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Balance and frustration in strongly correlated itinerant electron systems:
An extension of Nagaoka’s theorem
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We prove that Nagaoka’s theorem, that the ground state of the large-U Hubbard model with exactly one hole
is ferromagnetic, holds for any balanced Hamiltonian. We argue that, in itinerant electron systems, a balanced
Hamiltonian, rather than bipartite lattice, defines an unfrustrated system. The proof is valid for multiorbital
models with arbitrary two-orbital interactions provided that no exchange interactions are antiferromagnetic: a

class of models including the Kanomori Hamiltonian.
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I. INTRODUCTION

Geometrical frustration plays a central role in the under-
standing of quantum magnetism [1]. The distinction between
bipartite and geometrically frustrated lattices is fundamental
for spin models of localized electrons. Itinerant electrons can
also be frustrated in the sense that there may be no one-electron
state that simultaneously minimizes every kinetic term in
the Hamiltonian. Perhaps the simplest example of this is
the three-site tight-binding model with the hopping integral
t < 0. In the infinite-U Hubbard model on the same lattice
this “kinetic frustration” leads to a triplet ground state for
two electrons [2,3]. We argue below that in itinerant electron
systems the bipartite/geometrically frustrated distinction is not
relevant and balance [4] provides an appropriate definition of
systems free of kinetic frustration.

Previous attempts to classify the frustration of itinerant
electrons have focused on the reduced bandwidth in frustrated
systems [3,5]. Therefore, these measures miss the fundamental
role that the sign of the hopping integral plays in frustrated
itinerant electron systems. Balance considers this. On the
other hand, it is known that kinetic frustration can lead
to antiferromagnetic states in the infinite-U limit [6-9]. A
staggered magnetic flux can be used to control the degree of
kinetic frustration, driving the ground state of certain models
from magnetic to antiferromagnetic [9].

To ground the above claims we study one of the few exact
results of strongly correlated itinerant electrons: Nagaoka’s
theorem. This theorem concerns the properties of the infinite-
U Hubbard model—however, here we consider a larger
class of Hamiltonians, which allows for arbitrary two-orbital
interactions:

H=H,+Hy+Hy+H;+Hp+ Hx, (1)
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where & creates (annihilates) an electron with spin o on

tuo . . . R N
the pth Wannier orbital centered on site i, & # o, A0 =

CiyiaCincrs i = Rigt + iy Siye = 5 Xop €100 apCipep, and
o is the vector of Pauli matrices. Here #;;,, is the amplitude
for hopping between the pth orbital on site i and the vth orbital
on site j [10], U is the effective Coulomb interaction between
two electrons on the same orbital, V ({A; «})1s any potential that
depends only on the orbital occupation numbers—obviously
this includes arbitrary pairwise direct Coulomb interactions:
» o VijuvAinft j». However, in fact the proofs below hold for
arbitrary terms of this form, including multisite interactions,
the J;;,,, are the exchange couplings, the P;;,,, are pair hopping
amplitudes, and the X;;,, are correlated hopping amplitudes.

Note that, in the infinite-U limit, H p and the first two terms
in Hy are identically null. We stress that no assumption about
the intrasite hopping has been made; in particular, #;,, may
be nonzero.

Itis convenient below to differentiate between four versions
of this model: (a) the multiorbital model—Eq. (1); (b) the
single-orbital model—one orbital per site (henceforth we drop
the orbital subscripts when discussing single-orbital models);
(c) the extended Hubbard model—the single-orbital model
with J;; = P;; = X;; = Oforalli, j, u,and v; and (d) the Hub-
bard model—the extended Hubbard model with V ({; uw}) =0.

