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Phase diagrams and free-energy landscapes for model spin-crossover materials with
antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions
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We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-
crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice
Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A.
Rikvold et al., Phys. Rev. B 93, 064109 (2016)]. The results are obtained by a recently introduced, macroscopically
constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017)]. The method’s
computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures,
applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical
points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise
to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature
of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials
characterized by competing short-range interactions and long-range elastic interactions.
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I. INTRODUCTION

Spin-crossover (SC) materials are molecular crystals in
which the individual molecules contain transition-metal ions
that can exist in two different spin states: a low-spin ground
state (LS) and a high-spin excited state (HS). Molecules
in the HS state have larger volume and higher effective
degeneracy than those in the LS state [1–8]. Due to its
higher degeneracy, crystals of such molecules can be brought
into a majority excited HS state by increasing temperature,
changing pressure or magnetic field, electrochemical stimuli,
or exposure to light [4,6,9–17]. The size difference between
the HS and LS molecules causes local elastic distortions that
lead to effective long-range elastic interactions mediated by the
macroscopic strain field [5,18,19]. In addition to such long-
range interactions, the materials will also typically have local
interactions caused by, e.g., quantum-mechanical exchange
or geometric restrictions. These intermolecular interactions
may cause first-order phase transitions that can render the HS
state metastable and lead to hysteresis when exposed to time-
varying fields [11,20]. In the case of optical excitation into the
metastable phase, this phenomenon is known as light-induced
excited spin trapping (LIESST) [9,11,17]. The metastable
properties in combination with the SC materials’ sensitivity
to a wide range of external stimuli make them promising
candidates for applications such as switches, displays, memory
devices, sensors, and actuators [13,15,21,22].

In the SC literature, the phase transitions caused by the
short-range and long-range interactions are often discussed
using an Ising-like pseudospin formulation, in which the HS
state is represented as s = +1 and the LS state as s = −1.
This is the representation we will use in this paper. It has the
advantage of a high degree of symmetry, and it enables easy
reference to studies of other Ising-like models. To minimize the
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strain energy, the elastic long-range interaction favors different
molecules being in the same state (LS-LS or HS-HS). In this
pseudospin language it is therefore called ferromagnetic-like,
or simply ferromagnetic. The short-range interactions depend
on the particular material and may either be ferromagnetic
or favor neighboring molecules in opposite states (LS-HS),
which is analogously called antiferromagnetic-like, or simply
antiferromagnetic. We emphasize that this nomenclature only
represents an analogy and does not imply a magnetic origin
of the interactions. In the remainder of this paper, we will use
the simplified terms, ferromagnetic and antiferromagnetic, for
interactions that favor uniform and checkerboard spin-state
arrangements, respectively.

If the short-range interaction is ferromagnetic, it has been
found that adding even a very weak long-range interaction
causes the universality class of the critical point to change from
the Ising class to the mean-field class [2,3]. On the other hand,
if the short-range interaction is antiferromagnetic, the critical
line will terminate at a certain point, with the appearance of
metastable regions in the phase diagram, bounded by sharp
spinodal lines [23,24]. Then, with sufficiently strong long-
range interaction, new mean-field critical points emerge in
the phase diagrams—a phenomenon which is not predicted
by simple Bragg-Williams mean-field theory [24]. These new
mean-field critical points also become the end points for the
spinodal lines bounding the metastable regions.

In some SC materials, the transition between the LS and HS
phases proceeds as a two-step transition via an intermediate
phase [25–38], giving rise to complex, asymmetrical hysteresis
loops. In the case of Fe(II)[2-picolylamine]3Cl2 · ethanol
[25], x-ray diffraction has revealed an intermediate phase,
characterized by long-range order on two interpenetrating
sublattices with nearest-neighbor molecules in different states
(HS-LS) [39,40]. Several of these experimental results were
recently reviewed [41,42]. This situation can be modeled by
an Ising-like model with antiferromagnetic nearest-neighbor
interactions. Various mean-field approximations to this model
have been considered, both without [32] and with [26,28,33]
a long-range ferromagnetic term.
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Recently, Rikvold et al. used standard importance-
sampling Monte Carlo (MC) simulations to obtain phase
diagrams and hysteresis curves for such an Ising model
with nearest-neighbor antiferromagnetic interactions and fer-
romagnetic long-range interactions approximated by a mean-
field equivalent-neighbor (Husimi-Temperley) term [24]. (See
Hamiltonian in Sec. II.) To locate the various transition lines in
the phase diagram, this method requires separate simulations
for different values of temperature, field, and long-range
interaction strength. This procedure is very computationally
intensive, and phase diagrams could therefore only be drawn
for three different interaction strengths.

