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Theory of out-of-equilibrium ultrafast relaxation dynamics in metals
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Ultrafast laser excitation of a metal causes correlated, highly nonequilibrium dynamics of electronic and ionic
degrees of freedom, which are, however, only poorly captured by the widely used two-temperature model. Here
we develop an out-of-equilibrium theory that captures the full dynamic evolution of the electronic and phononic
populations and provides a microscopic description of the transfer of energy delivered optically into electrons to
the lattice. All essential nonequilibrium energy processes, such as electron-phonon and phonon-phonon interac-
tions are taken into account. Moreover, as all required quantities are obtained from first-principles calculations,
the model gives a realistic and material-dependent description of the relaxation dynamics without the need for
fitted parameters. We apply the model to FePt and show that the detailed relaxation is out-of-equilibrium for ps.
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I. INTRODUCTION

Excitation of a material with an intensive, ultrashort optical
pulse brings the material’s electrons into a strongly out-of-
equilibrium state that is immediately followed by intense,
correlated dynamics between the electrons and other degrees
of freedom in the material, such as the lattice or spin systems
[1–4]. The ability to measure the ultrafast relaxation dynamics
of the involved subsystems using pump-probe techniques has
led to the discovery of many unexpected phenomena, such as
ultrafast demagnetization [2], change of magnetic anisotropy
[5], or coherent generation of magnetic precession [6,7]. More
recently, ultrafast generation of lattice strain waves [8–10],
coherent control of atomic and molecular dynamics [11],
coherent phonon generation [12,13], and laser-induced super-
conductivity at high temperature [14] have been reported. In
spite of the importance of the material’s nonequilibrium state in
these laser-induced phenomena, it is surprising that most theo-
retical descriptions of the ensuing out-of-equilibrium dynam-
ics are based on the widely used two-temperature model (2TM)
[15,16], which assumes that the electronic and phononic
subsystems are separately in thermodynamic equilibrium [17].

Research on nonequilibrium states of matter has emerged
recently as an important area in condensed matter physics
(see, e.g., Refs. [18–26]) and, consequently, several improved
models have been developed that incorporate aspects of out-of-
equilibrium electronic dynamics [27–30]. However, these still
lack a feasible out-of-equilibrium description of the full system
and its time evolution, and contain parameters that are either
fitted experimentally or chosen from a macroscopic system
at equilibrium. Additionally, recent investigations [10,31,32]
have emphasized that the assumption of thermal phonons could
lead to marked disagreement with experimental observations.

Here we propose a general theory to describe the ultrafast
dynamics triggered by ultrashort laser pulses in metals. Con-
trary to the 2TM, our model employs an out-of-equilibrium
description of the electronic and phononic populations and
provides the full dynamic description of the nonequilibrium
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relaxation processes. The decisive quantities that govern the
dynamical relaxation are the phonon mode dependent electron-
phonon coupling and the mode-dependent phonon-phonon
scattering terms.

It is important to stress that these quantities have an explicit
dependence on the electronic and phononic temperature,
respectively, as well as on the phononic branch and wave
vector, and, moreover, that they are fully derived from ab initio
simulations. Thus, as the theory only uses quantities obtained
from ab initio calculations, it provides a parameter-free de-
scription of the relaxation dynamics and could hence become
of great value for modeling and predicting nonequilibrium
dynamics following ultrafast laser excitation. As an example,
the model is used to describe the ultrafast dynamics in FePt
after femtosecond laser irradiation, illustrating as well the
limitations of the 2TM.

II. OUT-OF-EQUILIBRIUM DYNAMICAL MODEL

To describe the nonequilibrium time evolution of the
electronic and phononic degrees of freedom of the laser-
excited material, we divide the out-of-equilibrium metallic
system in different, independent subsystems that interact with
one another, schematically shown in Fig. 1. Specifically, we
describe the lattice by dividing it into N independent phonon
subsystems, each of them corresponding to a specific branch
ν and momentum q. They interact with one another through
phonon-phonon scattering and with the electrons via electron-
phonon scattering. These interactions are phonon momentum
and branch dependent. Therefore, these phonon subsystem
populations nνq evolve separately during the nonequilibrium
dynamics and we can define a “lattice temperature” T

Q
� (with

Q ≡ νq) for each of them (the meaning of this definition is
discussed further below). The impulsive laser excitation brings
a part of the electrons into a nonthermal state (Fig. 1). For
the electrons, we follow the description of Carpene [27], in
which the electronic system is divided in a thermal bath that
contains the majority of thermal electrons with temperature Te

and in a laser-excited nonthermal electron distribution, which
relaxes driving energy into the thermal distribution through
the electron-electron and electron-phonon interactions. The
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FIG. 1. Scheme of treating out-of-equilibrium dynamics of elec-
trons and lattice. The electronic subsystem is excited via femtosecond
laser pulses. The major part of the electronic system is considered in
local thermal equilibrium whereas a small part that absorbs most of the
laser energy is in a nonthermal state. The electronic subsystems relax
energy by interaction with different phononic subsystems, which also
exchange energy among themselves (depicted by arrows).

latter interaction conducts the energy from the laser-excited
electrons to the different lattice subsystems, bringing them to
different temperatures, i.e., into a nonequilibrium state. The
phonon-phonon scattering causes the transferred energy to be
shared between the phonon subsystems, guiding them toward
a common lattice temperature, and therefore to a thermal
equilibrium of the lattice. Hence, the rates of electron-phonon

and phonon-phonon scattering are the quantities that determine
the system’s temporal evolution to equilibrium.

