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Antiferromagnetic nano-oscillator in external magnetic fields
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We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given
time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring
heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy.
We derive an analytical formula describing the interaction between such a system and an external field, which
can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal
magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical
simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained
results and find a very good quantitative agreement between analytical and numerical predictions.
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I. INTRODUCTION

Antiferromagnetic spintronics is a rapidly developing do-
main that can bring a lot of potential applications with respect
to magnetic memories, magnonics, or spin caloritronics [1–3].
Recently, it has been proposed to utilize an antiferromagnet
in oscillators producing signal in a terahertz range [4–6].
The working principle of such a device relies on a spin-orbit
interaction taking place in a neighboring metallic layer and
injecting a spin current into the antiferromagnet, where it exerts
a spin-transfer torque that can sustain a stable oscillation in
the presence of additional anisotropy [5,6]. By the virtue of
spin pumping effects [4,7–10], this oscillation can produce an
electric field that, depending on the type of antiferromagnet
material used and on the powering current density, may be
in the range of hundreds of GHz or THz. Such a feature is
extremely interesting from the application point of view, since
reliable signal processing at this frequency has been often
identified as a challenging technological issue [6,11–13].

The dynamics of antiferromagnetic oscillators is typically
described by a system of coupled equations which can later be
reduced to a single equation describing the Néel vector time
evolution [5,6]. Using such an approach, multiple physical
quantities, including the threshold current, the oscillation
frequency or the linewidth, can be derived. We propose
to expand this framework by including the effects of an
interaction between a working oscillator powered by a spin
current and an external magnetic field. Similar interactions
between an antiferromagnetic material and an external field
have been already described in the context of magnetic field
rapid pulse switching [1,14–18], but not in the context of an
oscillator emitting a THz signal. A generalized solution to
the Néel vector dynamics equation and a formula describing
the response to any given external field will be derived. A
number of specific cases of interactions with an external field
that are particularly interesting from either a fundamental
or application point of view will also be discussed. We
believe that, although controlling the magnetization with an
external magnetic field is generally considered undesirable in
the modern spintronics, our findings may contribute to the
understanding of the antiferromagnetic oscillator dynamics as
well as assist in the future development of its applications.

A schematic representation of the considered system can
be seen in Fig. 1. A spin-polarized current is injected into a
thin antiferromagnetic layer, exerting a torque in the direction
opposite to the direction of the hard axis anisotropy field
and leading to an occurrence of magnetization vectors joint
precession. The characteristic frequency of this precession
is determined mostly by the antiferromagnetic exchange
field amplitude. In a typical antiferromagnetic material, the
exchange field is of the order of magnitude of 103 T and
the obtained oscillations are thus close to the THz range. In
addition to this picture, we introduce a time-dependent external
field vector �Hp(t), which will further alter the dynamics of the
system. Since fields lying in the antiferromagnet easy plane
are not expected to influence the oscillations greatly, we limit
the direction of the external field to the hard axis direction.

II. GENERAL ANTIFERROMAGNETIC
OSCILLATOR DYNAMICS

We consider an antiferromagnetic oscillator described by
two magnetization vectors �m1 and �m2 with dynamics gov-
erned by the following Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equations: [4,6,19–24]

d �m1

dt
= −γ ( �m1 × �H1 + α �m1 × ( �m1 × �H1))

+ τ �m1 × ( �m1 × �p), (1)

d �m2

dt
= −γ ( �m2 × �H2 + α �m2 × ( �m2 × �H2))

+ τ �m2 × ( �m2 × �p), (2)

where γ is the electron gyromagnetic ratio equal to 176.1
GHz/T, α is the damping coefficient, �p is a unit vector along
the spin current polarization, τ is the spin-transfer torque
expressed in frequency units, and �H1, �H2 are the effective fields
for both vectors. In our case, there are three main contributions
to the effective field: the antiferromagnetic exchange field �Hex ,
the hard axis anisotropy field �Hh, and the external field �Hp,
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FIG. 1. Schematic picture of the antiferromagnetic nano-
oscillator interacting with external magnetic field. Bright red arrows
represent the antiferromagnetic magnetization vectors �m1 and �m2,
blue arrows represent the influence of hard axis anisotropy field
�Hh and of the spin torque �τ (both constant in time). Green arrow

represents the external magnetic field �Hp (varying in time) which is
either parallel or antiparallel to the anisotropy field.