In the present paper, we provide detailed phase diagrams
for this system with a range of different long-range interaction
strengths, from quite weak to quite strong. In addition
to phase diagrams, we also obtain free-energy landscapes
and order-parameter probability densities in terms of the
model’s two order parameters, magnetization (M) and stag-
gered magnetization (Ms). To obtain these results with a
reasonably modest computational effort, we use a recently
proposed, macroscopically constrained Wang-Landau (WL)
MC algorithm [43,44]. With this method, a simple analytic
transformation of the system energy E enables us to extract
results for any combination of temperature, applied field, and
long-range interaction strength from one single, high-precision
simulation of the joint density of states (DOS), g(E,M,Ms),
for a simple square-lattice Ising antiferromagnet in zero field.
The details of how to use the algorithm to calculate the joint
DOS, and how to extract from it free-energy landscapes,
order-parameter probability densities, and phase diagrams are
given in our recent papers, Refs. [44,45]. Here, we concentrate
on the physical aspects of this model SC material and, in
particular, their dependence on the long-range interaction
strength. In the process, we also obtain new estimates for the
positions and shapes of the first-order coexistence lines in the
phase diagrams.

Studies of Ising models with long-range interactions have a
long history. Some notable examples are work on Ising models
with weak long-range interactions by Penrose, Lebowitz,
and Hemmer [46–48], and with long-range lattice coupling
by Oitmaa and Barber [49]. Herrero studied small-world
networks with both ferromagnetic [50] and antiferromagnetic
interactions [51]. Hasnaoui and Piekarewicz [52] recently
used an Ising model with Coulomb long-range interaction
to simulate nuclear pasta in neutron stars. It should also be
mentioned that the Ising model with long-range interactions
decaying as r−(d+σ ) with d = 1,2,3 and 0 < σ < d/2 was
studied by Luijten and Blöte [53], and the effect of long-range
interactions on phase transitions in short-range interacting
systems were studied by Capel et al. [54].

The remainder of this paper is organized as follows. In
Sec. II we present the Ising-like model Hamiltonian and its
interpretation as a model for SC materials. In Sec. III we
briefly discuss the macroscopically constrained WL algorithm
and present the analytic energy transformation that enables us
to extract data for arbitrary model parameters from a single
simulated joint DOS. We also show how constrained partition
functions are obtained from the joint densities of states, and
how the partition functions lead to free-energy landscapes and
order-parameter probability densities. Section IV contains our

main results: phase diagrams, as well as probability densities
and free-energy landscapes at selected phase points. All these
are obtained for several values of the long-range interaction
strength, ranging from quite weak to quite strong, and
producing a number of topologically different phase diagrams.
Section V contains a brief summary and conclusions. Details
of our estimates of finite-size and statistical errors are given in
the Appendix.

II. 2D ISING-ASFL MODEL

To approximate a SC material with antiferromagnetic-like
nearest-neighbor interactions and ferromagnetic-like elastic
long-range interactions, we here employ the model introduced
by Miyashita and first used in Refs. [23,24]. This is an L × L

square-lattice nearest-neighbor Ising antiferromagnet with
ferromagnetic equivalent-neighbor (aka Husimi-Temperley)
interactions. It is defined by the Hamiltonian

H = J
∑

〈i,j〉
sisj − HM − A

2L2
M2, (1)

with J > 0. We name it the two-dimensional Ising antiferro-
magnetic short-range and ferromagnetic long-range (2D Ising-
ASFL) model. The first two terms constitute the Wajnflasz-
Pick Ising-like model [55], in which the pseudospin variable
si denotes the two spin states at site i (−1 for LS and +1 for
HS), and M = ∑

i si is the pseudomagnetization. The effective
field term,

H = 1
2 (kBT ln r − D), (2)

contains D > 0, which is the energy difference between the
HS and LS states, and r , which is the ratio between the HS
and LS degeneracies. T is the absolute temperature, and kB

is Boltzmann’s constant. (Changing the temperature in the
physical SC system therefore corresponds to a combined
change in temperature and effective field in this pseudospin
model. See Figs. 5(a) and 8 of Ref. [24].)

The last term in Eq. (1) approximates the elastic long-range
interactions of the SC material as in Refs. [2,24,56]. Since it
lowers the energy of more uniform spin-state configurations
(mostly +1 or mostly −1) in a quadratic fashion, it is a
ferromagnetic term. Throughout the paper, temperature (T ),
energy (E), magnetic field (H ), and long-range interaction
strength (A) will be expressed in dimensionless units (|J | =
kB = 1).