To achieve a theoretical formulation, we make use of
the conservation of total energy and classical kinetic theory.
The total lattice energy is given by E� = ∑

Q h̄ωQnQ and
the total electronic energy by Ee = 2

∑
k εkfk , where h̄ωQ

is the phonon energy, εk the electron Bloch energy [33] (with
k ≡ nk, being n and k the electronic band and momentum,
respectively), and nQ and fk are phonon and electron popula-
tions, respectively. The latter are in local equilibrium given by
the Fermi-Dirac and Bose-Einstein distributions

fk = [
e

εk−μ(Te )
kB Te (t) + 1

]−1
and nQ = [

e

h̄ωQ

kB T
Q
�

(t) − 1
]−1

. (1)

with μ(Te) being the electronic chemical potential at elec-
tronic temperature Te. We can define the rates of energy
exchange as

∂E�

∂t
=

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph +

∑
Q

h̄ωQṅQ

∣∣scatt.
ph−ph, (2)

∂Ee

∂t
= 2

∑
k

εkḟk

∣∣scatt.
e−ph = −

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph, (3)

where the dot stands for the time derivative and the subscripts
denote the different scattering processes that change the
distribution. The equivalence in Eq. (3) stems from the conser-
vation of total energy. The time derivatives of the distribution
functions due to different scattering terms can be derived from
the classical kinetic theory by using the well-known Fermi’s
golden rule of scattering theory. By doing so, we obtain an
extended version of the Bloch-Boltzmann-Peierls equations
(see Ref. [34], and Appendix A)

ḟk

∣∣scatt.
e−ph = −2π

h̄

∑
Q

|Mkk′ |2{fk(1 − fk′)[(nQ + 1)δ(εk − εk′ − h̄ωQ) + nQδ(εk − εk′ + h̄ωQ)]

− (1 − fk)fk′[(nQ + 1)δ(εk − εk′ + h̄ωQ) + nQδ(εk − εk′ − h̄ωQ)]}, (4)

ṅQ

∣∣scatt.
e−ph = −4π

h̄

∑
k

|Mkk′ |2fk(1 − fk′)[nQδ(εk − εk′ + h̄ωQ) − (nQ + 1)δ(εk − εk′ − h̄ωQ)], (5)

ṅQ

∣∣scatt.
ph−ph = 2π

h̄

∑
k′k′′

|	−Qk′k′′ |2{(nQ + 1)(nk′ + 1)nk′′δ(ωQ + ωk′ − ωk′′) + (nQ + 1)(nk′′ + 1)nk′δ(ωQ + ωk′′ − ωk′)

− nQnk′(nk′′ + 1)δ(ωQ + ωk′ − ωk′′) − nQnk′′(nk′ + 1)δ(ωQ + ωk′′ − ωk′) + (nQ + 1)nk′nk′′δ(ωQ − ωk′′ − ωk′)

− nQ(nk′ + 1)(nk′′ + 1)δ(ωQ − ωk′′ − ωk′)}. (6)

Here Mkk′ and 	−Qk′k′′ are the electron-phonon and phonon-phonon matrix elements, respectively, as defined in Appendix A.
Equations (2) and (3) describe the energy flow between electron and phonon subsystems under the assumption that the

diffusion term can be neglected, which is a valid assumption on the short time scale of the typical out-of-equilibrium process. The
laser driving field induces the nonequilibrium electronic distribution and enters in the rate equations as source term. Substituting
Eqs. (4)–(6) in (2) and (3), and making an expansion of the distribution functions to second order in the phonon mode and electron
temperature differences (see Appendix B), we obtain a set of coupled differential equations that connect the time evolutions of
the electron temperature Te and the temperatures T

Q
� of the different phonon modes,

CQ

∂T
Q
�

∂t
= −GQ

(
T

Q
� − Te

)[
1 + J

(
ωQ,T

Q
�

)
(T Q

� − Te

)] − 1

9

∑
k′

CQ
Qk′
(
T

Q
� − T k′

�

) + 1

NQ

∂Ue−ph

∂t
, (7)

Ce

∂Te

∂t
=

∑
Q

GQ

(
T

Q
� − Te

)[
1 + J

(
ωQ,T

Q
�

)(
T

Q
� − Te

)] + ∂Ue−e

∂t
, Q = Q1, . . . ,QN. (8)
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Ce and CQ are the temperature-dependent electronic and
phonon mode dependent specific heats, respectively, and GQ

and 
Qk′ are the mode-dependent electron-phonon coupling
functions and the mode-dependent phonon linewidths, which
are caused by the phonon-phonon interactions. ∂Ue−e

∂t
and ∂Ue−ph

∂t

describe the rate transferred from the laser-induced nonequi-
librium electron distribution into the thermal electronic bath
via electron-electron interaction and into the lattice through
electron-phonon interaction, respectively [27]. J (ωQ,T

Q
� ) is

a function of the mode-dependent phonon frequencies and
temperatures, which accounts for the second-order term in
temperature differences; its full form is given in Appendix B.

III. RESULTS

To obtain a full solution of the out-of-equilibrium model,
defined by Eqs. (7) and (8), it is necessary to compute the mate-
rial specific quantities, the phonon and electronic specific heats
and phonon mode-dependent electron-phonon and phonon-
phonon linewidths. These can be conveniently calculated
using the spin-polarized density functional theory in the local-
density approximation. Here we have employed the electronic
structure code ABINIT [35]. Specifically, the mode-dependent
electron-phonon linewidths were computed as response
function within the density functional perturbation theory
whereas the mode-dependent phonon-phonon linewidths due
to phonon-phonon interaction were determined using many-
body perturbation theory in a third-order anharmonic Hamil-
tonian which includes up to three-phonon scattering [36]. The
coupled Eqs. (7) and (8) are then solved numerically, with the
ab initio quantities, and without any free fitting parameters.

We emphasize that the phonon branch and wave vector
q dependent phonon temperatures act here as an auxiliary
quantity that allows us to use for each phononic subspace a
Bose-Einstein distribution with a local temperature T

Q
� . This

choice of representing the nonequilibrium quantities is made
on purpose in the current formulation to exemplify how the
out-of-equilibrium model relates to the already extensively
used 2TM. An alternative, equally valid formulation is to use
the nonequilibrium mode-dependent electronic and phononic
occupation numbers. While the phonon branch and wave
vector dependent temperature might not be measurable, recent
electron diffraction experiments showed that nonequilibrium
phonon populations in reciprocal space can be measured [37].
The electron temperature Te is conversely a quantity that can
be obtained from pump-probe photoemission measurements
[38–40]. As will become evident below, the out-of-equilibrium
model [Eqs. (7) and (8)] leads to results that are markedly
different from those of the 2TM. Nonetheless, it can be
recognized that under simplifying assumptions the 2TM can
be obtained from Eqs. (7) and (8). To this end, it is important
to realize that the momentum and branch dependence of
GQ drives the lattice out of equilibrium, causing a distinct
energy flow between the electronic bath and the different
phonon modes. In contrast, in the 2TM, the coupling be-
tween the electronic bath and lattice is determined by the
electron-phonon coupling parameter Geq, which is constant
and identical for all the phonon modes. Thus, by assuming
a single phonon temperature T� for all phonon modes and
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FIG. 2. Calculated phonon dispersions of ferromagnetic FePt
along high-symmetry lines in the simple tetragonal BZ. The symbol
size is proportional to the magnitude of the mode-dependent electron-
phonon coupling function GQ at 300 K.