Note that the hole-doped sector of each of these models
(N < L, where N is the number of electrons and L is the
number of orbitals on the entire lattice) is equivalent to the
electron sector of that model (N > L) with the signs of all #;,,,
reversed. A particle-hole transformation maps between the
Hamiltonians, up to constants, even in the absence of particle-
hole symmetry. Henceforth we only discuss the hole-doped
problem; however it is implicit throughout that all results hold
for the electron-doped problem if the signs of all #;,, are
reversed.
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Nagaoka [11] showed that in the Nagaoka limit (U — oo
and N = L — 1) the ground state of the Hubbard model on
certain lattices is a fully polarized ferromagnet—i.e., the
magnetization M = N /2. Nagaoka showed that for nearest-
neighbor hopping only (t;; = ¢ for nearest neighbors, #;; =0
otherwise) and ¢t < 0 [10] this result holds for simple cubic,
body-centered cubic, face-centered cubic, and hexagonal
close-packed lattices.

However, for ¢ > 0 Nagaoka found that the theorem holds
on the simple cubic and body-centered cubic lattices, but not
for the face-centered cubic or hexagonal close-packed lattices.
The former lattices are bipartite, while the latter are not. On a
bipartite lattice the gauge transformation ¢;, — —¢;, on one
sublattice only changes the sign of all hopping integrals.

In 1989 Tasaki gave a more general proof of Nagaoka’s
theorem [12]. Specifically, Tasaki proved that Nagaoka’s
theorem holds for the extended Hubbard model on all lattices
where #;; < O for all i and j. Thus, one is moved to ask, which
other Hamiltonians with some orall #;; > 0 have ferromagnetic
ground states? In particular, for which geometrically frustrated
(non-bipartite) Hamiltonians can one prove Nagaoka’s theo-
rem? This is particularly important as for a simple covalent
bonds one expects that 7;; > 0 [13].

In 1996 Kollar, Strack, and Vollhardt [14] extended Na-
gaoka’s theorem in a different direction—discussing the role of
other two-body interactions. Among other things they showed
that Nagaoka’s theorem holds for the infinite-U single-orbital
model on periodic lattices if the hopping and all interactions are
constrained to be between nearest neighbors only, exchange is
ferromagnetic (or zero), and either ¢ < O or the lattice is bipar-
tite. It is therefore natural to ask, what other (e.g., longer range)
two-orbital interactions admit a proof of Nagaoka’s theorem?

Fully polarized Nagaoka ferromagnetism is importantly
different from the partially polarized states observed in
ferromagnetic metals such as iron, colbalt, and nickel. How-
ever, it should be possible to realize Nagaoka physics in
atomic gases on optical lattices. Nevertheless, given that
ferromagnetism is observed in many materials where multiple
orbitals are relevant to the low-energy physics it is interesting
to ask whether multiple orbital models exhibit Nagaoka-like
ferromagnetism.

Below, we give partial answers to the above questions by
proving the following:

Theorem 1. Consider the multiorbital model (1) with U
being infinite; V and {P;;,,} being arbitrary; J;;,, < 0 for
all i, j, u, and v; and N = L — 1. If the signed graph S
defined by the set of renormalized hopping integrals {t;;' i
where tl."}. uv = lijuy + Xijuv, is balanced (defined below), then
among the ground states there exist at least L states with
S = Smax = N/2.

Theorem 2. Consider the multiorbital model (1) with U
being infinite; V and {P;;,,} being arbitrary; J;j,, < 0 for
all i, j, u, and v; and N = L — 1. If the signed graph S
defined by the set of renormalized hopping integrals {t;;' )
is balanced and ﬂ; +H x satisfies the connectivity condition
(defined below), then the ground state has S = Spx = N/2
and is unique up to the trivial N-fold degeneracy.

The remainder of the paper is laid out as follows. Having
introduced balanced and unbalanced lattices in Sec. II, we
prove that balance is a sufficient condition for the proof of
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Nagaoka’s theorem in the Nagaoka limit (Sec. III). All of
the lattices for which Nagaoka [11], Tasaki [12], or Kollar
et al. [14] proved Nagaoka’s theorem previously are balanced.
Finally, in Sec. IV we discuss the implications of balance for
the orbital part of the ground-state wave function, clarifying
why balance favors ferromagnetism.