The order parameters of this model are magnetization (M)
and staggered magnetization (Ms). They can be normalized
as m = M/L2 and ms = Ms/L

2. If we break the two-
dimensional square lattice into two sublattices (A and B), like
the black and white squares on a chessboard, m and ms can
be expressed in terms of the normalized magnetizations (mA,
mB) of these two sublattices as

m = (mA + mB)/2, (3)

ms = (mA − mB)/2. (4)

The usual order parameter for SC materials is the proportion of
HS molecules, nHS, which is related to the pseudospin variables
as nHS = (m + 1)/2.
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The equilibrium (stable) and metastable phases at zero
temperature were obtained from the Hamiltonian by simple
ground-state calculations in [24]. We briefly repeat the results
here for convenient reference, also introducing the following
short-hand notation for the low-temperature ordered phases:

antiferromagnetic (which is doubly degenerate), called
AFM;

ferromagnetic with majority of si = +1, called FM+;
and ferromagnetic with majority of si = −1, called FM−.
A < 8: AFM is stable for −4 + A/2 < H < 4 − A/2,

metastable against transition to FM+ for 4 − A/2 < H < 4,
and metastable against transition to FM− for −4 < H <

−4 + A/2. FM+ is stable for H > 4 − A/2, and metastable
for transition to AFM or FM− for 4 − A < H < 4 − A/2.
FM− is stable for H < −4 + A/2, and metastable for transi-
tion to AFM or FM+ for −4 + A/2 < H < −4 + A.

A > 8: AFM is never the stable ground state, but it is
metastable for −4 < H < 4. FM+ is stable for H > 0 and
metastable for 4 − A < H < 0. FM− is stable for H < 0 and
metastable for 0 < H < −4 + A.

III. METHOD

A. Obtaining joint density of states

The results presented in this paper are all based on the joint
DOS, g(E,M,Ms), determined once for H = A = 0, which
corresponds to a simple square-lattice Ising antiferromagnet.
Using this, the joint DOS for any arbitrary value of (H,A) can
be obtained by

g(E(H,A),M,Ms) = g(E(0,0),M,Ms), (5)

where

E(H,A) = E(0,0) − HM − AM2

2L2
. (6)

Note that this is an alternative but equivalent way to express
the content of Eq. (10) in Ref. [44]. This result is based on
the fact that all the microstates are equally shifted in energy
when a fieldlike parameter couples to a function of the global
property M , as shown in Eq. (1). With the joint DOS, all
thermodynamic quantities can be calculated, as demonstrated
in [44]. From g(E,M,Ms) at different (H,A), we can obtain
g(E,M) and g(E,Ms), as shown in Ref. [45].

To obtain an accurate g(E,M,Ms) at H = A = 0, the
macroscopically constrained WL method is used [43,44]. With
the help of simple combinatorial calculations in the (M,Ms)
space, the method converts what would otherwise be a time-
consuming multidimensional random walk in the (E,M,Ms)
space into many independent, one-dimensional random walks
in E, each constrained to a fixed value of (M,Ms). Through
further, symmetry-based simplifications [44], the method can
obtain an accurate estimate of g(E,M,Ms) in a relatively short
time.

As the details of how to arrive at these results have already
been presented in [44], here we focus on the physics of the
model SC material as A is changed. All the phase diagrams,
free-energy landscapes, and probability densities shown in
Sec. IV are obtained with L = 32.

B. From joint density of states to thermodynamic quantities

We define the constrained partition function of any
macrostate (m,ms) as

Zm,ms
=

∑

E

g(E,m,ms)e
−E/T . (7)

The overall partition function of the system is then

Zall =
∑

m,ms

Zm,ms
. (8)

The joint probability of finding the system in a macrostate
(m,ms) is

P (m,ms)�m�ms = Zm,ms

Zall
, (9)

where �m, �ms are the order-parameter step sizes, both
chosen to be the same value, around 0.03. The free energy
of macrostate (m,ms) is

F (m,ms) = −T ln Zm,ms
. (10)

We will plot these quantities in terms of (mA,mB) which have
a one-to-one relation with (m,ms) [see Eqs. (3) and (4)].

Summing over the contributions of the joint probability
[Eq. (9)] in one direction, we obtain the marginal probability
densities as

P (m)�m =
∑

ms
Zm,ms

Zall
, (11)

P (ms)�ms =
∑

m Zm,ms

Zall
. (12)

With these densities, we can calculate the expectation values
of the order parameters and other quantities. We can express
the free energy in terms of one order parameter as

F (m) = −T ln
∑

ms

Zm,ms
, (13)

F (ms) = −T ln
∑

m

Zm,ms
. (14)

The presence of the long-range interaction induces
metastable phase regions in the phase diagrams. A very
important point is that when we consider values of (T ,H,A)
lying in those regions, the stable phase will be the phase that
has larger total area in the marginal probability density, rather
than the phase that shows the higher peak. Systems lying on
the coexistence line between two phases will have equal areas
in the marginal probability density.