wave vectors and neglecting quadratic terms in the temperature
difference Te − T�, along with setting Ue−ph = 0, and using
Gep = 1

NQ

∑
Q GQ (valid under the assumptions of the 2TM,

see Appendix A), one recovers the common 2TM [16].
To recognize the importance of the mode and wave vector

dependent electron-phonon coupling function GQ we perform
ab initio calculations of this quantity for ferromagnetic
FePt, which is the prime material for high-density optic and
magnetic recording [41,42]. Bulk FePt orders in the L10

structure in which the (001) planes are alternatively occupied
by Fe and Pt atoms. Our ab initio calculation of the ground
state magnetic properties of FePt is in good agreement with
previous work [43].

In Fig. 2 we show our ab initio calculated mode-dependent
electron-phonon coupling function GQ of FePt at 300 K
together with the phonon dispersions along high-symmetry
lines in the simple tetragonal Brillouin zone (BZ). We can
readily see that the electron-phonon coupling constants are
larger for optical phonon modes, reaching several orders of
magnitude differences between some points of the BZ (see,
e.g., optical phonons at the X point compared to acoustic
phonons at the 
 point). These findings demonstrate the
limitations of considering a single Gep with the lattice at one
local thermal equilibrium, since the range of values of GQ

is several orders of magnitude. On account of the different
coupling strengths, the laser-excited electrons will couple
mainly to the optical phonon modes.

To account for the scattering processes of electrons away
from the Fermi surface, we have additionally included an
electron temperature dependence of the mode-dependent
electron-phonon coupling function, using [44]

GQ(Te) = GQ

∫ +∞

−∞
dε

∂fk

∂ε

g(ε)2

g2(εF )
, (9)

with g(ε) being the electron density of states at energy ε and
εF is the Fermi energy. In Fig. 3, we illustrate the relevance of
the electron temperature for GQ. The calculation shows a fast
growth of 1

NQ

∑
Q GQ with Te (red line), as compared with the
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FIG. 3. Calculated total electron-phonon coupling as a function
of electronic temperature (red line), compared with the computed
total electron-phonon coupling at 300 K (yellow line), and with
a theoretical estimation (a: purple line) [45]. The inset shows the
temperature-dependent electronic specific heat.

temperature independent value (yellow line) and an estimated
value of Geq used recently [45] to reproduce experimental data
with a 2TM (purple line). At high electronic temperatures, Gep

is an order of magnitude larger, which will clearly influence
the early dynamics of the system after laser irradiation.

Also, we would like to stress that to correctly assess the
dependence of the electron heat capacity on the electronic
temperature, in our model we calculate it as the derivative
of the total electron energy density against the electron
temperature [44], Ce(Te) = ∫ +∞

−∞ (∂fk/∂Te)g(ε)εdε. This is
in contrast to the common use of the Sommerfeld expansion
of the free energy to calculate Ce, which provides a linear
temperature dependence, i.e. Ce(Te) = π2k2

Bg(εF )Te/3. The
difference between these two different descriptions is shown
in the inset of Fig. 3.

Another key quantity of our model is the explicit incor-
poration and calculation of the phonon anharmonicities that
enter into the model through the mode-dependent phonon
linewidths 
Qk . This quantity is related to the mode-dependent
phonon lifetime τQ due to phonon-phonon interaction, via
τQ = [2

∑
k 
Qk]−1. Notably, in the 2TM it is assumed that

such interactions are very strong and lead to very short phonon
lifetimes, and therefore to an immediate equilibration of the
lattice. In Fig. 4, we show the calculated τQ of FePt at 300 K
along high-symmetry lines in the BZ. It can be clearly seen
how different phonon modes and branches have different
lifetimes, as indicated in the color changing when moving
along the phonon dispersions. The phonon lifetimes for the
optical branches range from 2 to 10 ps, while the acoustic
branches have phonon lifetimes larger than 10 ps, diverging at
the 
 point. These time scales are much larger than the initial
ultrafast dynamics of the system. Thus, our calculations show
that the assumption of an immediately thermalized lattice, as
made in the 2TM, is not tenable, since the phonon-phonon
lifetimes are at least one order of magnitude larger than the
electron-phonon lifetimes.

The combination of the main results shown in Figs. 2 and
4, namely strong mode-dependent excitation of phonon modes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

X Γ M A Γ Z

F
re

qu
en

cy
 (

T
H

z)

100

101

102

103

τ 
(p

s)

FIG. 4. Calculated phonon dispersions of ferromagnetic FePt
along high-symmetry lines. The symbol color is related to the phonon
lifetimes at 300 K due to phonon-phonon interaction (see color bar
on the right).

via electron-phonon coupling and slow lattice thermalization
through phonon-phonon interaction, suggests that the lattice
remains out-of-equilibrium not only at sub-ps time scales, but
even on much larger time scales. This is a striking difference
with respect to the model by Waldecker et al. [31,32], who
predicted that phonons thermalize within a few ps. The
disagreement with their results is a consequence of the different
theoretical description they proposed. They use a (nonmicro-
scopically) derived phonon branch dependence to account for
the different strength in the electron-phonon interaction, and
obtain the phonon-phonon coupling by fitting experimental
data under the assumption of equal phonon-phonon interaction
strength between branches. This assumption is, however, not
justified, as we have seen in Fig. 4, where the phonon lifetime
is strongly mode dependent. Also, as we have seen in Fig. 2,
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20 to 100 ps. Dashed lines show the results of the 2TM solved with
ab initio calculated input parameters for FePt.
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the electron-phonon coupling functions do, in fact, strongly
vary within the same phonon branch.

To provide the first ab initio description of laser-induced
nonequilibrium dynamics in a metal, and to answer the
question for how long the lattice is out-of-equilibrium, we
have numerically solved our nonequilibrium rate Eqs. (B23)
and (B24), considering NQ = 163 phonon modes (enough to
achieve good numerical convergence).