which leads to the equations:

�H1 = − 1
2Hex �m2 − Hh�nh(�nh · �m1) + �Hp, (3)

�H2 = − 1
2Hex �m1 − Hh�nh(�nh · �m2) + �Hp, (4)

where �nh is a unit vector along the hard anisotropy axis. In
practice, we limit our investigation only to the cases where
�Hp is parallel or antiparallel to �nh. Following the procedure

described in Ref. [6], equations (1) and (2) can be rewritten as
differential equations for spherical coordinates φ and θ of the
antiferromagnetic Néel vector [25,26] �l = ( �m1 − �m2)/2:

θ̇ φ̇

ωex

sin(2θ ) + sin2 θ

(
φ̈

ωex

+ αφ̇ + τ

)
= 0, (5)

θ̈

ωex

+ αθ̇ − sin θ cos θ

(
(φ̇)2

ωex

+ ωH

)
= 0, (6)

where ωex = γHex and ωH (t) = γHh. The equations above
can be solved for the special case of θ = π/2 (rotation taking
place in the easy antiferromagnet plane only), leading to a
single equation for φ:

φ̈

ωex

+ αφ̇ + τ = 0. (7)

It can be seen immediately that φ̇ = −τ/α satisfies the
equation above. In the case of the external magnetic field
being present, additional terms will arise in the Lagrangian
describing the antiferromagnet dynamics [26–29], leading to
a modified version of the equation for φ at θ = π/2:

φ̈

ωex

+ αφ̇ + τ + γ
dHp

dt

ωex

= 0, (8)

with a new factor in the solution describing the interaction
between the antiferromagnetic oscillator and the external
magnetic field pointing along the system hard axis:

φ̇(t) = −τ/α + γ e−λt

∫ t

−∞

(
dHp

dt ′

)
eλt ′dt ′, (9)

where λ = ωexα. The time evolution of the φ̇ derivative (and,
therefore, of the output electric field) is fully determined by
the history of external magnetic field changes dHp/dt ′ and the
parameters of the system.

To gain an additional insight into the antiferromagnetic
oscillator dynamics, we conducted numerical simulations of
a system governed by Eqs. (1) and (2) in the presence of a
magnetic field step function. The parameters of the oscillator,
if not specified otherwise, were similar to those in Ref. [6]
(i.e., an antiferromagnetic insulator characterized by Néel
temperature significantly above the room temperature, such as
NiO [30]) and were as following: α = 0.0035, μ0Hex = 981 T
(ωex = 2π × 27.5 THz), μ0Hh = 1.57 T, τ = −10.87 GHz,
μ0Hp = 50 mT. The driving spin current was polarized
along the antiferromagnet hard axis direction. The obtained
magnetization record was translated into the φ̇ value and
then into the electric field output using a proportionality
constant κ = 1.35e − 9 (V/m)/(rad/s), following Ref. [6].
The simulation results can be seen in Fig. 2 (empty circles)
and calculated for (a) different μ0Hex values, (b) different
α values, (c) different field step amplitude μ0Hp values.
The analytical predictions given by Eq. (9) are included in
Figs. 2(a)–2(c) as solid lines. Additionally, the initial value of
the output electric field (d) is shown as a function of the external
field step amplitude together with a linear fit. The fitted slope
value is 237.7 (V/m)/T, which corresponds to the product of
gyromagnetic ratio γ and proportionality constant κ and thus
agrees with equation (9) for a magnetic field step excitation.

III. INTERACTIONS WITH SPECIFIC MAGNETIC FIELDS

In this section, we will use the equation (9) to derive the
antiferromagnetic oscillator response to a number of specific
magnetic field excitations. We will present both the analytical
calculations and the results of the numerical calculations
conducted for an example system described in the previous
section.

A. Magnetic field pulse

One of the most commonly encountered types of magnetic
field excitation is a single magnetic pulse characterized by
a rectangular, trapezoidal, or Gaussian-like shape. Since an
antiferromagnetic oscillator does not respond to a constant
magnetic field level, but only to the field derivative, the
response to a rectangular pulse is described by a simple
superposition of two responses to a single step (Fig. 2), with
their values having opposite signs.