In a free-energy contour plot or joint probability density
plot, against m and ms (or against mA and mB), the region
around (m,ms) = (1,0) [or (mA,mB) = (1,1)] corresponds to
the FM+ phase. Similarly, the region around (m,ms) = (−1,0)
[or (mA,mB) = (−1,−1)] corresponds to the FM− phase.
The region around (m,ms) = (0,1) [or (mA,mB) = (1,−1)]
corresponds to the AFM+ phase, and the region around
(m,ms) = (0,−1) [or (mA,mB) = (−1,1)] corresponds to the
AFM− phase. Finally, the region around (m,ms) = (0,0)
[or (mA,mB) = (0,0)] corresponds to the disordered phase.
However, these are just the most extreme cases. Some AFM
phases have significant ferromagnetic properties, and some
FM phases may be quite disordered.

174428-3



C. H. CHAN, G. BROWN, AND P. A. RIKVOLD PHYSICAL REVIEW B 96, 174428 (2017)

In our model, for a particular (T ,H,A) triple, if the system
can exist as a disordered phase, it cannot exist as an AFM
phase, and vice versa. However it may happen that a disordered
phase shows strong AFM properties. Changing (T ,H,A) may
let the system change from one phase to another through
a continuous phase transition, as it crosses the critical line
between the two phases. In the Ising-ASFL model, a critical
line only exists between the disordered phase and the AFM
phase. The phase boundary between the ferromagnetic phase
and the disordered phase is a coexistence line, and it ends with
a mean-field critical point for sufficiently strong long-range
interaction A. This critical point is located where the two
spinodal lines meet.

The expectation values of the two order parameters can be
obtained easily as

〈m〉 =
∑

m

mP (m)�m, (15)

〈ms〉 =
∑

ms

msP (ms)�ms. (16)

As the two AFM phases always exist in pairs and the
probability of finding the system in both are the same,
〈ms〉 = 0.

As 〈ms〉 = 0, we define the corresponding fourth-order
Binder cumulant as [57–60]

ums
= 1 −

〈
m4

s

〉

3
〈
m2

s

〉2 . (17)

Here we only define the cumulant for the order parameter
ms , as only the critical line will be located by the cumulant.
When we take the ensemble average, we have to exclude all
the phase points that belong to the metastable FM+ or FM−
phase. That is, when we look at F (m), if we find more than one
minimum (i.e., more than one phase are found), we neglect the
states that have values of |m| greater than the separating value
of m. The critical line in this model is commonly accepted
to be in the Ising universality class [61], which (assuming
isotropy, periodic boundary conditions, and a square shape
as in the present study) has a cumulant fixed-point value of
0.6106924(16) [62–65]. We therefore locate the critical line
by finding the phase point within a temperature range where
the cumulant is close to 0.61, and does not deviate from 0.61 by
more than 0.01. The resulting critical line for A = 0 is included
in Fig. 1 together with the analytically approximated critical
line for the pure square-lattice Ising antiferromagnet in the
thermodynamic limit from Ref. [66]. Within the resolution of
this figure, our L = 32 data coincide with this highly accurate
approximation.

The variance of the order parameter m, which is propor-
tional to the susceptibility times the temperature,

var(m) = χmT = L2(〈m2〉 − 〈m〉2), (18)

is considered as we use its maxima to separate the FM± phases
from the disordered and AFM phases. All the coexistence lines
that we show are located by using this quantity. Note that
this quantity is very difficult to measure through importance-
sampling MC, while our approach can directly calculate it
using g(E,M,Ms). Further details on the method are given in
Ref. [44].

A 0
A 1
A 3
A 6
A 8
A 11

0 1 2 3 4
H0.0

0.5

1.0

1.5

2.0

2.5
T

FIG. 1. Critical lines for six different values of A. The critical
lines are obtained by increasing H in steps of 0.01 or 0.02, then
performing a temperature scan, choosing �T to be 0.001 to 0.005,
and locating the critical line by choosing the point that gives the
cumulant value [refer to Eq. (17)] closest to 0.61 [62–65]. If, at a
certain H , all the cumulant values obtained for different T deviate
from 0.61 by more than 0.01, the critical line is considered to have
terminated. When calculating the cumulants, all the phase points that
belong to the metastable FM+ or FM− phase were disregarded; i.e.,
the critical line separates the AFM phases from the disordered phase.
The analytically approximated critical line for the antiferromagnetic
Ising model, A = 0, from [66] is also plotted. Within the resolution
of this figure, it coincides with our data points for A = 0. Adding
a ferromagnetic long-range interaction A > 0 favors the appearance
of the ferromagnetic phase, and thus pushes the critical line towards
lower values of |H |. Moreover, the critical line also terminates at
higher T as A increases. The critical lines are symmetric about H = 0.