In Fig. 5, we plot the temporal evolution of the electronic
and phonon mode temperatures for times up to 100 ps. The
electronic temperature (blue line) increases rapidly, reaching
up to 1575 K in 196 fs, followed by an exponential decrease
with a decay time of about 1225 fs (light shaded area).
The final electronic temperature reached (after 100 ps) is
366 K. We also show the phonon mode-dependent range of
temperatures versus time (red area). The individual evolution
of each phonon mode is left out for sake of simplicity. Initially,
the maximum values in the range, which stem from optical
phonon modes, increase, reaching a value of about 590 K at
1660 fs, followed by a slow monotonic decrease. On the other
hand, the minimum values, which stem from acoustic modes
close to the 
 point, keep increasing very slowly, reaching a
temperature of 313 K at 100 ps. Notably, the phonon mode
temperatures cover a range of hundreds of K during several
ps, evidencing a nonequilibrium behavior. To estimate the
weight of each phonon mode in the thermalization process
and to avoid the singular behavior of some phonon modes,
such as phonon modes close to 
, we also show the average
phonon temperature (green line), calculated as the sum of
phonon mode temperatures over NQ. Although the average
phonon temperature reaches an almost converged value very
fast (within the first ps), it is stunning to observe that this
temperature still differs from the electronic temperature even
at 100 ps, which confirms a continuing energy flow between
the electronic and phononic systems. Moreover, the phonon
modes’ temperatures cover an interval of about 50 K at 100 ps.

For comparison, we have computed the electronic temper-
ature evolution using the 2TM with the parameters obtained
recently to simulate ultrafast demagnetization in FePt [45].
The results, shown in Appendix C, are strikingly different.
Not only does Te reach higher values (around 1700 K) in
much shorter time (about 100 fs), also the final electronic
temperature is higher, about 550 K. Additionally, the electron-
lattice dynamics is much faster, reaching a common thermal
equilibrium after only 1.5 ps. In contrast, our results evidence
that the lattice remains out-of-equilibrium not only during
short time scales after laser excitation but also on large time
scales, and provide a clear example that a nonthermal modeling
is needed to describe the out-of-equilibrium dynamics.

IV. SUMMARY AND CONCLUSION

In conclusion, we have developed a nonequilibrium theory
to describe the out-of-equilibrium dynamics triggered by
ultrashort laser pulses. The ab initio determination of the
model parameters bestow the model with an unprecedented
predictive power. Our simulations for FePt unambiguously
reveal that, in contrast to previous understanding, the lattice is
not in equilibrium even after 20 ps. As ultrafast nonequilibrium

dynamics of materials is a strongly emerging research area, and
since our theory can provide a fully parameter-free description
of the ensuing dynamics, we expect it to become a valuable
tool for future modeling of ultrafast relaxation dynamics of
laser-excited metals.

Note added in proof: While this paper was in review,
another work was published which, similarly to our work,
proposes a generalized two temperature model to treat the
laser-induced non-equilibirum dynamics [46]. Although the
microscopic scattering terms used in both, our work and
Ref. [46], are the same, in the latter model a “successive
thermalization” method is used to compute the thermalization
of the system, where electrons and different subsets of
phonons are thermalized successively but not collectively, i.e.
at each time only some phonon modes thermalize with the
electronic system. As a consequence, in each of the “time
steps” what dominates the dynamical relaxation is the lifetime
of a few individual scattering processes. Additionally, and
due to their methodology the phonon-phonon interaction is
not sufficiently treated. Contrary, in our work the whole
dynamical behavior of the system is correctly solved. It is
worth to note that due to limitations of the model [46], no
phonon mode can reach temperatures higher than the electronic
temperature. Conversely, in our model this is possible and is a
natural consequence of solving exactly the coupled system as
illustrated in our work.
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APPENDIX A: INITIAL CONSIDERATIONS
AND MATHEMATICAL DERIVATION OF THE

TWO-TEMPERATURE MODEL

The objective of the appendices is to derive the out-of-
equilibrium rate equations, which describe the return to local
equilibrium of a metal that has been excited through an ultrafast
laser pulse. In doing so, we will first follow the assumptions
considered in the 2TM, i.e., both electrons and phonons are
assumed to be internally and separately in equilibrium due to
strong electron-electron and phonon-phonon interactions. In
Appendix B, the full out-of-equilibrium will be derived.

The rate equations will detail the energy exchange between
the electrons and the phonons due to the electron-phonon
interaction. We will use the classical kinetic theory and the
distribution functions fk(r,t) and nQ(r,t), which measure the
number of carriers in a k (Q) state in the neighborhood of r at
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a time t , and in local equilibrium correspond to

fk(r,t) = 1

e
εk−εF
kB Te (t) + 1

, (A1)

nQ(r,t) = 1

e

h̄ωQ

kB T
Q
�

(t) − 1

, (A2)

where k and Q are short notations for the electron and phonon
quantum numbers kn and Qν, respectively, n and ν being
the electron and phonon band indices. εk , εF , and ωQ are the
electron, the Fermi, and the phonon energies, respectively.
Besides, the equilibrium distributions are characterized by
separate electron and k- and mode-dependent phonon temper-
atures, Te(t) and T

Q
� (t), respectively. For sake of simplicity,

from now on we will use fk and nQ as short for fk(r,t) and
nQ(r,t), respectively. Please note that starting from Eq. (A1)
we use εF rather than the electronic chemical potential μ(Te),
as defined in Eq. (1).

To determine the change of the electronic and phononic
distribution functions’ different processes such as diffusion,
external fields, and scattering are relevant, that can be
represented in the Boltzmann equations

ḟk = ḟ scatt.
k + ḟ dif.

k + ḟ field
k , (A3)

ṅQ = ṅscatt.
Q + ṅdif.

Q + ṅfield
Q . (A4)

Assuming that the external field caused by the laser has
disappeared at time t = 0 and also considering only short time

scales and constrained geometry, we neglect the influence of
diffusion and external field on the change in the phonon and
electron population of states. Therefore, we only consider the
scattering term as the driver of equilibrium between electrons
and phonons. Thus, Eqs. (A3) and (A4) become

ḟk = ḟ scatt.
k and ṅQ = ṅscatt.

