
PHYSICAL REVIEW B 96, 174501 (2017)

Vortex-core order and field-driven supersolidity
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Superconductivity occurs in the proximity of other competing orders in a wide variety of materials. Such
competing phases may reveal themselves when superconductivity is locally suppressed by a magnetic field in
the core of a vortex. We explore the competition between superconductivity and charge density wave order in
the attractive Hubbard model on a square lattice. Using Bogoliubov–de Gennes mean-field theory, we study how
vortex structures form and evolve as the magnetic flux is tuned. Each vortex seeds a charge density wave region
whose size is determined by the energy cost of the competing phase. The vortices form a lattice whose lattice
parameter shrinks with increasing flux. Eventually, their charge-ordered cores overlap, leading to a field-driven
coexistence phase exhibiting both macroscopic charge order and superconductivity—a “supersolid.” Ultimately,
superconductivity disappears via a first-order phase transition into a purely charge-ordered state. We demonstrate
that the Hubbard model maps to a strong-coupling field theory with a constant-squared-sum constraint. We argue
that such a constraint necessarily leads to ordered-vortex cores and field-driven coexistence. The coexistence
phase can be interpreted as a crystalline arrangement of meron defects in a pseudospin description. We construct
a phase diagram using t ′, the next-nearest-neighbor hopping, to tune the competition between phases.
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I. INTRODUCTION

Superconductivity is often obtained in proximity to other
ordered ground states. The most prominent example is the
high-Tc cuprate family, where superconductivity competes
with antiferromagnetism and with charge order [1,2]. A
particularly interesting way to stabilize underlying competing
phases is to apply a magnetic field, locally suppressing
superconductivity to create vortices. The core region of the
vortex can then host competing correlations [3–5]. Indeed,
experiments with scanning tunneling microscopy have re-
vealed charge-ordered [3,5] vortex cores in the cuprates.
NMR studies of YBa2Cu3Oy indicate that as the magnetic
field increases, the intervortex distance decreases; at a critical
field strength, vortex cores overlap leading to charge order
throughout the system [6]. These and related experiments
motivate the study of vortex core order and field-driven
coexistence in the attractive Hubbard model, the simplest
model to show competition between superconductivity (SC)
and charge density wave (CDW) order.

II. HUBBARD MODEL AND SO(3) SYMMETRY

We consider fermions on a square lattice, described by

H =
∑
〈ij〉,σ

{−tij c
†
i,σ cj,σ + H.c.}

−U
∑

i

n̂i,↑n̂i,↓ − μ
∑
i,σ

n̂i,σ , (1)

where tij denotes hopping, μ is the chemical potential, and U

is the strength of the on-site attraction (U > 0). A remarkable
symmetry emerges when the hopping is restricted to nearest
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neighbors and μ is tuned to half filling: SC and CDW orders
become degenerate. Moreover, an enlarged SO(3) vector order
parameter emerges which has SC and CDW as its components,
as shown in Fig. 1 (left) [7–11]. This is a delicate symmetry
arising from the bipartite nature of the square lattice with
hoppings connecting sites of different sublattices. We can tune
away from this SO(3) degenerate point by introducing a next-
nearest-neighbor hopping, t ′. The t ′ term lowers the energy
of the SC phase relative to the CDW phase (see Fig. 7 in the
Appendix).

The SO(3) degeneracy leads to a pseudospin description
with components {Re(�i),Im(�i),φ̃i}, as shown in Fig. 1.
Here, �i and φ̃i (defined below) are the local SC and
CDW order parameters. This SO(3) symmetry is directly
analogous to the hypothesized SO(5) symmetry [12] in the
cuprates which groups SC and antiferromagnetism into an
enlarged order parameter space. As a testable consequence of
SO(5) theory, it was proposed that vortex cores would have
antiferromagnetic order [13,14]. Analogously, the Hubbard
model in Eq. (1) will possess CDW order in the vortex core.
In the language of SO(3) pseudospins, a vortex corresponds
to a “meron,” as shown in Fig. 1 (right); in the core region,
the moments cant out of the plane to locally give rise to CDW
order.