To describe the interaction with a trapezoidal magnetic field
pulse, a response to a linearly changing field has to be derived
first. By assuming Hp(t ′) = βt ′ during a certain time period
tA < t < tB and field derivative equal to zero for other t values,
we can obtain:

φ̇(t) = −τ/α + γ e−λt

∫ tB

tA

βeλt ′dt ′

= −τ/α + γβ

λ
(eλ(tB−t) − eλ(tA−t)). (10)

The full response to a trapezoidal pulse is a simple super-
position of two responses to a linearly changing field, each
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FIG. 2. Comparison of the electric field outputs obtained from numerical simulations (empty circles) of Eqs. (1) and (2) and from the
analytical solution (solid lines) (9) for (a) different values of μ0Hex , (b) different values of α, (c) different values of μ0Hp . If not specified
otherwise, μ0Hex was equal to 981 T, α was equal to 0.0035, and μ0Hp to 50 mT. Figure (d) shows the value of electric field change as a
function of the external magnetic field step amplitude together with a linear fit.

with their respective β value describing the field slope. For
tA < t < tB , the upper bound of the integral tB is replaced
by t .

The response to a Gaussian-shaped field pulse characterized
by an amplitude H0, center position tμ, and variance t2

σ is given
by:

φ̇(t) = −τ/α + γH0e
−λt

∫ t

−∞

d

dt ′
(
e
− (t ′−tμ)2

2t2σ
)
eλt ′dt ′

= −τ/α + γH0e
−λt

∫ t

−∞

tμ − t ′

t2
σ

e
− (t ′−tμ)2

2t2σ eλt ′dt ′. (11)

The integral above cannot be expressed using elementary
functions. Nevertheless, it can be calculated numerically with
any given accuracy.

To illustrate and verify the solutions derived above, we con-
ducted simulations of the antiferromagnetic oscillator system
described by LLGS equations (1) and (2). The parameters of
the system were the same as in the previous section, except
for an additional magnetic field in the form of a trapezoid [see
Fig. 3(a)] or Gaussian-like pulse [Fig. 3(b)]. The maximum
amplitude of pulses was equal to 10 mT in both cases. The
response of the antiferromagnetic oscillator to this excitation
can be seen in Figs. 3(c) and 3(d), respectively. In both cases,
the analytical solutions described by equations (10) and (11)
were compared to the results of numerical simulations based
on equations (1) and (2). One can see that a good agreement

between these two methods is achieved for the trapezoidal as
well as the Gaussian-like field excitation, which indicates that
the approximations we used to derive the analytical solution
are valid for this kind of setup.
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FIG. 3. Magnetic field pulses of trapezoidal (a) and Gaussian-like
(b) shape and the respective antiferromagnetic oscillator responses to
their presence (c) and (d). For the trapezoidal shape, we used slopes
β1 = 5 mT/ps and β2 = −2 mT/ps. For the Gaussian-like shape, we
used parameters tμ = 37 ps and tσ = 3 ps.
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FIG. 4. Numerically calculated response of the antiferromagnetic
oscillator (red line) to a sinusoidal magnetic field (black line) with
angular frequency equal to λ. Dashed lines denote positions of
example neighboring maxima.

B. Sinusoidal magnetic field

In the case of a sinusoidal magnetic field excitation, it
is possible to derive an exact analytical expression for the
oscillator response. We consider an excitation described by
Hp(t) = H0 sin(ωt), which based on Eq. (9) will lead to the
following expressions:

φ̇(t) = −τ/α + γH0ωe−λt

∫ t

−∞
cos(ωt ′)eλt ′dt ′, (12)

φ̇(t) = −τ/α + γH0
ω

ω2 + λ2
(λ cos(ωt) + ω sin(ωt)), (13)

φ̇(t) = −τ/α + γH0
ω√

ω2 + λ2
sin (ωt + atan(λ/ω)). (14)