Q . (A5)

By using time-dependent perturbation theory, the scattering
terms can be determined. They are the result of the probability
transition from an initial state to a final state induced by
a perturbation term, H ′, (in our specific case, the electron-
phonon interaction). When the perturbation term is small, the
probability transition W (f,i) is defined by the well-known
Fermi’s golden rule of scattering theory,

W (f,i) = 2π

h̄
| 〈f |H ′|i〉 |2δ(Ef − Ei ∓ h̄ω), (A6)

where 〈f | and |i〉 denote the final and initial states, re-
spectively. This is valid under the assumption that the free
time between two successive collisions is large enough to be
consistent with the precondition for the derivation of Fermi’s
golden rule as a first-order approximation.

Considering the electrons as a rarefied gas in a “sea” of
phonons, we can neglect the electron-electron interaction, and
hence only the electron-phonon interaction is included in the
scattering term for electrons. By also including the reverse
process in the transition probability, we obtain the following
rate equation for the electron distribution (see, for instance,
[17,34]):

ḟk = ḟ
∣∣scatt.
e−ph = W (f,i) − W (i,f ) (A7)

= −2π

h̄

∑
Q

|Mkk′ |2[fk(1 − fk′)[(nQ + 1)δ(εk − εk′ − h̄ωQ) + nQδ(εk − εk′ + h̄ωQ)]

− (1 − fk)fk′[(nQ + 1)δ(εk − εk′ + h̄ωQ) + nQδ(εk − εk′ − h̄ωQ)]], (A8)

where Mkk′ is the electron-phonon matrix element [47]. Making analogous calculations and considering only electron-phonon
scattering, we obtain for the change of the phonon distribution function

ṅQ

∣∣scatt.
e−ph = −4π

h̄

∑
k

|Mkk′ |2fk(1−fk′)[nQδ(εk − εk′ + h̄ωQ) − (nQ + 1)δ(εk − εk′ − h̄ωQ)]. (A9)

Equations (A8) and (A9) are known as the Bloch-Boltzmann-Peierls formulas [17].
To calculate the rate of energy exchange between the electrons and the phonons ∂Ee

∂t
, we use the conservation of total energy

2
∑

k

εkḟk

∣∣scatt.
e−ph +

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph = 0, (A10)

and the relation δ(−εk + εk′ + h̄ωQ) = δ(εk − εk′ − h̄ωQ), and find

∂Ee

∂t
= 2

∑
k

εkḟk

∣∣scatt.
e−ph = −

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph (A11)

= 4π

h̄

∑
kk′

h̄ωQ|Mkk′ |2fk(1 − fk′)[nQδ(εk − εk′ + h̄ωQ) − (nQ + 1)δ(εk − εk′ − h̄ωQ)] (A12)

= 4π

h̄

∑
kk′

h̄ωQ|Mkk′ |2[(fk′ − fk)nQ − fk(1 − fk′)]δ(−εk + εk′ + h̄ωQ), (A13)

174439-6



THEORY OF OUT-OF-EQUILIBRIUM ULTRAFAST . . . PHYSICAL REVIEW B 96, 174439 (2017)

where the factor 2 in front of the change of electronic energy appears because of the electron-spin degeneracy. Furthermore, we
multiply the right-hand side of Eq. (A13) with the factor

1 =
∫ ∞

−∞
dε δ(εk − ε) =

∫ ∞

−∞
dε′δ(εk′ − ε′). (A14)

Then, under the assumption of small temperatures and because of h̄ωQ � εk,εk′ , we can write∫ ∞

−∞
dε′

∫ ∞

−∞
dε

∑
kk′

|Mkk′ |2δ(εk′ − ε′)δ(εk − ε) ≈
∫ ∞

−∞
dε′

∫ ∞

−∞
dε

∑
kk′

|Mkk′ |2δ(εk′ − εF )δ(εk − εF )
g2(ε)

g2(εF )
, (A15)

where g(ε) denotes the density of states at energy ε. Subse-
quently, we get

∂Ee

∂t
= 2

∑
k

εkḟk

∣∣scatt.
e−ph = −

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph

=
∑
Q

γQ

∫ ∞

−∞
dε

∫ ∞

−∞
dε′[(fk′ − fk)nQ − fk(1 − fk′)]

× δ(−εk + εk′ + h̄ωQ)
g2(ε)

g2(εF )
, (A16)

where

γQ = 4πωQ

∑
k

|Mkk′ |2δ(εk′ − εF )δ(εk − εF ) (A17)

is the phonon linewidth. Step Eq. (A15) was taken due to
the assumption that, considering small temperatures, only
electrons with energies close to the Fermi level contribute to
the scattering. As we consider sufficiently small temperatures,
we also set g2(ε)

g2(εF ) = 1, assuming that the density of states is
nearly constant around the Fermi level.

To proceed with the derivation we consider the following
relations:

α(k) − α(k′) = εk

kBTe

− εk′

kBTe

= h̄ωQ

kBTe

, (A18)

fk′ − fk = 1

eα(k′) + 1
− 1

eα(k) + 1
= eα(k) − eα(k′)

(eα(k′) + 1)(eα(k) + 1)
,

(A19)

fk(1 − fk′) = 1

eα(k) + 1

(
1 − 1

eα(k′) + 1

)

= (fk′ − fk)
1

eα(k)−α(k′) − 1
= (fk′ − fk)n(ωQ,Te), (A20)

where we have used h̄ωQ = εk − εk′ because of the δ-function
in Eq. (A16).

Making a Taylor expansion of fk = f (εk) around small
h̄ωQ = εk − εk′ while neglecting terms of higher than first
order yields

f (εk) = f (εk′) + h̄ωQ

∂f (ε)

∂ε

∣∣∣∣
εk′

+ O((h̄ωQ)2). (A21)

Using Eqs. (A20) and (A21), we obtain the following expres-
sion for the energy exchange rate:

∂Ee

∂t
=

∑
Q

γQ

∫ ∞

−∞
dε(−1)

∂fk

∂ε

g2(ε)

g2(εF )

× h̄ωQ[n(ωQ,T�) − n(ωQ,Te)]. (A22)

Additionally, by doing the integral over ε we arrive at

∂Ee

∂t
=

∑
Q

γQh̄ωQI (Te)[n(ωQ,T�) − n(ωQ,Te)], (A23)

where

I (Te) ≡
∫ ∞

−∞
dε(−1)

∂fk

∂ε

g2(ε)

g2(εF )
≈

∫ ∞

−∞
dε(−1)

∂fk

∂ε
= 1.