III. STRONG-COUPLING FIELD THEORY

Our first key result is that the Hubbard model, in the
vicinity of the SO(3)-symmetric point, maps onto a field
theory characteristic of phase competition. It is well known
that at large U , the Hubbard model reduces to a spin problem
with antiferromagnetic superexchange interactions [10,11].
The local order parameter is, in fact, the SO(3) spin whose
components are {Re(�i),Im(�i),φ̃i} as shown in Fig. 1. We
may expect the ground state to have uniform spin length,
i.e., |�i |2 + φ̃2

i = c, a constant independent of position. This
is a strong constraint on SC and CDW order parameters
which can no longer fluctuate independently [13]. With these
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SC
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FIG. 1. Left: The space of order parameters forming an SO(3)
sphere; the equator corresponds to the U (1) phase of the SC order
parameter while the poles correspond to two possible checkerboard
CDW orders. A generic point on the sphere represents coexisting SC
and CDW orders. Right: The order parameters forming a “meron”
in the vicinity of a vortex, with t ′ = 0.3t . Far from the core, the
pseudospins lie in the plane and wind by 2π as we move around the
vortex. Within the core, they cant out of the plane to generate CDW
order.

considerations, we assert that the Hubbard model is described
by the following Landau-Ginzburg free energy density,

L = ρ

2

∣∣∣∣
(

∇ − ie

h̄c
A

)
�(r)

∣∣∣∣
2

+ 1

8π
(∇ × A)2

+ ρ

2
|∇φ̃(r)|2 − |�(r)|2 − (1 − gt ′2)|φ̃(r)|2, (2)

with the order parameters constrained by the uniform-length
constraint. The t ′ hopping introduces an anisotropy by increas-
ing the energy of the CDW state; when t ′ = 0 and the magnetic
field is turned off, we see that SC and CDW orders become
degenerate to reveal the underlying SO(3) symmetry. Below,
we study the Hubbard model within a mean-field approach and
obtain results consistent with this field theory.

Motivated by recent experiments revealing charge order
in the cuprates, several studies have considered field theories
similar to Eq. (2) [15–17], with Refs. [18,19] also incorpo-
rating an orbital magnetic field. Our study demonstrates that
the Hubbard model, at strong coupling, provides an ultraviolet
regularization of such a field theory. The mean-field results
presented below can be viewed as saddle-point solutions of
the field theory.

IV. BOGOLIUBOV–DE GENNES MEAN-FIELD THEORY

We study the Hubbard model with the interaction strength
fixed at U = 10t , as we are interested in the strong-coupling
regime. We consider two tuning parameters in the Hamil-
tonian: the next-nearest-neighbor hopping t ′ and the orbital
field strength (described below). We perform real-space mean-
field simulations on an L × L lattice with periodic boundary
conditions, with L up to 30. To introduce an orbital magnetic
field, we add a complex phase to the hopping amplitudes tij
given by θij = e

∫ rj

ri
A · dr, where A(r) is the vector potential;

see Appendix for details. We take the magnetic field to be
uniform, assuming strong type II superconductivity (κ � 1).
The net magnetic flux through a closed surface must be
quantized in units of h/e [20]. We take the net flux through
our system to be αh/e where α is an integer. As each vortex

carries a flux 
0 = h/2e, we will always have an even number
of vortices in the system. In particular, the lowest magnetic flux
we can have is 2
0, corresponding to two vortices.

We decompose the on-site interaction term in pairing and
density channels. The SC order parameter is complex-valued,
defined as �i = U 〈ci↓ci↑〉. The density order parameter is de-
fined as φi = U

2 〈n̂i↑ + n̂i↓〉 = U
2 (〈c†i↑ci↑〉 + 〈c†i↓ci↓〉). The lo-

cal CDW order parameter can be defined as φ̃i = (−1)ri {φi −
U/2}, which measures the deviation from half filling. With
these mean-field parameters, the Hamiltonian takes the form
of a 2L2 × 2L2 matrix, which can be diagonalized using
the Bogoliubov-Valatin transformation [21–23]. We obtain
self-consistent values of �i and φi on every site. All results
presented here are obtained at half filling. With our choice
of U = 10t , we see that mean-field results always satisfy the
uniform-length constraint, yielding constant |�i |2 + φ̃2

i .
We find several self-consistent mean-field configurations,

of which the one with lowest energy is to be chosen. One
solution is a pure CDW state in which �i = 0 for all i and
φi = {φ0 + (−1)ri φ̃}, corresponding to uniform CDW order.
In the absence of a magnetic field and in the presence of a
nonzero t ′, this state has higher energy than the uniform SC
phase. When a field is imposed, this state is not affected as it is
insulating; its energy remains constant, independent of the flux
(see Appendix). In contrast, the SC phase necessarily develops
vortices when a field is imposed. As the number of vortices
increases with flux, so does the energy of the SC. As seen from
these energetic arguments, an applied magnetic field induces
competition between SC and CDW orders.