One can see that the response to a sinusoidal magnetic field is
also sinusoidal in character, with a phase shift factor equal
to atan(λ/ω) included. To illustrate this, we conducted a
numerical simulation of the example system described in the
previous section, where λ = ωexα ≈ 604.8 GHz and μ0H0 =
10 mT. The external field angular frequency was chosen the
same as λ (frequency f ≈ 96 GHz), so that the expected phase
shift should be equal to 45 degrees. The result is presented
in Fig. 4, where both the external field (black line) and the
oscillator response (red line) are shown. We choose a pair of
example neighboring maxima and determine their positions
(dashed lines) as 74.02 ps and 75.32 ps. The difference, 1.30
ps, corresponds to 45 degrees phase shift in a sinusoidal signal
with angular frequency equal to λ. The amplitude of the electric
field changes was found to be approximately 1.7 V/m, which
also is in agreement with equation (14).

We performed a set of numerical simulations for different
angular frequency ω values, as well. Figure 5 presents the
phase shifts recorded from simulations (empty circles) and
from the analytical calculation (solid line). As the angular
frequency ω is expressed in λ units, the obtained dependence
curve has a universal character and does not depend on
the oscillator parameters other than λ. Applying sinusoidal
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FIG. 5. Phase shift between the sinusoidal excitation and the
oscillator response as a function of normalized angular frequency,
calculated from Eq. (14) (solid line) or numerically (empty circles).

magnetic fields of different frequencies may be thus utilized
as a method of investigating the value of λ = ωexα, especially
in a realistic antiferromagnetic oscillator system where the
effective damping can be modified by the presence of spin
pumping effects [6,9,10]. Because of small absolute values of
α, the frequencies of the external signal used for that can be
much smaller than the characteristic exchange frequency ωex

and may not exceed tens of GHz for a typical set of parameters,
making them easier to realize experimentally [31,32].

An interesting special case of interaction with a sinusoidal
magnetic field can occur when an antiferromagnetic oscillator
is used to generate a THz AC signal φ̇0 × sin(ωgent) due to the
presence of a weak additional anisotropy [6]. If the emitted
signal, originally arising purely thanks to the DC current
flowing through the neighboring heavy metal layer, is allowed
to generate an additional Oersted field of THz frequency,
and if this field is directed fully or partially along the
antiferromagnet hard axis, then according to Eq. (14) it will
produce a new signal contribution of the same frequency but
different phase depending on the λ/ω ratio. We note here that
the term derived in Eq. (9), describing the effects of interaction
with an external magnetic field, can be added to the solution
of Eq. (7) independently from the term introduced in Ref. [6]
which describes the THz signal generation in the presence
of a weak easy plane anisotropy. For a given set of system
parameters, the generated Oersted field should be linearly
proportional to the angular velocity: μ0HOe = χφ̇, where χ

is a proportionality constant. The effective signal emitted by
the self-interacting oscillator φ̇eff will be then given by:

φ̇tot(t) = φ̇0 ×
∞∑

n=0

⎛
⎝γχ

ωgen√
ω2

gen + λ2

⎞
⎠

n

× sin(ωgent + n × atan(λ/ωgen)). (15)

For sufficiently small χ and for generation angular frequen-
cies ωgen significantly larger than λ, the expression above can
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FIG. 6. Amplitude of the oscillator AC signal as a function of
proportionality constant χ between φ̇ and generated Oersted field,
calculated analytically from Eq. (16) (solid line) and numerically
(empty circles).

be approximated by:

φ̇eff(t) ≈ φ̇0

1 − ζ
× sin

(
ωgent + atan

(
λζ

ωgen(1 − ζ )

))
, (16)

where we put ζ = γχωgen/
√

(ω2
gen + λ2). One can see that the

effects of oscillator self-interaction conveyed by the Oersted
field lead to a modification of the THz signal amplitude and to
introduction of an additional phase shift, but do not affect the
generation frequency.

Figure 6 presents amplitude of the THz signal amplitude as
a function of χ calculated using the expression above (solid
line) and numerically from equations (1) and (2), again for
a system identical with the one described previously except
for the presence of additional coupling mechanism between
χ and Oersted field. The agreement between analytical and
numerical solutions deteriorates with increasing χ , which is
consistent with approximations made to derive Eq. (16). One
can also see that the presence of the Oersted field coupled to
φ̇ oscillations works as a positive feedback mechanism which
increases the amplitude of the signal. In a device geometry
where the coupling mechanism is sufficiently strong, this
increase could be an important factor improving the oscillator
generation power. On the other hand, it would likely require a
setup where the final signal is detected as current rather than
voltage THz changes, potentially limiting its applicability.