(A24)

A second Taylor expansion up to first order around small
�T = Te − T� provides

n(ωQ,Te) = n(ωQ,T�) + CQ

h̄ωQ

(T� − Te), (A25)

where CQ = h̄ωQ
∂nQ

∂T
= ∂EQ

∂T
is the phonon-mode dependent

specific heat and EQ the phonon-mode dependent internal
energy, whereas C� = ∂E�

∂T
= ∑

Q h̄ωQ
∂nQ

∂T
= ∑

Q CQ is the
total specific heat of the lattice.

By substituting Eq. (A25) in Eq. (A23), we can write

∂Ee

∂t
=

∑
Q

γQCQ(T� − Te) = G(T� − Te), (A26)

with G = ∑
Q γQCQ.

Since Ce = ∂Ee

∂Te
(analogous for the lattice) and assuming

that Ce and C� are constant in time, even though they change
with the temperature, we obtain the final rate equations that
define the 2TM [16,48]

Ce

∂Te

∂t
= −G(Te − T�), (A27a)

C�

∂T�

∂t
= G(Te − T�). (A27b)

To include the laser-induced material excitation, an addi-
tional term can be added to Eqs. (A27a) and (A27b). Here,
we assume that, due to the much lower heat capacity of the
electrons as compared to the phonons, only the electrons will
be influenced by the laser pulse. The laser excitation is modeled
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by a Gaussian laser pulse which has the following power:

P (t) = P0 exp

[
−

(
t − t0

σ

)2
]
, (A28)

where t0 is the center of the Gaussian and σ the standard
deviation.

Hence, we have shown that, under the assumptions of the
2TM, the laser-induced dynamics in a metal are described by
the following rate equations:

Ce

∂Te

∂t
= −G(Te − T�) + P (t), (A29)

C�

∂T�

∂t
= G(Te − T�). (A30)

APPENDIX B: MATHEMATICAL DERIVATION OF THE
OUT-OF-EQUILIBRIUM DYNAMICS MODEL

1. Description of nonthermal electrons

For sake of completeness, we provide here the main
equations derived by Carpene [27] as an extension of the 2TM
to take into account a nonthermal electronic distribution, thus
giving a better description of the laser-induced dynamics of
the system. For a detailed derivation we refer the reader to
Carpene’s work [27].

Considering a Gaussian laser pulse with power of the form

P (t ′) = 2

s
√

2π
exp

(
−2t ′2

s2

)
, (B1)

with s the pulse duration, the absorbed laser power density
according to Beer’s law is

Wa(t ′,z) = (1 − R)φ α exp(−αz)P (t ′), (B2)

where R is the reflectivity, α the absorption coefficient of
the sample, and φ the laser fluence. Neglecting the thermal
diffusion due to the considered short calculation time scales,
we set the thickness inside the target equal to zero z = 0.
Since the nonthermal electronic distribution becomes the heat
source for both the thermal electrons and the lattice, we can
write Eqs. (A29) and (A30) as follows:

Ce

∂Te

∂t
= −G(Te − T�) + ∂Ue−e

∂t
, (B3a)

C�

∂T�

∂t
= G(Te − T�) + ∂Ue−ph

∂t
, (B3b)

with

∂Ue−e

∂t
= (1 − R)φ

hν2
α

∫ t

−∞
P (t ′)He−e(t − t ′)dt ′, (B4)

∂Ue−ph

∂t
= (1 − R)φ

hν2
α

∫ t

−∞
P (t ′)He−ph(t − t ′)dt ′, (B5)

and

He−e(t − t ′) = −exp
( − (t − t ′)

(
h2ν2/ε2

F /τ0 + 1/τep
))

(t − t ′)2
· [

h2ν2(t − t ′) + ε2
F τ0

(
1 − exp

(
(t − t ′)h2ν2/ε2

F /τ0
))]

, (B6)

He−ph(t − t ′) = −exp
( − (t − t ′)

(
h2ν2/ε2

F /τ0 + 1/τep
))

(t − t ′)τep
· ε2

F τ0
[
1 − exp

(
(t − t ′)h2ν2/ε2

F /τ0
)]

. (B7)

In these formulas, hν is the laser photon energy, τep is the electron-phonon relaxation time, and τ0 = 128/(
√

3π2ωp), with ωp

being the plasma frequency (for most metals this typically gives τ0 ≈ 1 fs [27]).

2. Influence of phonon-phonon scattering on the phonon population

To estimate the relevance of phonon-phonon scattering on the change of phonon population, we make use of Fermi’s golden
rule [Eq. (A6)], where the perturbation term is now defined by the phonon-phonon interaction

H ′ = Hph-ph =
∑

Q,k,k′
	Q,k,k′(âQ + â

†
−Q)(âk + â

†
−k)(âk′ + â

†
−k′), (B8)

where

	Q,k,k′ = 1

3!
√

N

∑
κκ ′κ ′′

∑
αβγ

Aκ,QAκ ′,kAκ ′′,k′

√
h̄3

8mκωQmκ ′ωkmκ ′′ωk′′

∑
l′,l′′

	αβγ (0κ,l′κ ′,l′′κ ′′) exp(ik · (r(l′κ ′) − r(0κ)))

× exp(ik′ · (r(l′′κ ′′) − r(0κ))) exp(i( Q + k + k′) · r(0κ))�( Q + k + k′), (B9)

with

�( Q + k + k′) =
{

1 if Q + k + k′ is a reciprocal lattice vector

0 else
, (B10)

and N being the number of unit cells in the crystal, κ and l indicating the κth atom in the lth unit cell, mκ being the atomic mass
of type κ , 	αβγ the anharmonic force constant, with α,β,γ being Cartesian indices. r(lκ) is the vector of the equilibrium lattice
position, ωk the harmonic frequency, and Aκ,k the polarization vector of the k-mode and the κth atom [36]. Here it is important
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to note that only processes where three photons are involved are calculated, i.e., either two phonons scatter into one phonon or
vice versa. Therefore, by using expressions Eqs. (A6) and (B8) we obtain