V. RESULTS

A. Vortex profile

Setting α = 1, we obtain the lowest flux configuration with
two well-separated vortices. As t ′ is increased, we find CDW
order in the vortex core until t ′ � 0.5t . For larger t ′ values,
we find a normal core with no CDW correlations. Figures 2(a)
and 2(b) show the profiles of superconducting and CDW order
at selected values of t ′. The lower panels of Fig. 2 show the
spatial maps of SC and CDW order parameters around a single
vortex for t ′ = 0.3t : CDW correlations can be clearly seen in
the vortex core region. The same information is presented in
spin language in Fig. 1 (right).

The SC and CDW profiles are, in fact, set by the same length
scale, ξ , as the order parameters are not independent due to the
uniform-spin-length constraint. From our mean-field results,
we obtain ξ by fitting the SC profile to �(x) ∼ �0 tanh(x/ξ ),
a functional form consistent with the field theory of Eq. (2)
[13]. The resulting ξ scales as 1/t ′ as shown in the inset to
Fig. 2(a). This is consistent with the field theory which has
an inherent length scale, ξL ∼

√
ρ/gt ′2 ∼ 1/t ′. This provides

strong evidence for the validity of the field theory description.

B. Length scales in the vortex

Although the vortex profile is characterized by a single
length scale ξ , we define two lengths, L� and Lφ , as the full
widths at half maximum of SC and CDW profiles, respectively.
We find that both L� and Lφ are proportional to ξ . However,
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FIG. 2. (a) Superconducting and (b) CDW order profiles at
different t ′. The inset to panel (a) shows the underlying length scale ξ

vs t ′. The red line is a fit to ξ ∼ 1/t ′. The inset to panel (b) shows the
FWHM widths, L� and Lρ , vs t ′. The lower panels show the spatial
maps of SC (|�i |) (left) and density (φi) (right) order parameters
around a vortex core for t ′ = 0.3t . The interaction strength is fixed at
U = 10t .

Lφ is always larger than L� as shown in the inset to Fig. 2(b).
This is a direct consequence of the nonlinear constant-squared-
sum constraint: while SC reaches half of its asymptotic value
quickly, CDW correlations drop to half their value at a longer
radius. We argue below that this invariably leads to phase
coexistence. The argument goes through in any system with a
similar constraint, e.g., the proposed field theory for YBCO in
Ref. [16].

As flux is increased, the vortex density increases and
the typical intervortex distance, av−v , shrinks. We expect
superconductivity to survive until av−v ∼ L�, a criterion
typically used to estimate Hc2. However, before we hit this field
strength, we encounter another threshold when av−v ∼ Lφ ;
note that L� < Lφ . At this point, the CDW regions around
each vortex overlap. The CDW order coherently percolates
throughout the system on top of the SC background, leading
to a supersolid with coexisting orders. Thus, the squared-sum
constraint inevitably leads to field-driven phase coexistence.
This is elucidated by our mean-field results presented below.

C. Vortex lattice evolution

Figure 3 shows our results for t ′ = 0.2t on a 24 × 24 lattice
for various α values (the total magnetic flux being αh/e).
The panels show real-space maps of �i and φi , showing the
evolution of a vortex lattice with increasing flux. In addition,
we plot the Fourier transform of the SC order parameter,
defined as S�(q) = (1/N)

∑
i |�i |2eiq·ri . The distribution of

peaks in S�(q) reveals the geometry of the vortex lattice.
The figure also shows the electronic density of states in the
mean-field ground state.

