See = eiB

×

⎛⎜⎜⎝
√

1 − τ 2eiψ 0 0 τ

0
√

1 − τ 2e−iψ τ 0
0 −τ

√
1 − τ 2eiψ 0

−τ 0 0
√

1 − τ 2e−iψ

⎞⎟⎟⎠.

(43)

Here, τ , ψ , and B are real: τ describes transparency of the
system, 2ψ is the difference between the phases acquired
during down-spin and up-spin reflection, and B is the overall
phase which does not enter the final expression for the
spectrum.

Interestingly, reflection still conserves the z component
of spin, while transmission flips it. The eigenstates are
consequently “spin-flipped” (in a nonlocal sense): the sector
with electron up near S1 and down near S2 plus the Andreev-
reflected holes and the sector with opposite spins (in the
limiting case of θ = π , this has already been discussed in
Sec. III B 2 at � = �0). This flipping effectively restores the
spin symmetry: the spin-flipped sectors are equivalent (even
in the presence of the preferred z direction of the filters
configuration), hence the levels (29) become degenerate.

Unlike the case of θ = π , the time reversal symmetry is
now generally broken (i.e., Sinterf 
= ST

interf ) and the system does
not straightforwardly reduce to the QPC Josephson junction
described by Eq. (39). Instead, by simplifying Eq. (29), we
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obtain

E = �
[
cos2 ψ + τ 2 sin2 ψ − τ 2 sin2 ϕ

2

]1/2
. (44)

At the same time, this result can still be reduced to the QPC-like
form as

E = �eff

[
1 − Teff sin2 ϕ

2

]1/2
, (45)

with

�eff = �
√

cos2 ψ + τ 2 sin2 ψ, (46)

Teff = τ 2

cos2 ψ + τ 2 sin2 ψ
. (47)

In terms of the original system parameters, we find

�eff = �

[
16 sin4 α

2 sin2 θ
2 + [

1 + cos2 θ
2

]2
sin2 L − 4

[
1 + cos2 θ

2

]
sin(α + L) sin L + 4 sin2(α + L)

8 sin4 α
2 + 10 sin2 α

2 + 2 sin α
2 sin

(
3α
2 + 2L

) + sin4 θ
2 sin2 L − 4 cos θ sin L sin α

2 cos
(

3α
2 + L

)]1/2

, (48)

Teff = 16 sin4 α
2 sin2 θ

2

16 sin4 α
2 sin2 θ

2 + [
1 + cos2 θ

2

]2
sin2 L − 4

[
1 + cos2 θ

2

]
sin(α + L) sin L + 4 sin2(α + L)

. (49)

Nonideal transparency Teff , generated due to interference
effects, is not surprising. At the same time, it is interesting
that Teff can be tuned by varying θ , i.e., misorientation of
the spin filters. On the other hand, effective suppression of
�eff in the expression for the Andreev levels, Eq. (45), is
rather unexpected since the actual order parameter � of the
superconducting reservoirs is not altered.

It is straightforward to check that at θ = 0 and θ = π ,
the above expressions agree with the corresponding results
of Sec. III B 1 for parallel and Sec. III B 2 for antiparallel
magnetizations.

Indeed, at θ = 0, we obtain Teff = 0 and �eff = �| cos(L +
α/2)|, thus reproducing Eq. (35). Concerning the structure of
the Andreev states, the limiting cases of spin conserving (at
θ = 0) and spin flipping (at � = �0) transmission agree with
each other due to the fact that τ |θ=0 = 0, and the interferometer
becomes opaque (i.e., transmission disappears).

In the case of θ = π , we obtain Teff = T0 and �eff = �,
thus reproducing Eqs. (39) and (40). Half-period flux � = �0

implies f = 1, thus spin twisting in Eq. (38) reduces to spin
flipping (i.e., π twisting).

C. Numerical results in the general case

The special cases for the Andreev spectrum discussed in
Sec. III B and Appendix B (θ = 0, θ = π , � = 0, and �0 =
�0), correspond to the tiles composing the outer frames of
panels (a)–(d) in Fig. 2. In the general case, corresponding to
intermediate values of θ and �, we could not further simplify
the general analytical expression of Eq. (29). At the same time,
the numerical results of Figs. 2(a) and 2(c) demonstrate that
qualitatively, the behavior of the Andreev levels is similar to
that for the special cases.

Generally, the decrease of angle θ between the filters’
magnetizations suppresses transport of split Cooper pairs. As
a result, the Andreev levels become flatter, completely loosing
dependence on ϕ in the case of parallel filters.