Equation (15) can be generalized further to include a
presence of an additional phase shift between the generated
output and the applied Oersted field �φ:

φ̇tot(t) = φ̇0 ×
∞∑

n=0

ζ n

× sin(ωgent + n × (atan(λ/ωgen) + �φ)). (17)

Figure 7 presents the amplitude of the output signal as a
function of �φ for coupling constant χ equal to 10−12
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FIG. 7. Amplitude of the oscillator AC signal as a function of
additional phase shift �φ between the output signal and the generated
Oersted field, calculated from analytical Eq. (17) (solid line) and
numerically from equations (1) and (2) (empty circles).

[T/(rad/s)], calculated from the analytical expression above
as well as from numerical integration of equations (1) and (2).
Other parameters remained the same as in the previous
simulations. One can see that the signal amplitude is maximal
if no additional phase shift is present and minimal for phase
shift around π . This behavior is qualitatively different from the
one expected for ferromagnetic spin-torque oscillators [33,34],
which is explained by the fact that, in our case, the term
responsible for signal generation and the term responsible
for interaction with field do not depend on each other. We
note here that Eq. (17) could be interpreted more broadly
as a description of not only a self-interacting oscillator
but also of two oscillators interacting with each other. In
such a setup, magnetic field phase effects [33] mentioned
previously are likely to play an important role, especially if the
system is further generalized towards a network of interacting
oscillators.

C. Sequence of magnetic field steps

In Sec. II we have shown that an antiferromagnetic oscilla-
tor responds to abrupt changes of an external magnetic field in
a predictable manner. Thanks to the nature of the spin pumping
effect, which is dependent on the magnetization vectors time
derivative, such a response can be produced very rapidly. We
consider now a system where a sequence of magnetic field
steps of negative or positive values was applied to the oscillator.
Effectively, this corresponds to a magnetic field changing its
direction repeatedly, similarly to, e.g., a field generated by bits
on a magnetic hard disk drive (HDD) [35,36]. Unlike HDD
read head devices, though, in the case of the antiferromagnetic
oscillator the characteristic timescale of the field changes can
be in the range of picoseconds, which we believe may be
interesting from the applications in THz technology point of
view.

Figure 8 presents the results of a numerical simulation
where the system described in the previous sections was
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FIG. 8. Numerically simulated response of the antiferromagnetic
oscillator to a sequence of 20 mT amplitude field steps (blue line)
and 50 mT amplitude field steps (red line). The black line shows the
reference level which we obtained for no external field applied. The
black arrows denote the direction of the external field, and the dashed
lines denote when the consecutive steps occurred.

subjected to a sequence of positive and negative magnetic
fields (see black arrows in Fig. 8). The time intervals between
field direction changes, depicted as dashed black lines, were
random integer multiples of 1 ps. Other calculation parameters
were the same as described previously. The figure shows the
oscillator output as a function of time in the case of no external
field (black line), a sequence of 20 mT amplitude (blue line),
and a sequence of 50 mT amplitude (red line). The outputs
consist of superpositions of responses to a single magnetic
field step presented in Sec. II. One can see that the obtained
oscillator signal retains the character of the original sequence.

IV. SUMMARY

We developed a comprehensive theoretical approach to the
problem of an antiferromagnetic oscillator interacting with
external magnetic fields. Starting from the framework based
on LLGS equations and the assumption of rotation taking
place in the easy antiferromagnetic plane only, we proposed a
generalized form of the solution to the equation of oscillator
dynamics and verified it using numerical simulations. Based
on this result, we derived the formula for the response to an
external field of any given shape and described several typical
cases of the interactions with the external field, including
a trapezoid and a Gaussian pulse, a sinusoidal field, and a
sequence of field steps. In the case of a sinusoidal field, we
found that the inherent dynamics of the oscillator leads to the
presence of a phase shift in the output signal, which could
be utilized to investigate device parameters, such as effective
damping, with excitations in the range of GHz only. We also
described how an oscillator working as a THz emitter device,
which has been proposed recently, could interact with the
Oersted field produced by its own output signal, which would
increase the effective amplitude and power of THz oscillations.
Finally, we performed a simulation of an oscillator reading
a picosecond sequence of magnetic field steps, which can
be interesting in the context of future development of THz
technology devices.