For small fields, with α = 2,4, we find well-separated
vortices forming an anisotropic triangular lattice. At α = 6,
the lattice becomes near isotropic. Upon increasing the field
to α = 8, the vortices form a square lattice. This suggests an

6420−2−4−6
0.0

0.1

0.2

0.3
0.0

0.1

0.2

0.3
0.0

0.1

0.2

0.3
0.0

0.1

0.2

0.3
0.0

0.1

0.2

0.3

SΔ(q)|Δi| φi N(ω)

ω

α
=

2
α

=
4

α
=

8
α

=
10

α
=

6

FIG. 3. Spatial maps of the SC order parameter amplitude,
Fourier transform of SC amplitude, and the density order parameter.
The results are for L = 24, t ′ = 0.2t , and five different magnetic
field values, parametrized by α. We also show the electronic density
of states, N (ω), as a function of field.

underlying phase transition driven by tuning vortex density.
For α > 8, we find phase separation into square and triangular
vortex lattices. Similar lattice transitions have been seen in
YBCO at high fields with triangular-square [24] and square-
triangular transitions [25] reported. Finally, at α = 12, we find
a first-order phase transition to a pure CDW phase, which
has lower energy than solutions with SC order. Thus, at
mean-field level, Hc2 is set by the competing CDW phase,
unlike in conventional superconductors. A similar transition
to a competing phase has been seen in YBCO using thermal
conductivity measurements [26].

D. Phase coexistence

The second key result of this work is a field-driven SC-
CDW coexistence regime. As seen in Fig. 3, every vortex
core nucleates CDW correlations which begin to overlap when
α = 4. The CDW order becomes progressively stronger with
increasing field as vortex cores overlap more and more. For
α � 8, we have near-uniform CDW order. With increasing
field, the SC order weakens while the CDW order parameter
grows. As a result, the electronic gap never closes, as shown
in Fig. 3.

Figure 4(a) shows the in-field phase diagram for t ′ = 0.2t .
As we force a magnetic flux through Peierl’s substitution,
there is no Hc1 in our simulations. To quantify the strength
of CDW order, we define ρ = ρ(π,π)/ρ(0,0) where ρq is the
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(a)

(b) (c)

FIG. 4. (a) CDW parameter ρ (red diamonds) and the quasiparti-
cle gap (gray circles) as a function of flux α at t ′ = 0.2t . The CDW
regions around vortex cores begin to overlap at α = 4, heralding
coexistence. The gap starts to increase beyond this threshold. In
the high-field “CDW” region, a pure CDW mean-field state is
favored over a SC phase. (b), (c) The pseudospin texture at α = 3
and 4—before and after CDW correlations span the system. The z

component of spins orders coherently in the coexistence phase.

Fourier component of the density: ρq = ∑
i φie

iq·ri . In a
perfect CDW state with site occupation oscillating between
0 and 2, ρ is unity. For small α values, we find ρ to be
small, indicating weak CDW order arising from well-separated
vortex cores. The CDW puddles formed in the cores are not
necessarily in-phase; each puddle independently chooses one
of the two checkerboard CDW patterns. With increasing α, ρ

increases monotonically. When ρ ∼ 0.3, we find that CDW
correlations begin to span the entire system. Consequently,
the system spontaneously picks one of the two CDW orders.
This marks the onset of supersolidity. Our calculations of
superfluid stiffness indicate that supersolidity is stable to
fluctuations (see Appendix). In pseudospin language, the
supersolid corresponds to a “meron crystal” with a Z2 broken
symmetry, corresponding to choice of ordering along the ±ẑ

direction; see Fig. 4(c).
While CDW and SC compete spatially, they both serve

to open an electronic gap. At zero field, we have a uniform
SC state with a large gap of the order of U . An applied
field introduces vortices with CDW correlations, leading to
a spatially textured SO(3) order parameter field. For small
magnetic fields, these order parameter gradients reduce the
electronic gap. Once CDW order percolates throughout the
system, the CDW order parameter no longer suffers sharp
gradients and strengthens the gap once again.

E. Phase diagram

Figure 5 shows the phase diagram for the Hubbard model
in the t ′-α plane. We restrict ourselves to t ′ � 0.5t , the
region with charge-ordered vortex cores. There are two phase
boundaries here: (a) the onset of phase coexistence and (b) Hc2.
The shape of these curves is given by the following qualitative
argument.

With increasing flux, the vortex density increases. Con-
sequently, the typical intervortex distance shrinks as av−v ∼
α−1/2. On the other hand, each vortex has two associated radii,
L� and Lφ . Superconductivity is suppressed out to a radius set
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FIG. 5. Mean-field phase diagram in the t ′-α plane. Phase
boundaries are fits to the form αc ∼ t ′2 (see text). The lower boundary
marks the threshold field at which CDW correlations begin to span the
system. The upper boundary corresponds to Hc2, a first-order phase
transition into a pure CDW state.

by L�, while CDW correlations extend to a larger distance,
Lφ . Both these distances are proportional to the vortex length
scale ξ ∼ 1/t ′, with L� < Lφ .