Similarly to the situation discussed in Appendix B, the
levels can cross at zero energy [see cusps at E = 0 for

the positive part of the spectrum in Fig. 2(c)]. This is possible
due to the BdG symmetry (5) of HBdG, which implies that the
matrix element of the Hamiltonian between a positive-energy
state |ψ〉 and its negative-energy BdG partner P|ψ〉 is zero,
〈ψ |HBdG|Pψ〉 = 0. Therefore a (positive) level does not repel
from its (negative) mirror image, and the levels can cross at
E = 0.

At the same time, level crossing at E = 0 is not universally
protected by the BdG symmetry. For example, at θ = π , the
levels are spin-degenerate, and an energy level E can repel not
from its BdG partner with energy −E, but from a physically
different state with opposite spin (still corresponding to −E).
This leads to avoided level crossing at E = 0.

IV. JOSEPHSON CURRENT

A. Current-phase relation

At zero temperature, the current-phase relation I (ϕ) of the
SQUID is given by Eq. (1). In the short-junction limit, only two
Andreev levels determined by Eq. (29) [see examples shown
in Figs. 2(a) and 2(c)], contribute to the sum in the right-hand
side of Eq. (1).

Dependence of the current-phase relation I (ϕ) on angle θ

between magnetizations of the spin filters and on magnetic
flux � strongly varies with geometrical parameters α and L

[compare panels (b) and (d) of Fig. 2] due to interferential
nature of Cooper pair transport in ballistic systems.

When the filters are parallel (θ = 0), the supercurrent is
absent, I (ϕ) = 0. For the special cases of θ = π or � = �0,
the current-phase relation has the same form as for the QPC
Josephson junction [27]. At θ = π , it reads

I (ϕ) = e�

2h̄

T0 sin ϕ√
1 − T0 sin2(ϕ/2)

, (50)

with transparency T0 given by Eq. (40), while at � = �0, the
form is the same but with � and T0 replaced by �eff and Teff

[Eqs. (46) and (47)], respectively.
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For arbitrary values of θ and �, we can distinguish two
essentially different types of the I (ϕ) behavior depending
on the presence or absence of Andreev level crossing at
E = 0. Panel (b) of Fig. 2 illustrates the case when the
Andreev levels do not cross zero energy. The current-phase
relation in this case is qualitatively similar to that of the QPC
junction.

Panel (d) of Fig. 2 illustrates the situation when the Andreev
levels do cross zero energy. The crossings [represented by
cusps at E = 0 for the positive part of the spectrum in Fig. 2(c)]
result in discontinuities of the current-phase curves. With
decreasing θ , the concave part of the lower Andreev level
is replaced by a convex segment. When this level provides
the main contribution (see, e.g., the case of θ = 0.6π and
� = 0), this change of curvature implies switching between
0-junction-type (concave Andreev level) and π -junction-type
[34,35] (convex Andreev level) segments of the I (ϕ) curve. At
sufficiently small θ , the crossing points can shift to ϕ = ±π

and disappear, then the systems can becomes a pure π junction.
In Fig. 2(d), this happens, e.g., in the case of θ = 0.4π and
� = 0. The upper Andreev level in this particular case supports
the tendency to a π junction and enhances the contribution of
the lower level. At the same time, a π junction can also be
achieved in more complicated situations when the upper level
demonstrates the opposite (e.g., θ = 0.2π and � = 0.4�0) or
mixed (e.g., θ = 0.4π and � = 0.2�0) behavior.

B. Critical current

Explicit analytical results for the critical current Ic are
available in simple special cases. When the filters are parallel
(θ = 0), the supercurrent is absent and Ic = 0. In the cases
of θ = π or � = �0, the critical current corresponds to the
QPC-type form of the current-phase relation, Eq. (50) [27]. At
θ = π , we have

Ic = e�

h̄

(
1 −

√
1 − T0

)
, (51)

with transparency T0 given by Eq. (40), while at � = �0, the
form of the expression is the same but with � and T0 replaced
by �eff and Teff [Eqs. (46) and (47)], respectively.

At arbitrary θ and �, the critical current can be found
numerically. Due to interferential nature of Cooper pair
transport in ballistic systems, behavior of Ic in the θ -� plane
strongly depends on the geometrical parameters α and L.
Several representative examples are shown in Fig. 4.

The upper left panel illustrates the simplest case. The criti-
cal current monotonically decreases with decreasing θ , reach-
ing zero when the magnetizations are parallel. Dependence
on � resembles the usual SQUID behavior, but with nonzero
minimal current (at � = �0) and with doubled periodicity. The
upper right panel shows “inverted” dependence on magnetic
flux: Ic is maximal at � = �0.