II. BALANCE
The sign of the hopping between a pair of orbitalg, t;'} v
is not gauge invariant: the transformation ¢;,, — e e jvo

takes 1, — 1; Mveigf". Nevertheless, gauge-invariant infor-
mation is contained in the signs of the set {ti’; uv} associated
with a particular Hamiltonian.

This is a topological problem—the magnitudes of
the ¢, values are unimportant; only their signs matter.
Thus, rather than considering every {7} separately, it
is sufficient to instead study a related “signed graph.” We
define this signed graph as follows. We introduce a vertex
of the graph corresponding to each orbital in the physical
Hamiltonian, {&} = {(i,u)} (throughout this paper we use
Latin characters for sites in the Hamiltonian, Greek characters
for orbitals, and Hebrew characters for vertices in the signed
graph). Furthermore, we introduce a set of edges defined
by {T(i,M),(j,v)}’ where T(i,w),(jv) = —sgn(t;;/w) if and only
if 75, #0. We now ask whether there exists a series of
gauge transformations that make all ty; = 1. If so, the gauge
transformation makes all ti’; w <0.

A walk on asigned graph is defined as a sequence of vertices
such that consecutive vertices in the sequence are connected
by an edge, e.g., R >21—> 31— -+ —> 11— ¥ —> N A walk
in which all the vertices that are visited are distinct (i.e., a
self-avoiding walk) is called a path. A path that visits at least
three vertices and is closed (e.g., X = N, in the example above)
is called a cycle. The sign of a path or cycle on a signed graph
is defined as the product of signs (TgaTs; . - - T4 Twn) Of the edges
forming the path or cycle. Thus every positive cycle has an even
number (including zero) of negative edges. A signed graph is
balanced if all cycles in the corresponding signed graph are
positive (cf. Fig. 1). We call a Hamiltonian balanced if it maps
onto a balanced signed graph in the sense described above.

The fundamental theorem of signed graphs [15] states that
for a signed graph, S, the following three conditions are
equivalent:

(i) S is balanced, i.e., all cycles within S are positive.

FIG. 1. Balanced and unbalanced signed graphs. In all panels
solid lines indicate tyy = 1 [#;j,, < 0, where X = (i,u)and 2 = (j,v)]
and dashed lines indicate 7y, = —1 (#;j,, > 0). (a) A balanced lattice.
(b) As in panel (a) with a choice of the subsets S, and S, indicated
by the shading of the vertices. (c) An unbalanced lattice: The path
6 — 11 — 10 — 12 — 6 is negative (76 11T11,10T10,12T12.6 = —1).
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(a)

FIG. 2. Three geometrically frustrated but balanced periodic
lattices. (a) The square lattice with nearest-neighbor hopping #;, > 0
and next-nearest-neighbor hopping 7, < 0. (b) The honeycomb lattice
with#; > Oand #, < 0. (c) The anisotropic triangular lattice, relevant
to organic superconductors and magnets [16], with#; < Oand#, > 0.
In each case two sublattices are marked; all hopping integrals are
made positive by the transformation ¢;, — —¢;, on one sublattice
only.

(i1) For any pair of vertices X and 2in S all paths joining X
and 1 have the same sign.

(iii) There exists a partition of S into two subsets, S, and
Sy, (one of which may be empty), such that 7oy > 0 for all &
and 2 within the same subset, but 7y, = 745y < 0 forX € S, and
1€ S,.

Thus, for example, bipartite lattices with only nearest-
neighbor hopping (and the same sign of hopping between all
neighbors) are balanced. Some simple examples of geometri-
cally frustrated but balanced lattices are shown in Fig. 2.