Phase coexistence sets in when CDW correlations overlap,
i.e., av−v ∼ Lφ . Using the scaling of av−v and Lφ obtained
above, we find αcoex. ∼ t ′2. Similarly, Hc2 occurs when
av−v ∼ L�, which gives αc2 ∼ t ′2. Our mean-field results are
consistent with these relations, with phase boundaries well
described by αc2/coex ∼ t ′2.

VI. DISCUSSION

In the context of the attractive Hubbard model, we have
shown that competing CDW order emerges in vortex cores.
Furthermore, we have demonstrated a field-driven SC-CDW
coexistence regime arising from overlap of vortex cores. This
state simultaneously breaks translational symmetry and U (1)
gauge symmetry, forming a “supersolid” [27]. Despite several
theoretical proposals [28–32] and suggestive signatures in
liquid He experiments [27], no unambiguous experimental
realization of supersolidity has been found to date. Our study
suggests that superconductors with competing phases are
strong candidates to realize supersolidity.

Our strong-coupling mean-field theory can be seen as a
pseudospin problem with chiral interactions introduced by the
orbital magnetic field. Our work provides a demonstration
of a “meron crystal”—a spin state with chiral texture [33].
A close analog, the skyrmion crystal, has seen a surge of
interest recently [34]. Variants of skyrmion crystals with
ordered arrangements of merons and antimerons have been
proposed earlier [35,36]. In contrast, we have demonstrated
a solid consisting solely of merons. Several phenomena seen
in skyrmion crystals, such as electromagnetic control, thermal
Hall effect, etc., may also appear in meron crystals.

At large magnetic fields, CDW order becomes much
stronger than SC. In this regime, fluctuations may destabilize
SC while leaving the CDW order intact. This suggests a
“vortex liquid” phase with remnant CDW order and vanishing
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superfluid stiffness. This is an exciting direction for future
study with interesting implications for the cuprates [37–39].

Our results broadly apply to several material families which
host competing orders. We have used t ′ as a knob to tune
phase competition; this role could be played by experimentally
tunable parameters such as doping in the cuprates [2], pressure
in TiSe2 [40], etc. Our results provide a theoretical paradigm
to understand phase competition in these systems.
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APPENDIX

1. Peierl’s substitution

We have two types of hopping terms in our Hamiltonian:
nearest-neighbor hopping with amplitude t and next-nearest-
neighbor hopping with amplitude t ′. The phase of each hopping
element represents a line integral of the vector potential,
in accordance with the principle of Peierl’s substitution.
As the vector potential is not uniquely defined, there are
several possible ways to assign the complex phases. The
gauge-invariant quantity is the magnetic flux: the sum of the
hopping phases along closed loops on the lattice.

In our periodic L × L lattice, we assign hopping phases so
as to obtain a uniform magnetic flux. We use the scheme shown
in Fig. 6. We have introduced a parameter φ which encodes
the phase picked up by an electron when hopping around any
square plaquette; i.e., the magnetic flux through each square
plaquette is h̄φ/e. Our square lattice system with periodic
boundary conditions is equivalent to a torus, a closed surface.
As shown by Dirac, the magnetic flux through any closed
surface must be quantized in units of h/e so that φ = 2απ/L2,

(m, n)

00

nφ

(1 − n)φ (−1/2 + n)φ (−1/2 + n)φ

0

(1 − L)φ

(m
+

1)L
φ(−

m
)L

φ

(m, L) (−1/2 − mL)φ

:

:

−φ/2+
(m + 1)Lφ

t
t

t
t

t
t

t
t

t t

t t

(2, 1)(1, 1) (3, 1) (4, 1) (5, 1) (1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 1)

FIG. 6. Peierls substitution scheme on the L × L lattice. Left:
The periodic cluster for L = 5 for illustration purposes. Sites are
labeled as (m,n); not all site labels are shown. The bonds present in
the cluster are depicted using dark solid lines. Bonds repeated due to
periodic boundary conditions are shown in dotted lines. The square
plaquettes are divided into two types as indicated by the color. Right:
Representative plaquettes of each type are shown, with the lower-left
site labeled. The hopping phases for the bonds on these plaquettes
are shown. The parameter φ determines the flux through each square
plaquette, given by h̄φ/e. The Dirac string passes through the red
triangular area. Due to the Dirac string, the flux is constrained to
satisfy φ = 2απ/L2, where α is an integer.

with α being an integer. The parameter α determines the total
flux through the system, given by αh/e.