ṅQ

∣∣scatt.
ph-ph = 2π

h̄

∑
k,k′

|	−Q,k,k′ |2[(nQ + 1)(nk + 1)nk′δ(ωQ + ωk′ − ωk′′) + (nQ + 1)(nk′ + 1)nkδ(ωQ + ωk′ − ωk)

− nQnk(nk′ + 1)δ(ωQ − ωk′ + ωk) − nQnk′(nk + 1)δ(ωQ + ωk′ − ωk)) + (nQ + 1)nknk′δ(ωQ − ωk′ − ωk)

− nQ(nk + 1)(nk′ + 1)δ(ωQ − ωk′ − ωk)]. (B11)

We can now use the following relations (and additionally, we define β(k) ≡ h̄ωk

kBT k
�

):

nknk′ = 1

(eβ(k) − 1)(eβ(k′) − 1)
= (nk + nk′ + 1)

1

eβ(k)+β(k′) − 1
, (B12)

nk(nk′ + 1) = 1

eβ(k) − 1

(
1

eβ(k′) − 1
+ 1

)
= (nk − nk′)

−1

eβ(k)−β(k′) − 1
. (B13)

By assuming T k
� ≈ T k′

� and defining T kk′
� ≡ 2T k′

� T k
�

T k′
� +T k

�

, which can then be approximated as T kk′
� ≈ T k

� ≈ T k′
� , and using ωQ =

ωk ± ωk′ [to evaluate the δ-functions in Eq. (B11)], we can rewrite

h̄ωk

kBT k
�

± h̄ωk′

kBT k′
�

= h̄ωkT
k′
� ± h̄ωk′T k

�

kBT k′
� T k

�

≈ h̄(ωk ± ωk′) T k′
� +T k

�

2

kBT k′
� T k

�

= h̄ωQ

kBT k′
�

= h̄ωQ

kBT k
�

, (B14)

and then Eqs. (B12) and (B13) become

nknk′ = (nk + nk′ + 1)nQ

(
T kk′

�

)
, (B15)

nk(nk′ + 1) = −(nk − nk′)nQ

(
T kk′

�

)
, (B16)

and Eq. (B11) can be written as

ṅQ

∣∣scatt.
ph-ph = 2π

h̄

∑
k,k′

|	−Q,k,k′ |2[(nQ

(
T kk′

�

) − nQ

(
T

Q
�

))
(nk − nk′)[δ(ωQ + ωk − ωk′) − δ(ωQ − ωk + ωk′)]

+ (
nQ

(
T kk′

�

) − nQ

(
T

Q
�

))
(nk + nk′ + 1)δ(ωQ − ωk − ωk′)

]
(B17)

= 2π

h̄

∑
k,k′

|	−Q,k,k′ |2(nQ

(
T kk′

�

) − nQ

(
T

Q
�

))[
(nk − nk′)[δ(ωQ + ωk − ωk′) − δ(ωQ − ωk + ωk′)]

+ (nk + nk′ + 1)δ(ωQ − ωk − ωk′)
]
, (B18)

which yields

ṅQ

∣∣scatt.
ph-ph = 1

9

∑
k


Qk

(
nQ

(
T kk′

�

) − nQ

(
T

Q
�

))
, (B19)

where the phonon linewidth due to phonon-phonon scattering [36] is used,


Qk = 18π

h̄2 |	−Q,k,k′ |2[(nk − nk′)(δ(ωQ + ωk − ωk′) − δ(ωQ − ωk + ωk′)) + (nk + nk′ + 1)δ(ωQ − ωk − ωk′)]. (B20)

Analogous to Eq. (A25), a Taylor expansion around small �T = T
Q
� − T kk′

� up to first order,

n
(
ωQ,T kk′

�

) = n
(
ωQ,T

Q
�

) − CQ

h̄ωQ

(
T

Q
� − T kk′

�

)
, (B21)

turns Eq. (B19) into

ṅQ

∣∣scatt.
ph-ph = 1

9

∑
k


QkCQ

(
T

Q
� − T kk′

�

)
, (B22)

which determines the changes of phonon population due to phonon-phonon interaction, being a phonon mode- and branch-
dependent quantity.
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3. Nonthermal electronic and phononic populations

To describe the temperature evolution of the material properly, we combine the treatment of the nonthermal electrons as a heat
source (see description by Carpene [27]) with the treatment of the lattice as a system divided in NQ phononic subsystems, which
are distinguished by their quantum numbers Q1, . . . ,QN , and each of which is considered to be in local “thermal” equilibrium.
We emphasize, however, that the phononic subsystems Qi act rather as a mathematical quantity, which allows us to employ for
each of them a Bose-Einstein distribution with a temperature T

Qi

� .
In the following, we will derive our mathematical model, which describes the ultrafast laser-induced dynamics of a metal and

takes into account the main interaction processes such as electron-phonon and phonon-phonon scattering as well as the impact
of the nonthermal electrons as the heat source. To achieve this theoretical derivation, we will make use of the conservation of
total energy and the classical kinetic theory, analogous to the derivation of the 2TM (see Appendix A). Doing so, we can define
the rate of energy exchange as

∂E�

∂t
=

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph +

∑
Q

h̄ωQṅQ

∣∣scatt.
ph-ph + ∂Ue−ph

∂t
, (B23)

∂Ee

∂t
= −

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph + ∂Ue−e

∂t
, (B24)

with ∂Ue−e

∂t
and ∂Ue−ph

∂t
being the source terms.