In next section, we consider the phase diagrams for different
values of A and study selected phase points. These are the main
results of the present paper. Notice that all the phase diagrams
are symmetric about the T axis, with an exchange between
FM+ and FM−. For A = 0, the model reduces to the standard
square-lattice antiferromagnetic Ising model [44,61].

IV. PHASE DIAGRAMS

A. Weak long-range interaction, A = 1,4

It is reasonable to assume that adding a ferromagnetic long-
range interaction A to the pure antiferromagnet must favor the
appearance of the ferromagnetic phases, and thus push the
critical line towards lower values of |H |. Figure 1 supports
this assumption. Moreover, the critical lines also terminate at
lower |H | and higher T for larger A. The phase diagrams in
Fig. 2 show that the critical lines end with the appearance of a
metastable region in the phase diagram, and that the metastable
region grows as A increases. All phase diagrams shown in this
paper are symmetric under simultaneous reversal of H and
m. Error bars including statistical and finite-size errors are
included with every data point in this and all subsequent phase
diagrams. With the exception of Fig. 6, they are everywhere
smaller than the symbol size. A discussion of how the errors
were estimated is found in the Appendix.

Introducing the long-range interaction A with the M2 term
makes it much weaker than the HM term for small M , so that
the long-range interaction effect is negligible when H and A

are small, and so it does not significantly affect the critical
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FIG. 2. Phase diagrams for cases of weak long-range interaction A, with (a) A = 1 and (b) A = 4. The meaning of each line is shown
in the legend in (a), and each phase region is labeled in (b). Region I represents stable AFM phase with metastable FM+ phase, and region
II represents stable FM+ phase with metastable AFM phase. The metastable regions grow as A increases. Notice that when T is small, the
coexistence lines are straight lines at constant H . The dots mark phase points studied in the next few figures. Error bars are everywhere smaller
than or comparable to the symbol size. Unless otherwise noted, this is also the case for all other phase diagrams shown in this paper.

temperature near H = 0. On the other hand, when we increase
H , the M2 term will eventually be larger than the M term,
and finally causes a local free-energy minimum to show up in
the FM+ region, corresponding to a metastable FM+ phase
region in the phase diagram [Figs. 3(a) and 3(b)]. A new FM+
peak also appears in the joint probability density [P (mA,mB)]
and marginal probability densities [P (m) and P (ms)]. One
peak may be much smaller than the other, such that it may
not be easy to discover the presence of metastability through
looking at the probability density [Figs. 3(b) and 3(d)]. Notice

1.0 0.5 0.5 1.0m

2500
2000
1500
1000
500

F m
a

1.0 0.5 0.5 1.0m

2500
2000
1500
1000
500

F m
c

1.0 0.5 0.5 1.0m
5
10
15
20
25
30
P m
b

1.0 0.5 0.5 1.0m
5
10
15
20
25
30
P m
d

FIG. 3. Free energy, F (m) [Eq. (13)], and marginal probability
density, P (m) [Eq. (11)], for two points lying in two different
metastable regions with A = 4 in Fig. 2(b). Both points have the same
temperature, T = 0.75, and are equidistant from the coexistence line.
Panels (a) and (b) show H = 1.8 [region I in Fig. 2(b)], which has a
stable AFM phase and a metastable FM+ phase. Panels (c) and (d)
show H = 2.2 [region II in Fig. 2(b)], which has a stable FM+ phase
and a metastable AFM phase. Note that in both cases, the metastable
phases are easily observed in the free energy, but their corresponding
peaks in the marginal probability density are too small compared to
the peaks of the stable phases, such that they are not observed in
(b) and (d). Both phase points would be located in the AFM phase
region for A = 0. Adding the long-range interactions creates a local
free-energy minimum in the FM+ region, and thus brings out the
metastable phase.

that although one phase may have much smaller probability
density than the other, the lifetimes for these metastable
phases increase exponentially with system volume, ecL2

for
a two-dimensional system, so that they are still macroscopic,
and thus cannot be neglected [56,67,68].