III. BALANCE IS SUFFICIENT FOR NAGAOKA

In the Nagaoka limit all states with finite energy can be
written as a superposition of “single-hole states” of the form

i)y = (=00 TT el 10, 3)
(WADI (D]

where T = {0} is a binary vector describing the spins of all
of the electrons; |0) is the vacuum state defined by ¢;;,,|0) = 0
for all i, u, and o; and p(i,n) € [0,L — 1] is an arbitrary
ordering of the orbitals. p(i, ) need have no correlation to the
structure of the lattice, but is required to enforce the correct
antisymmetrization of the hole states—the operators in the
product are to be ordered by p(i,) with lower values to the
left.

We describe two states as ‘“directly connected” if
(i,u,r|7:(, + ﬂX|j,v,v) # 0. We denote direct connection by
(i,pu,7) < (j,v,v). For directly connected states

(T H + Hyxljovov) =155, “)

A Hamiltonian is said to satisfy the connectivity con-
dition if there exists an integer n for which (i, ,u,rl(?fll +
Hx)"|j,v,v) # 0 for every pair of states with the same S7.
Notably, one-dimensional single-orbital models with only
nearest-neighbor hopping are not connected in this sense
[11,12].

A. Proof of Theorem 1

Compare the arbitrary superposition of states of single-hole
states,

Ay =Y ipelis 7)), 5)

11754
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with a fully spin polarized superposition,
1Dn) =D Giglive 1), (6)
ip

where T =1} indicates that all the electrons are up and ¢;,, =

V2, 1@iue|>. We have

(AnlFvIAR) =Y letiue (o, T Hy li T

int
= letue P [Aliop. 1)
int
= Z |¢iu|2<iall/a TT |7:(V|i7l"(’7 ﬂ)
in
= (@) |FLy|®p). (7)
That is, because U is infinite and V ({1;4 + 71;, }) only depends
on the site occupation numbers, (Hy) is independent of the

spin degrees of freedom for single-hole states.
Now note that

(ot M(Sir - Sy + St jur) 1w, 1)
> (i, 7l (S - Sjnr + 3iiwit ) jv,0) =0 (8)

foralli, i, j, j/, w, #', v, V', 7, and v. Thus, if J;;,, < 0 for
all i, j, u, and v, then

0> (jvulHyligt) = KW > KD ©)

for all i, j, u, v, 7, and v. Therefore,

(AlH A = Y KLY o, i

ijuvtv
v *
> D KL D e
ijuy v

> N KDt di = (@411 h). (10)

ijuy

where the second inequality follows from the Cauchy-
Schwartz inequality.

Because double occupancy is forbidden in the infinite-U
limit, (i,,7|Hp|j,v,0) = 0.

Finally, we specialize to the case of a balanced lattice.
Property (iii) of the fundamental theorem of signed graphs
implies that we can construct a gauge transformation that
maps the Hamiltonian onto one where all 7%, < 0. Anexplicit
example of such a gauge transformation is

Cino = —Cipo forall (i,n) € S,
Cipne —> Cipo forall (i,p) € Sp. (11)

Furthermore,

(AnlHe + HxlAn) = £, Y o, livy

T<v

> 15,050 = (PlH, + Hx|Pr),  (12)
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where we have again made use of the Cauchy-Schwartz
inequality and ) __ , indicates that the sum is restricted to
run only over T and v such that (i,u,t) < (j,v,v), as the
overlap integral vanishes otherwise. Thus, there are no states
with energy lower than |®,). Theorem 1 follows immediately

from the SO(3) symmetry of the model. |

B. Proof of Theorem 2

The Perron-Frobenius theorem [17] states (among other
things) that if all the elements of an irreducible real square
matrix are non-negative then it has a unique largest real
eigenvalue and that the corresponding eigenvector has strictly
positive components. A Hermitian matrix is reducible if and
only if it can be block diagonalized by a permutation matrix.
Let use write the Hamiltonian (1) in the form

(N-1)/2

> Hu, (13)

m=(1—N)/2

7:[:

where m labels the z component of the total spin of the
system. Each of the N matrices M,, = —H,, is irreducible
provided the Hamiltonian satisfies the connectivity condition.
Furthermore, we have seen above that all of the matrix
elements of H,, < 0. Therefore each of the M,, satisfy the
Perron-Frobenius theorem.