The lower panels present more complicated regimes. The
critical current in these cases depends nonmonotonically on θ .
Moreover, the Ic(�) dependence may be nonmonotonic in the
[0,�0] interval.

We can compare our results for the dependence of the
critical current vs. misorientation angle, Ic(θ ), with analogous
results of Ref. [36], where the S-FIF-S structure was consid-

ered. In the latter structure, the two ferromagnets are connected
in series (while our system has the parallel connection). The
distinguishing feature of our results is the possibility of several
extrema of Ic(θ ) in the [0,π ] interval (in contrast to a single
minimum in the figures presented in Ref. [36]).

V. DISCUSSION

The main goal of our theoretical consideration was to eluci-
date the mechanisms of Josephson transport due to split Cooper
pairs in ballistic spin-filtering SQUIDs. In order to illuminate
distinctive physical features of such processes, we have made
a number of simplifying assumptions, the most crucial of
them being high-transmission single-channel interferometer
arms in the short-junction limit and half-metallic ferromagnets
as spin filters. These assumptions are challenging for direct
experimental realization of the considered structures. Still,
recent experimental progress makes it possible to approach
our theoretical limit.

Experimentally, a highly transmissive single-channel inter-
ferometer loop can be realized in semiconducting structures
[30]. While being a challenging task, good-quality interfaces
between superconductors and a two-dimensional electron
gas in semiconducting heterostructures and quantum wells
have been experimentally realized [37–39]. An interesting
possibility to create the spin-filtering regions is to employ
proximity-induced exchange coupling that can be controlled
electrically, similarly to what is being done in the context of
spintronics applications [40,41].

Alternatively, the interferometer loop can be implemented
with the help of single-crystalline metallic nanowires ob-
tained by templated electrodeposition [42]. Single Josephson
junctions through such nanowires have already been realized
[43], and the developed technique opens up the possibility to
fabricate nanowire-based complex hybrid structures consisting
of normal and ferromagnetic parts [44]. The next step in this
direction could be substituting sections of conventional ferro-
magnet with sections of a half-metallic ferromagnet in order
to achieve absolute spin filtering. Among possible candidates
[45,46], half-metallic CrO2 [16–18] is the best studied material
for superconducting heterostructures. Moreover, CrO2 can be
realized in the form of single-crystalline nanowires [47,48],
and good interfaces to such nanowires can be achieved in
Josephson structures [49].

Although we model beam splitting with the help of three-
terminal Y-form junctions, this specific geometry is not critical
for the physics that we discuss. Our Y splitters model possibil-
ity of crossed Andreev reflection. Experimentally, this effect
could also be achieved in the case of straight nanowires [43,44],
if they are attached to a superconductor with separation smaller
than the coherence length [21,22]. Regarding the quality
of interfaces, we note that single-crystalline Au nanowires
can form nearly perfect interfaces with superconducting
Al [50].

Taking Al for the superconducting reservoirs and single-
crystalline Cu [43,44] or Au [50] for the normal-metallic wires,
one can achieve the coherence length in the wires of the order
of several microns, so that the short-junction limit can really
be reached in SQUID structures. At the same time, as follows
from Eq. (51), the critical current in the SQUID can be as
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FIG. 4. Dependence of critical current Ic on angle θ between the magnetization directions of the spin filters (horizontal axis in each panel)
and magnetic flux � (vertical axis in each panel) for different geometries (α and L parameters). Color shows the critical current normalized
to the maximal value for the corresponding geometry, Ic/I

max
c . Outsets demonstrate behavior of Ic along the cross sections shown in the main

plots. The upper panels (left: α = π , L = 0; right: α = 0.6π , L = 0) illustrate relatively simple behavior: Ic monotonically grows with θ

and monotonically varies with � on the [0,�0] interval, reaching either minimum or maximum at � = �0. However, for some geometries,
the Ic behavior is much more complicated. The lower panels (left: α = 0.4π , L = 0.5π ; right: α = 0.1π , L = 0.3π ) illustrate nonmonotonic
dependence of Ic on θ and �.

high as the critical current in a single-channel QPC Josephson
junction. In the case of Al superconducting reservoirs, the latter
can reach the order of several tens of nanoamperes, which
can be reliably measured with the help of currently available
experimental techniques.

VI. CONCLUSIONS

We have calculated the Andreev levels and the correspond-
ing Josephson current in ballistic SQUID with spin filtering
inside half-metallic ferromagnetic arms (Fig. 1) as a function
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of two control parameters, angle θ between the magnetizations
of the spin filters and external magnetic flux �. The transport of
Cooper pairs in the presence of absolute spin filters is entirely
due to split-pair processes, with two electrons passing through
different interferometer arms. The arms were assumed to be
highly transmissive single-channel wires in the short-junction
limit.