The AFM and FM+ phases are separated by the coexistence
line in the metastable region, and we observe that when T is
low, the coexistence line is a practically straight line at constant
H in the phase diagram. Note that this result is different from
the former result of Rikvold et al. [24] for A = 4, which
indicates a reentrant behavior of the coexistence line at low
T . This discrepancy is probably due to incomplete ergodicity
in the importance-sampling MC with mixed initial conditions
used in Ref. [24].

For any point lying on that straight vertical segment of
the coexistence line, as in Figs. 4(a)–4(c), the coexisting
AFM phases and the FM+ phase are located at their extreme
locations, i.e., m = +1,ms = ±1. Increasing T bends the
coexistence line toward lower |H | values. Simultaneously,
the AFM phases and the FM+ phase move away from
the extreme positions and toward each other, as shown in
Figs. 4(d)–4(f). The coexistence line finally joins the critical
line at the tricritical point, where the two AFM phases and
the FM+ phase become indistinguishable at the continuous
phase transition point. Figures 4(g)–4(i) represent a point
lying on the coexistence line, below the tricritical point. We
see from the joint probability density in Fig. 4(g) that the
ferromagnetic phase and the AFM phases are coalescing.
However, the marginal probability along the m axis in Fig. 4(h)
still has two peaks. We therefore regard the system as in
AFM/FM+ coexistence, with this small system fluctuating
easily between the two phases. Extrapolation of the end points
of the two spinodal lines gives the merging temperature, which
corresponds to the tricritical point. When the two spinodal
lines merge, the distance between them (�H ) varies against
temperature as [69]

(�H )2/3 ∝ Tx − T , (19)

where Tx represents the tricritical or critical temperature,
where the coexistence line ends. After obtaining the tricritical
temperature, we can estimate the tricritical field as the

174428-5



C. H. CHAN, G. BROWN, AND P. A. RIKVOLD PHYSICAL REVIEW B 96, 174428 (2017)

FIG. 4. Changes of the probability densities, P (mA,mB ) [Eq. (9)], and marginal probability densities, P (m) [Eq. (11)] and P (ms) [Eq. (12)],
when moving along the coexistence line starting from a low T toward the tricritical point for A = 4 as marked in Fig. 2(b). The surface plots
and the graphs in (a)–(c) show (H,T ) = (2.0005,0.75), which has the same temperature as in Fig. 3, in (d)–(f) show (H,T ) = (1.916,1.4), in
(g)–(i) show (H,T ) = (1.716,1.68), and in (j)–(l) show (H,T ) = (1.5147,1.85) which is the tricritical point. Panels (a)–(c) show the typical
pattern when T is low. The system is found in m = +1 (FM+ phase) or |ms | = 1 (AFM phase), so that sharp peaks are found at these points.
The system is equally probable in the FM+ phase and the AFM phase, i.e., the areas under the two peaks in (b) are the same, and the sum
of the areas of the two peaks in (c) at |ms | = 1 is equal to the area of the peak at |ms | = 0. Further increase in T along the coexistence line
makes the AFM peaks and the FM+ peak move toward each other, and the peaks become wider, as shown in (d)–(f). Even further increase in
T makes the peaks coalesce as shown in (g)–(i). As two peaks are still observed in (h), we regard them as two different phases; between which
this small system can fluctuate easily. Notice in (g) that the FM+ phase has spread out significantly. Finally the three peaks join together in
(j)–(l), and we regard this point as the tricritical point.

average of the extrapolation points of the two spinodal lines.
Figures 4(j)–4(l) show data at the tricritical point for A = 4,

where the AFM phases and the FM+ peak finally join together
into one phase.

FIG. 5. Phase diagrams for A = 6, 7, and 8. The FM− metastable phase, which only exists for H < 0 for small A, now also exists in the
H > 0 region, so a FM− spinodal line shows up in these graphs. This FM− spinodal line moves toward larger T and H when A increases,
and the metastable FM− region grows. The coexistence line crosses the critical line at the critical end point, and finally meets two spinodal
lines at a new mean-field critical point, which brings out a new metastable region, the horn region. A closer look at the horn regions for A = 7
and 8 are shown in Figs. 6 and 14(a), respectively. When A increases, the mean-field critical temperature rises, which makes the area of the
horn region increase. The coexistence line moves towards the T axis as A increases, which makes the stable AFM region shrink and the stable
FM+ region grow. The black dots mark phase points studied below.
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B. Medium long-range interaction, A = 6,7,8

As mentioned above for small A, moving along the
coexistence line toward the critical line, one approaches a
tricritical point, where the two AFM phases and the FM phase
become indistinguishable. Below the tricritical temperature,
the three phases are distinct. Then it is reasonable to expect
that if A is big enough, the two AFM phases may combine
into one disordered phase at a lower T than the one where they
further combine with the FM phase. In this scenario, we will
find that the critical line, which represents the AFM/disordered
phase transition, intersects the coexistence line at a critical end
point, and new metastable regions (horn regions) emerge in the
phase diagram as shown for A = 6,7, and 8 in Fig. 5.