ACKNOWLEDGMENTS

We would like to express our gratitude to Dr. Ivan
Lisenkov and Dr. Roman Khymyn for their insightful re-
marks and helpful discussion. We acknowledge the grant
Preludium 2015/17/N/ST7/ 03749 by National Science Cen-
ter, Poland. T.S. acknowledges the grant SpinOrbitronics
2016/23/B/ST3/01430 by National Science Center, Poland.
Numerical calculations were supported by PL-GRID infras-
tructure.

[1] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antifer-
romagnetic spintronics, Nat. Nanotechnol. 11, 231 (2016).

[2] R. Cheng, M. W. Daniels, Jian-Gang Zhu, and Di Xiao,
Antiferromagnetic spin wave field-effect transistor, Sci. Rep.
6, 24223 (2016).

[3] S. M. Wu, Wei Zhang, KC Amit, P. Borisov, J. E. Pearson,
J. S. Jiang, D. Lederman, A. Hoffmann, and A. Bhattacharya,
Antiferromagnetic Spin Seebeck Effect, Phys. Rev. Lett. 116,
097204 (2016).

[4] E. V. Gomonay and V. M. Loktev, Spintronics of antiferromag-
netic systems, Low Temp. Phys. 40, 17 (2014).

[5] R. Cheng, D. Xiao, and A. Brataas, Terahertz Antiferromagnetic
Spin Hall Nano-Oscillator, Phys. Rev. Lett. 116, 207603
(2016).

[6] R. Khymyn, I. Lisenkov, V. Tiberkevich, B. A. Ivanov, and
A. Slavin, Antiferromagnetic THz-frequency josephson-like
oscillator driven by spin current, Sci. Rep. 7, 43705 (2017).

[7] Y. Tserkovnyak, A. Brataas, and Gerrit E. W. Bauer, Enhanced
Gilbert Damping in Thin Ferromagnetic Films, Phys. Rev. Lett.
88, 117601 (2002).

[8] Y. Tserkovnyak, A. Brataas, and Gerrit E. W. Bauer, Spin pump-
ing and magnetization dynamics in metallic multilayers, Phys.
Rev. B 66, 224403 (2002).

[9] Y. Tserkovnyak, A. Brataas, Gerrit E. W. Bauer, and B. I.
Halperin, Nonlocal magnetization dynamics in ferromagnetic
heterostructures, Rev. Mod. Phys. 77, 1375 (2005).

[10] H. Nakayama, K. Ando, K. Harii, Tatsuro Yoshino, R. Takahashi,
Yosuke Kajiwara, Ken-ichi Uchida, Yasunori Fujikawa, and E.
Saitoh, Geometry dependence on inverse spin hall effect induced
by spin pumping in Ni81Fe19/Pt films, Phys. Rev. B 85, 144408
(2012).

[11] C. Sirtori, Applied physics: Bridge for the terahertz gap, Nature
(London) 417, 132 (2002).

[12] M. Tonouchi, Cutting-edge terahertz technology, Nat. Photonics
1, 97 (2007).

[13] Yu Gulyaev, P. Zilberman, G. Mikhailov, and S. Chigarev,
Generation of terahertz waves by a current in magnetic junctions.
JETP Lett. 98, 742 (2014).

[14] T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T.
Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber,