Technically, we employ the scattering matrix approach,
starting with derivation of the general analytical result (29) for
the Andreev levels in the case of arbitrary energy-independent
nonsuperconducting scatterer between the superconducting
reservoirs. Due to the short-junction limit, the supercurrent
is carried by exactly two Andreev bound states (which can be
degenerate in limiting cases).

The obtained expression for the Andreev levels is then
applied in the special cases of θ = 0, θ = π , � = 0, and
� = �0, where analytical progress is possible. In particular,
in the θ = π case, the spectrum turns out to be insensitive
to �. Putting � = 0 for simplicity, we then find that spin
symmetry is restored, spin is conserved, and the SQUID
becomes equivalent to the QPC Josephson junction with
transparency determined by geometrical parameters of the
system (phases acquired by quasiparticles in the beam splitter
and in the spin-filtering insets). In the � = �0 case, “flipped
spin” is conserved (the flipped spin sectors are composed of
opposite spins near opposite superconductors), and the system
again reduces to the QPC Josephson junction with effective
transparency. However, in this case, the order parameter in the
QPC formulas is effectively reduced in comparison to � of the
reservoirs.

Different geometrical parameters of the system lead to
qualitatively different behavior of the SQUID characteristics
(the Andreev levels, the current-phase relation, and the
critical Josephson current) as a function of θ and �. The
current-phase relation can change its amplitude and shape, in
particular, varying between 0- and π -junction form. The
transition goes through intermediate states, in which I (ϕ) is
composed of 0- and π -type segments with jumps between
them.

As a result, the critical current Ic can become a nonmono-
tonic function of θ (as the angle varies between the parallel
and antiparallel configuration). Periodicity with respect to
the magnetic flux is 2�0, i.e., doubled, in comparison to
conventional SQUIDs. A simple process, in which two
electrons of a Cooper pair pass though two different arms,
is not sensitive to � at all. However, the scattering matrix
approach effectively sums up all possible trajectories, and
the doubled periodicity is actually due to more complicated
processes, in which one electron simply passes through its
arm, while the second one passes through the other arm and
also makes an additional loop inside the nonsuperconducting
part of the interferometer. Due to interference effects, Ic can
acquire inverted dependence on � (with maximum shifted by
half-period, i.e., from 0 to �0) or even become a nonmonotonic
function between 0 and �0 (half-period).

ACKNOWLEDGMENTS

The idea of this research was formulated in the course of
our conversations with V. V. Ryazanov, and we are grateful to

him for useful discussions of our results. We also acknowledge
useful discussions with I. S. Burmistrov, E. V. Deviatov, M. V.
Feigel’man, D. A. Ivanov, S. V. Mironov, and V. S. Stolyarov.
This work was supported by the Russian Science Foundation
(Grant No. 16-42-01035).

APPENDIX A: INTERFERENTIAL OPACITY
OF SPLITTERS

At α = 0, destructive interference generally leads to
complete opacity of the system (except for special sets of
parameters). Here, we explain this effect in the simple case of
antiparallel orientation of the spin filters, θ = π .

In order to show that the effect is not limited to ideal
(nominally reflectionless) splitters with Y33 = 0 (defined in
Sec. II A), we consider a more general matrix:

Y =

⎛⎜⎜⎝
− sin2 γ

2 cos2 γ

2
1√
2

sin γ

cos2 γ

2 − sin2 γ

2
1√
2

sin γ

1√
2

sin γ 1√
2

sin γ − cos γ

⎞⎟⎟⎠, (A1)

where the γ parameter characterizes reflection from the splitter
for quasiparticles coming from terminal 3 (from reflectionless
splitter at γ = π/2 to completely detached terminal 3 at
γ = 0).