Figure 6 is a closer look at the horn region for A = 7.
The coexistence line separates the FM phase from the AFM
phases at low T . After passing through the critical end point, it
separates the FM phase from the disordered phase. At a higher
T , it ends in a mean-field critical point, where the disordered
and FM phases become indistinguishable.

Figure 7 shows the case near the critical end point. As this
point is the intersection of the critical line and the coexistence
line; it has properties of both lines. Since it is on the coexistence
line, the combined AFM/disordered phase is equally probable
as the FM+ phase, as shown in (c) and (e). Since it is on
the critical line, the AFM peaks are connected through the
middle disordered region as it corresponds to a continuous
phase transition between the AFM phases and the disordered
phase [shown in (b)]. For the marginal probability density
function P (ms), if we remove the contribution from the FM+
phase as shown in the inset, the height ratio of an AFM peak to
the central point in the middle between the two peaks is around
26/1, which is close to the established value of about 22/1 [70].
Figure 8 shows a point close to the mean-field critical point at

critical line
FM spinodal line
AFM and disordered

spinodal line
coexistence line

0.0 0.2 0.4 0.6 0.8
H2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

T

AFM stable

Disorder stable FM stable

Mean field critical point

III

IV

V

VI

FIG. 6. The horn region of the phase diagram for A = 7. Region
III is disordered phase stable with metastable FM+ phase, region IV
is AFM phase stable with metastable FM+, region V is FM+ phase
stable with metastable disordered phase, and region VI is FM+ phase
stable with metastable AFM phase. Observe that the coexistence line
turns toward stronger |H | when approaching the mean-field critical
point. This is because higher temperature favors the disordered phase.
The black and red dots mark phase points studied in the next few
figures. At this enlarged scale, error bars are visible in the lower right
part of the figure.

FIG. 7. Data for A = 7, H = 0.4855, T = 2.175, which is
approximately the critical end point in the phase diagram of Fig. 6.
Panel (a) shows the free-energy contour, with the red dotted diagonal
representing the m axis, and the green dotted diagonal representing the
ms axis. Panel (b) shows the corresponding joint probability density
as in Eq. (9). Panels (c) and (d) show the marginal probabilities
expressed in Eqs. (11) and (12). Panels (e) and (f) show the free
energies in Eqs. (13) and (14). The inset in (d) shows P (ms) after
removing the effect from the FM+ phase. A critical end point is
the intersection of the critical line and the coexistence line, and has
properties of both lines. Since it is on the critical line, (b) and the inset
in (d) show that the AFM peaks are connected through the middle
disordered region as it corresponds to a continuous phase transition
between the AFM phases and the disordered phase. Since it is on the
coexistence line, (c) and (e) show that the combined AFM/disordered
phase is equally probable as the FM+ phase.

(H,T ) = (0.566,2.63) for A = 7, where we see that the two
peaks in P (m) have coalesced into one single peak. We note
that the position of the critical point found here is consistent
with the one found in Ref. [24] by importance-sampling MC
with system sizes up to L = 1024, H = 0.561(1), and T =
2.61(1).

Figure 9 shows results as we move along the coexistence
line to a point near the mean-field critical point. The disordered
phase peak gradually contracts to ms = 0 as the AFM
fluctuations weaken (refer to the first row of the figure), and the
FM+ peak slowly merges with the disordered phase peak until
only one peak is left in the marginal probability along the m

direction (refer to the second row of the figure). We see that the
two peaks in the marginal probability density, P (m), along the
FM axis, which correspond to two different phases, become
less sharp and merge. Note that the joint probability density
in (g) seems to show only one peak, but after summing up all
the contributions from different ms , the marginal probability
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FIG. 8. A = 7, H = 0.566, T = 2.63. A point very close to the
mean-field critical point for A = 7, where the disordered phase and
the FM+ phase have merged together as one phase, as shown in (c).

density in (h) shows two peaks, and we still regard them
as two phases even though they are strongly connected by
fluctuations.

Figure 10 shows the results observed at four points that are
equidistant from the coexistence line, but lie in four different
phase regions, with the critical end point nearly at the center,
as shown by the four red dots in Fig. 6. Panels (a) and (b) show
a point lying in region III, which has stable disordered phase
and metastable FM+ phase; (c) and (d) show a point lying in
region IV, which has stable AFM phase and metastable FM+
phase; (e) and (f) show a point lying in region V, which has
stable FM+ phase and metastable disordered phase; and (g)
and (h) show a point lying in region VI, which has stable FM+
phase and metastable AFM phase.