174438-6

https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/srep24223
https://doi.org/10.1038/srep24223
https://doi.org/10.1038/srep24223
https://doi.org/10.1038/srep24223
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1063/1.4862467
https://doi.org/10.1063/1.4862467
https://doi.org/10.1063/1.4862467
https://doi.org/10.1063/1.4862467
https://doi.org/10.1103/PhysRevLett.116.207603
https://doi.org/10.1103/PhysRevLett.116.207603
https://doi.org/10.1103/PhysRevLett.116.207603
https://doi.org/10.1103/PhysRevLett.116.207603
https://doi.org/10.1038/srep43705
https://doi.org/10.1038/srep43705
https://doi.org/10.1038/srep43705
https://doi.org/10.1038/srep43705
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/PhysRevB.85.144408
https://doi.org/10.1103/PhysRevB.85.144408
https://doi.org/10.1103/PhysRevB.85.144408
https://doi.org/10.1103/PhysRevB.85.144408
https://doi.org/10.1038/417132b
https://doi.org/10.1038/417132b
https://doi.org/10.1038/417132b
https://doi.org/10.1038/417132b
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1038/nphoton.2007.3
https://doi.org/10.1134/S0021364013240089
https://doi.org/10.1134/S0021364013240089
https://doi.org/10.1134/S0021364013240089
https://doi.org/10.1134/S0021364013240089


ANTIFERROMAGNETIC NANO-OSCILLATOR IN EXTERNAL . . . PHYSICAL REVIEW B 96, 174438 (2017)

Coherent terahertz control of antiferromagnetic spin waves, Nat.
Photonics 5, 31 (2011).

[15] Sönke Wienholdt, D. Hinzke, and U. Nowak, Thz Switching
of Antiferromagnets and Ferrimagnets, Phys. Rev. Lett. 108,
247207 (2012).

[16] Tae Heon Kim, Sun Young Hamh, Jeong Woo Han, Chul
Kang, Chul-Sik Kee, Seonghoon Jung, Jaehun Park, Yusuke
Tokunaga, Yoshinori Tokura, and Jong Seok Lee, Coherently
controlled spin precession in canted antiferromagnetic yfeo3
using terahertz magnetic field, Appl. Phys. Exp. 7, 093007
(2014).

[17] K. Tao, O. P. Polyakov, and V. S. Stepanyuk, Switching of
antiferromagnetic chains with magnetic pulses, Phys. Rev. B
93, 161412 (2016).

[18] T. Heon Kim, P. Grüenberg, S. H. Han, and B. K.
Cho, Field-driven dynamics and time-resolved measurement
of Dzyaloshinskii-Moriya torque in canted antiferromagnet
YFeO3, Sci. Rep. 7, 4515 (2017).

[19] L. A. L. E. Landau and E. Lifshitz, On the theory of the
dispersion of magnetic permeability in ferromagnetic bodies,
Phys. Z. Sowjetunion 8, 101 (1935).

[20] T. L. Gilbert, A lagrangian formulation of the gyromagnetic
equation of the magnetization field, Phys. Rev. 100, 1243
(1955).

[21] T. L. Gilbert, A phenomenological theory of damping
in ferromagnetic materials, IEEE Trans. Magn. 40, 3443
(2004).

[22] J. C. Slonczewski, Current-driven excitation of magnetic multi-
layers, J. Magn. Magn. Mater. 159, L1 (1996).

[23] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev. B 54, 9353 (1996).

[24] Alexander G. Gurevich and Gennadii A. Melkov, Magnetization
Oscillations and Waves (CRC Press, Boca Raton, 1996).

[25] Charles P. Poole, Jr., Encyclopedic Dictionary of Condensed
Matter Physics (Academic Press, Oxford, London, 2004).

[26] B. A. Ivanov, Spin dynamics of antiferromagnets under action
of femtosecond laser pulses, Low Temp. Phys. 40, 91 (2014).

[27] B. A. Ivanov, Mesoscopic antiferromagnets: statics, dynamics,
and quantum tunneling, Low Temp. Phys. 31, 635 (2005).

[28] E. V. Gomonaı̆ and V. M. Loktev, Distinctive effects of a spin-
polarized current on the static and dynamic properties of an
antiferromagnetic conductor, Low Temp. Phys. 34, 198 (2008).

[29] R. Khymyn, I. Lisenkov, V. S. Tiberkevich, A. N. Slavin, and B.
A. Ivanov, Transformation of spin current by antiferromagnetic
insulators, Phys. Rev. B 93, 224421 (2016).

[30] F. B. Lewis and N. H. Saunders, The thermal conductivity of nio
and coo at the neel temperature, J. Phys. C 6, 2525 (1973).

[31] S. Bonetti, P. Muduli, F. Mancoff, and J. Åkerman, Spin torque
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