Therefore, the rate of energy exchange of the electronic subsystem is described by

∂Ee

∂t
= −

∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph + ∂Ue−e

∂t
(B25)

=
∑
Q

γQCQ

(
T

Q
� − Te

) +
∑
Q

γQCQJ
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2 + ∂Ue−e

∂t
, (B26)

where we have made use of the expression derived in the first section of Appendix A [Eq. (A26)], and the Taylor expansion done
in Eq. (A25) has been extended up to second order to additionally investigate the influence of higher-order terms,

n(ωQ,Te) = n
(
ωQ,T

Q
�

) − CQ

h̄ωQ

(
T

Q
� − Te

) +
⎛
⎝exp

( h̄ωQ

kBT
Q
�

) + 1

exp
( h̄ωQ

kBT
Q
�

) − 1
− 2kBT

Q
�

h̄ωQ

⎞
⎠ CQ

kBT 2
�

(
T

Q
� − Te

)2
. (B27)

Thus, the rate of energy exchange due to electron-phonon scattering is∑
Q

h̄ωQṅQ

∣∣scatt.
e−ph = −

∑
Q

γQCQI (Te)
(
T

Q
� − Te

)
(B28)

−
∑
Q

γQCQI (Te)

⎛
⎜⎝exp

(
h̄ωQ

kBT
Q
�

)
+ 1

exp
(

h̄ωQ

kBT
Q
�

)
− 1

− 2kBT
Q
�

h̄ωQ

⎞
⎟⎠ h̄ωQ

kBT 2
�

(
T

Q
� − Te

)2
(B29)

= −
∑
Q

γQCQI (Te)
(
T

Q
� − Te

) −
∑
Q

γQCQI (Te)J
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2
, (B30)

with

J
(
ωQ,T

Q
�

) ≡ h̄ωQ

kBT 2
�

⎛
⎜⎝exp

(
h̄ωQ

kBT
Q
�

)
+ 1

exp
(

h̄ωQ

kBT
Q
�

)
− 1

− 2kBT
Q
�

h̄ωQ

⎞
⎟⎠. (B31)

Additionally, it is important to note that here we do not work with the assumption I (Te) ≈ 1 any longer [see Eq. (A24)], but
compute I (Te) = − ∫ ∞

−∞ dε ∂
∂ε

g2(ε)
g2(εF ) explicitly by numerical integration.

Under the assumption that the electronic specific heat Ce is constant in time, Eq. (B26) becomes

Ce

∂Te

∂t
= ∂Ee

∂t
=

∑
Q

γQCQI (Te)
(
T

Q
� − Te

) +
∑
Q

γQCQI (Te)J
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2 + ∂Ue−e

∂t
, (B32)
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which describes the temperature evolution of the electronic subsystem coupled to the phonons and the nonthermal electrons.
Analogously, the energy exchange rate for each of the Q-phonon modes can be written as

∂E
Q
�

∂t
= h̄ωQṅQ

∣∣scatt.
e−ph + h̄ωQṅQ

∣∣scatt.
ph-ph + 1

NQ

∂Ue−ph

∂t
. (B33)

We can substitute Eqs. (B22) and (B30) into Eq. (B33) and obtain

CQ

∂T
Q
�

∂t
= ∂E

Q
�

∂t
= −γQCQI (Te)

(
T

Q
� − Te

) − γQCQI (Te)J
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2

− 1

9

∑
k


QkCQ

(
T

Q
� − T kk′

�

) + 1

NQ

∂Ue−ph

∂t
. (B34)

Here, unlike in the case of the 2TM, and due to the phonon-phonon interaction, there is an explicit dependence on the local
phonon subsystems’ temperatures, which can differ from one another, and therefore this aspect does not allow us to define a
single lattice temperature. The laser-induced electronic and lattice dynamics are consequently described by the following set of
NQ + 1 coupled differential equations (NQ phonon subsystems plus the electronic subsystem):

Ce

∂Te

∂t
=

∑
Q

GQ

(
T

Q
� − Te

) +
∑
Q

GQJ
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2 + ∂Ue−e

∂t
, (B35a)

CQ

∂T
Q
�

∂t
= −GQ

(
T

Q
� − Te

) − GQJ
(
ωQ,T

Q
�

)(
T

Q
� − Te

)2 − 1

9

∑
k


QkCQ

(
T

Q
� − T kk′

�

)

+ 1

NQ

∂Ue−ph

∂t
for Q = Q1, . . . ,QN, (B35b)

with GQ = γQCQI (Te) being the mode-dependent electron-
phonon coupling constant.

The numerical solution of this system of NQ + 1 cou-
pled differential equations describes the nonequilibrium time
evolution of a laser excited metal. The main quantities that
determine the dynamics and therefore the relaxation times
are the Q-phonon-mode specific heat, the electronic specific
heat, and the electron-phonon coupling GQ, which is different
for each phonon mode. They also depend on the phononic
linewidth due to phonon-phonon scattering 
Qk and a quantity
J (ωQ,T

Q
� ) defined previously. The source terms ∂U

∂t
are the

ones introduced by Carpene [27]. It is important to stress
here that the phonon modes are both mode and branch
dependent.

APPENDIX C: LASER-INDUCED ELECTRON
AND LATTICE TEMPERATURE EVOLUTION

In Fig. 6, we plot the temporal evolutions of the electronic
and phonon mode temperatures of FePt for times up to 100 ps
obtained with our out-of-equilibrium model. As in the main
text, the blue and green solid lines depict the electronic and
average phonon temperatures, while the red area shows the
phonon mode range of temperatures. Additionally, and for
sake of comparison, we also show the results predicted by the
2TM when using our ab initio calculated parameters (green
and blue dashed lines), as well as the result of the 2TM using
the parameters derived recently by Mendil et al. [45] (orange
and red dashed lines). We stress that our out-of-equilibrium
model provides a completely different dynamic, not only on
short time scales, but also at long times.

Comparing to the 2TM by Mendil et al., we note that it
predicts that the electron temperature Te reaches higher values
(around 1700 K) in much shorter time (about 100 fs), and
also the final electronic temperature is higher, about 550 K.
Additionally, the electron-lattice dynamics are much faster,
reaching a common thermal equilibrium after only 1.5 ps.
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FIG. 6. Ab initio calculated temporal evolution of the electronic
temperature Te (blue line), average phonon temperature Tph (green
line), and temperature range within which all the phonon-mode tem-
peratures are contained (red area), using the full out-of-equilibrium
model. The inset shows the temporal evolution from 20 to 100 ps. (a)
Dashed green and blue lines show the results of the 2TM for FePt
obtained with our ab initio calculated parameters. (b) Dashed orange
and red lines show the results of the 2TM for FePt computed with the
fitted parameters obtained recently by Mendil et al. [45].
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In contrast, the 2TM dynamics obtained with our ab initio
parameters provide a temporal evolution of the lattice close to
the average phonon temperature in our model, the electronic
temperatures between both models are different by around

100 K at short time scales (2 − 5 ps) and 10 K at 100 ps.
This evidences that even using fully ab initio parameters in the
2TM, it nonetheless does not reproduce the out-of-equilibrium
laser-induced temporal dynamics in the electron systems.
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