Dirac further argued that in the presence of a nonzero flux,
we cannot define electronic wave functions on the surface
smoothly. The phase of the wave functions must wind around
a singularity, which is called the “Dirac string.” In our scheme,
the Dirac string passes through the red region within the
top-right square plaquette in Fig. 6. The sum of the hopping
phases around a contour which encloses this region has an
additional contribution of L2φ = 2πα. This does not indicate
an increased magnetic flux through this region; rather, it
reflects a singularity in the definition of the electronic wave
functions. Indeed, as this phase is a multiple of 2π , it does not
lead to any observable consequences.

2. Bogoliubov–de Gennes formalism

The Hamiltonian for the Hubbard model is given in the
main text. We decompose the on-site interaction term in
pairing and density channels via a mean-field decomposition.
The complex superconducting order parameter is defined as
�i = U 〈ci↓ci↑〉, while the charge order parameter is defined
as φi = U

2 (ni↑ + ni↓) = U
2 (〈c†i↑ci↑〉 + 〈c†i↓ci↓〉). The resulting

effective Hamiltonian is given by

HMFT = −t
∑
〈ij〉,σ

eiθij c
†
iσ cjσ − t ′

∑
〈〈ij〉〉,σ

eiχij c
†
iσ cjσ + H.c.

−
∑
i,σ

{μ + φi}c†iσ ciσ −
∑

i

(�ic
†
i↑c

†
i↓ + �∗

i ci↑ci↓)

+
∑

i

{|�i |2 + φ2
i }/|U |. (A1)

The hopping phases θij and χij are assigned according to the
Peierl’s substitution scheme described above. We diagonalize
this Hamiltonian using a Bogoliubov-Valatin transformation
given by ciσ = ∑

m(umiσ γmσ − sσ v∗
miσ γ

†
m,−σ ), where γ

†
mσ

(γmσ ) creates (annihilates) a quasiparticle with spin σ with
energy εσ

m and wave functions umiσ and vmiσ . We have
introduced a spin index s↑ = 1 and s↓ = −1. The resulting
gap and number equations are

�i = U
∑
m

{v∗
mi↓umi↑f (εm↑) + u∗

mi↓vmi↑f (εm↓)},

ni↑ =
∑
m

{|umi↑|2f (εm↑) + |vmi↑|2f (εm↓)}, (A2)

ni↓ =
∑
m

{|umi↓|2[1 − f (εm↑)] + |vmi↓|2[1 − f (εm↓)]},

where f (εm) = 1 (0) if εm < 0 (> 0) is the Fermi function at
zero temperature. Starting from initial guess values, we iterate
these equations to obtain self-consistent values of �i and φi .
The chemical potential is tuned to fix the density at half filling.

3. Phase competition

For a given set of parameters t ′, U , and α, we find several
self-consistent solutions. In particular, we find a pure CDW
state with �i = 0. To illustrate the phase competition in the
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FIG. 7. Phase competition between SC and CDW orders. Left:
Comparison of ground-state energies as a function of t ′/t , with
the magnetic field turned off (α = 0). At t ′ = 0, the two orders are
degenerate. A nonzero value of t ′ lowers the energy of the SC state.
Right: Ground-state energies as a function of magnetic flux, α, with
t ′ fixed at 0.2t . At α = 12, the CDW state wins over the SC state
indicating a first-order phase transition. All energies are calculated at
half filling.

Hubbard model, we compare the energy of this CDW state
with that of the SC state in Fig. 7. In the absence of a magnetic
field (α = 0), the two states are degenerate when t ′ = 0, while
a nonzero t ′ lowers the energy of the SC state.

Competition between orders can also be tuned by increasing
the magnetic field. This is depicted in Fig. 7 (right). When α

is increased at fixed t ′, the energy of the CDW state does not
change as the CDW state is an insulator. However, in the SC
phase, increasing α introduces more vortices and increases the
energy. The energy of the SC state steadily rises and eventually
crosses the CDW energy. This signals Hc2 at the mean-field
level, with CDW order becoming energetically favorable over
a superconducting vortex state.