At θ = π , for quasiparticles with spin up along the x axis,
the upper arm of the interferometer is transparent while the
lower arm is effectively interrupted in the middle (due to
the impenetrable spin filter), see Fig. 5. At first glance, the
quasiparticle can pass the interferometer through the upper
arm. However, the interference processes involving the “dead
end” (the lower arm) actually block this passage [29]. In order
to demonstrate this, we calculate the reflection amplitude r

FIG. 5. Explanation of effective interferential opacity of the beam
splitter in the simple case of θ = π . The brown arrow shows the
incoming quasiparticle and the red one is the reflected part. The blue
line denotes immediate reflection by nonideal beam splitter. The green
arrow corresponds to the path inside the dead-end “resonator” formed
by the spin filter (oriented oppositely to the quasiparticle spin) and
the beam splitter.
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FIG. 6. Qualitative explanation of the Andreev spectrum shape for � = 0. The upper and lower rows correspond to two different spin
sectors. The red and green curves in each case are the Andreev levels of opposite chirality [the blue and red arrows in column (a) show the
direction of motion for electrons and holes, respectively]. Column (a): transparent spin-independent scatterer. Column (b): shifting of the levels
due to different phases in different spin sectors. Column (c): avoided level crossings due finite transparency, which causes mixing between the
states of different chirality. Column (d): the overall structure of the Andreev levels.

for a quasiparticle trying to enter the splitter from the left
(terminal 3).

The reflection amplitude consists of two contributions.
First, the quasiparticle can be reflected immediately when try-
ing to enter the splitter (blue line in Fig. 5). The corresponding
amplitude follows directly from Eq. (A1):

r1 = − cos γ. (A2)

Second, the quasiparticle can enter the dead end (green line
in Fig. 5). Then it experiences multiple reflections from
the impenetrable wall and the splitter and finally can be
reflected back to the left. The corresponding contribution is
the following sum:

r2 = sin γ√
2

[
−1 + (−1)

(
− sin2 γ

2

)
(−1) + . . .

] sin γ√
2

= cos γ − 1. (A3)

The total amplitude is then

r = r1 + r2 = −1. (A4)

In this way, for spin-up (along the x axis) quasiparticles
even the first beam splitter of the interferometer effectively
acts as an infinitely high barrier [note that our argument
is independent on the second (right) beam splitter]. The
same reasoning is applicable for spin-down quasiparticles.
Consequently, the whole interferometer loop is impenetra-
ble although there is an absolutely transparent arm for
each spin. This simple example shows that interference is
one of the crucial factors determining the behavior of the
system.

APPENDIX B: QUALITATIVE EXPLANATION OF
SPECTRUM SHAPE FOR � = 0

In this appendix, we discuss how characteristic behavior
of the Andreev spectrum at zero magnetic flux (see Fig. 2,
� = 0) can be understood qualitatively. First, we note that
since the z component of spin is conserved at � = 0 (see
Sec. III B 3), the spectrum consists of two independent spin

sectors: up-spin electron plus down-spin hole, and the sector
with opposite spins.

Second, if we start from the case of θ = π , the scattering
by the interferometer becomes trivial with respect to spin (see
Sec. III B 2), therefore the Andreev levels for the two spin
sectors coincide. The spectrum is then described by effective
transparency, see Eqs. (39) and (40).

Third, if we additionally assume, for instance, α = π

and L = 0, the junction becomes perfectly transparent. In
the transparent case, the eigenstates are characterized by the
quantity that can be called “chirality”: for an electron moving
to the right, the Andreev-reflected hole moves to the left. The
state, in which an electron moves to the left, has the opposite
chirality.

The spectrum structure in this simplest case (equivalent to
the perfectly transparent QPC Josephson junction) is shown in
Fig. 6(a). For arbitrary θ , α, and L, the spectrum is changed
by two main factors.

(i) If Sinterf becomes nontrivial in the spin space [while
still conserving the z spin projection, which is true for � =
0, see Eq. (41)], electrons with different spins accumulate
different phases when traversing the interferometer in the same
direction. In Eq. (41), this difference is represented by �. As a
result, the energy levels shift as functions of ϕ (similarly to the
case of Ref. [51]). Since the two levels of the same spin sector
have opposite chirality, they shift in opposite directions: apart
from or towards each other, depending on the spin sector, as
shown in Fig. 6(b).

(ii) Normal reflection from the interferometer (in contrast
to the Andreev reflection from the SN boundaries) leads to
mixing of states with different chirality (belonging, at the same
time, to the same spin sector). As a result, the corresponding
avoided level crossings appear (note that states from different
spin sectors are not mixed and the levels still cross). This is
illustrated in Fig. 6(c). In Eq. (41), reflection is represented by
ρ↑ and ρ↓.

The full spectrum is then obtained as combination of the two
spin sectors, as shown in Fig. 6(d). Analyzing the scattering
matrix in the case of � = 0, Eq. (41), we see that the only
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feature not taken into account in the simplified description
leading to Fig. 6, is the difference of the probabilities for
reflection (and transmission) of two different spins. Neverthe-

less, our description is able to reproduce (at least, qualitatively)
the main types of the E(ϕ) dependence, see Figs. 2(a)
and 2(c).
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