The SO(3) symmetry of the Hamiltonian means that |®;,)
must be N-fold degenerate. As no states have lower energy
than |®;), this means that the lowest energy states of the S,
sectors are necessarily degenerate and that, up to this required
N-fold degeneracy, |®;,) is unique. |

It is interesting to note that there exist matrices with
some negative elements for which the dominant eigenvector
is non-negative and corresponds to a positive eigenvector
[18,19]. This suggests that, while sufficient, balance and/or
connectivity may not be necessary conditions for Nagaoka’s
theorem.

IV. FRUSTRATION AND THE ORBITAL PART OF THE
GROUND-STATE WAVE FUNCTION

For the Hubbard model the explicit wave function can be
straightforwardly constructed. Of course one could simply take
Eq. (6) as a variational wave function and minimize all of
the ¢;. However, a more elegant approach is to introduce an
ancillary model of noninteracting spinless fermions on the
same lattice:

Ho=—) 1;0)¢;. (14)
ij

and then make a particle-hole transformation ﬁj = ;. As this
is a single-particle Hamiltonian the ground state can be written
in the form

(W) = > ikl lvac), (15)
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\ivhere the vacuum for holes, |vac), is the state for which
hi|lvac) = 0 for all i. Note that

i ) = e [ [ e5410) = Al 1. (16)
J

where fzjg =¢éoand | ) =] j éj‘T'O)’ where the ordering of
the operators in the products is as in Eq. (3).

Recalling Egs. (4) and (6) one finds that ¢; = v; for
all i, which means that we can calculate the ground-state
wave function of the Hubbard model from the ancillary
noninteraction model. Often, directly minimizing Eq. (15) is
not the most efficient approach; for example, if the lattice is
periodic, a Fourier transformation leads directly to the solution.

If all #;; < 0, the ground state must have ¢; = ; > 0 for
all i. That is, the wave function is bonding between all sites. In
this sense, the ground-state wave function is unfrustrated. Note
that, in a periodic system, it always possible to construct a wave
function that is strictly positive at high-symmetry points with
wave vectors k, satisfying 2k = nG, where G is a reciprocal
lattice vector for any n € Z. The set of all such high-symmetry
points always includes the I" point (origin of the unit cell).

Returning to the multiorbital model, the Perron-Frobenius
theorem guarantees the existence of a gauge for which all ¢;,,
are strictly positive. Thus again the ground-state wave function
is unfrustrated.

In this context it is interesting to note the recent discovery
that on some kinetically frustrated lattices antiferromagnetic
states with magnetization near the classical limit occur in the
Nagaoka limit [6-9]. Again here releasing the frustration in
the orbital part of the wave function appears to play a crucial
role [7].

V. CONCLUSIONS

We have shown that balance and the absence of antiferro-
magnetic exchange are sufficient to prove that the ground state
of the infinite-U multiorbital model, Eq. (1), with arbitrary
pairwise interactions is ferromagnetic.

Balance implies the absence of kinetic frustration—
therefore, for itinerant electrons, balance is the natural defi-
nition of an unfrustrated lattice. While bipartite lattices (with
no hopping within the sublattices) are always balanced, many
non-bipartite lattices are also balanced (see Fig. 2 for some
examples). An interesting question, beyond the scope of this
paper, is the role of balance to other problems involving
frustration and itinerant electrons.

Balance is important because it allows for an unfrustrated
orbital part of the ground-state wave function. This is con-
sistent with the general insight that Nagaoka’s theorem arises
from the minimization of the hole’s kinetic energy.
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