4. Higher-t ′ regime

With increasing t ′, the radius of the CDW region in each
vortex core shrinks. Consequently, the threshold field for
coexistence increases. Figure 8 shows spatial maps of the
SC and CDW order parameters for t ′ = 0.4t which can be
compared with the t ′ = 0.2t data in Fig. 3 of the main
text. The percolation of CDW correlations is slow to occur

with a coexistence state only setting at α ∼ 11. Finally, Hc2

is encountered at α ∼ 48, when the CDW state becomes
energetically favorable. Unlike the case of t ′ = 0.2 discussed
in the main text, it is difficult to discern changes in the geometry
of the vortex lattice here due to the high density of vortices.

5. Superfluid stiffness

Our mean-field results indicate coexistence of SC and CDW
orders, forming a supersolid state. To check whether this phase
is stable to fluctuations, the standard diagnostic is superfluid
stiffness, which measures the energy cost of imposing a smooth
gradient in the SC order parameter. To estimate the stiffness,
we take the following route. We introduce an additional
component of the vector potential Atangential = 2πx̂/L. If we
were to turn off the orbital magnetic field, this vector potential
leads to a “flowing” superfluid solution with �i ∼ �0e

i4πxi/L.
The resulting energy cost is a measure of superfluid stiffness.
For a simple superfluid with no competing order, this energy
cost (the increase in energy per site) is proportional to ρ/L2,
where ρ is the superfluid stiffness and L is the system size. We
define η(L) = E2π − E0, where E2π is the energy (per site)
of the flowing state. This is calculated by using the �i values
obtained after inclusion of the tangential vector potential to
evaluate the expectation value of the mean-field Hamiltonian.

The obtained η(L) values are plotted as a function of 1/L2

in Fig. 9. In the α = 0 case (no orbital magnetic field), we see
that η(L) indeed scales as 1/L2, with a positive slope. This
slope is proportional to the superfluid stiffness.

In the presence of the orbital field, we seek to plot η(L)
for configurations with the same magnetic flux density across
different system sizes. In our calculations, the magnetic flux
density is αh/eL2, with α being an integer and L ranging from
18–30 (for smaller sizes, we see strong finite-size effects).
Generically, it is not possible to find multiple {α,L} values
for which α/L2 is a constant. In Fig. 9, we plot η(L) for
{α,L} = ({2,18},{4,24},{6,30}) and ({4,18},{8,24},{12,30})
which correspond to approximately constant α/L2 values. The
resulting η(L) values also scale linearly with 1/L2 with a
positive slope. We conclude that the superfluid stiffness is
positive for these flux densities. We also note that the stiffness
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FIG. 8. Spatial maps of the pairing amplitude (|�i |) and the CDW (φi) order with changing magnetic field at t ′ = 0.4t on a 24 × 24 lattice.
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FIG. 9. Superfluid stiffness. We plot η(L) vs 1/L2 for three
sets of {α,L} values: (a) ({0,18},{0,24},{0,30}) (blue downward
triangles), (b) ({2,18},{4,24},{6,30}) (green upward triangles), and
(c) ({4,18},{8,24},{12,30}) (red squares). The lines are fits to the
form η = ρ/L2. All three best-fit lines have positive slopes indicating
a positive superfluid stiffness.

decreases with increasing flux density. In particular, we note
that the stiffness is positive for the flux densities corresponding
to α = 4 and α = 8 on a 24 × 24 lattice. As discussed in the
main text, these parameters have macroscopic CDW order with
CDW correlations spanning the entire system. This suggests
that the coexistence phase is stable to fluctuations.

It is possible that that stiffness may vanish at higher flux
densities, perhaps close to Hc2. In this regime, the CDW
order parameter becomes approximately constant while the SC
order parameter suffers large gradients due to the presence of
vortices. It is then conceivable that fluctuations can wash out
the in-plane order while preserving order in the z direction.
This will lead to a “pairing liquid” state (analogous to a
spin liquid) with remnant CDW ordering. Equivalently, this
can be understood as melting of the vortex lattice. Below
this threshold, the intervortex distances are fixed by strong
interactions between vortices. A small amount of disorder will
then suffice to pin the entire vortex lattice so as to generate
a robust SC state. However, when fluctuations wash out the
coherence in the SC, the vortices become mobile giving
rise to a “vortex liquid.” This is an interesting direction for
future study.
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