The phase diagram for A = 7 is well suited for comparison
with a number of experimental results for SC materials
that show asymmetric, two-step thermal hysteresis loops
[25–42]. Such a two-step loop, obtained directly from the
joint probability density, P (m,ms), along a path between
(H,T ) = (1.0,2.5) and (−1.5,1.75) in Fig. 6 is shown in
Fig. 11. This path corresponds to the parameters ln r = 20/3
and D = 44/3 in Eq. (2). The narrow high-temperature loop
corresponds to the crossings of the spinodal lines in the horn
region, while the wide low-temperature loop corresponds to
crossings of the spinodals in the negative-H region. In order
to calculate these hysteresis loops, at each point along the
hysteresis path we first located the local maximum in F (m)
that separates the two phases. Then, 〈m〉 and 〈|ms |〉 were
obtained by summing over P (m,ms) as described in Sec. III B.
Although we do not show other examples of hysteresis loops
here, we emphasize that our macroscopically constrained WL
method enables the calculation of such loops for any value
of A and any choice of hysteresis path, solely based on the
DOS data for the pure Ising antiferromagnet, without any
further MC simulations. The hysteresis loop shown here is
fully consistent with the one obtained by importance-sampling

FIG. 9. Changes of the joint probability densities, P (mA,mB ), and marginal density, P (m), when moving along the coexistence line starting
from a point above the critical end point, towards the mean-field critical point for A = 7 (Fig. 6). Panels (a) and (b) show (H,T ) = (0.498,2.3),
(c) and (d) show (H,T ) = (0.514,2.4), (e) and (f) show (H,T ) = (0.536,2.5), and (g) and (h) show (H,T ) = (0.557,2.59), as marked in Fig. 6.
All the graphs for P (m) have two peaks, representing the disordered phase and the FM+ phase. Note that P (mA,mB ) may only show one peak
as in (g); as long as P (m) has two peaks as in (h), there are still two peaks. Phase points lying on the coexistence line show equal areas below the
two peaks in P (m), and show maxima in the order-parameter variance [Eq. (18)]. From P (mA,mB ) we see that the disordered phase becomes
less dispersed as we move towards the mean-field critical point. Moreover, the disordered phase and the FM+ phase peaks are moving closer
to each other and start coalescing.
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FIG. 10. Marginal probability densities, P (m) and P (ms), for the four red selected phase points lying in the four different metastable
regions in Fig. 6 for A = 7. All the points are equidistant from the coexistence line. Panels (a) and (b) show (H,T ) = (0.485,2.25) lying in
region III (stable disordered phase with metastable FM+ phase), (c) and (d) show (H,T ) = (0.478,2.1) lying in region IV (stable AFM phase
with metastable FM+ phase), (e) and (f) show (H,T ) = (0.497,2.25) lying in region V (stable FM+ phase with metastable disordered phase),
and (g) and (h) show (H,T ) = (0.49,2.1) lying in region VI (stable FM+ phase with metastable AFM). Note that in (h), there are two very
small peaks near ms = ±0.85 corresponding to the AFM phase, and the inset shows one of these.

MC simulations for the same parameters in Refs. [24,71]. The
only significant differences are the slopes of the 〈|ms |〉 curve
where the path crosses the critical line, which in both cases are
due to finite-size effects. On the other hand, finite-size effects
in the positions of the spinodals are negligible, as discussed in
the Appendix.

The phase diagrams for A = 6, 7, and 8 in Fig. 5 show
several additional, noteworthy features. First, the phase dia-
grams shown are symmetric about the T axis, with an exchange
between FM+ and FM−. This is because the FM+ spinodal
line is just touching the T axis at T = 0 for A = 4 [Fig. 2(c)].
Further increases of A beyond 4 will make a FM− spinodal line

m
mS

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
T

0.5

0.0

0.5

1.0

FIG. 11. Asymmetric, two-step hysteresis loops for A = 7, remi-
niscent of experimental results for several SC materials [25–42]. The
phase point moves back and forth along a path between (H,T ) =
(1.0,2.5) and (−1.5,1.75) in Fig. 6, corresponding to the parameters
ln r = 20/3 and D = 44/3 in Eq. (2). The narrow high-temperature
loop corresponds to the crossing of the horn region, while the
wide low-temperature loop corresponds to spinodal crossings in the
negative-H region (not included in Fig. 6). The loops were obtained
directly from the joint probability density, P (m,ms). The rounding of
〈|ms |〉 near the crossing of the critical line is a finite-size effect.

show up in the positive H region. Thus, the strong AM2/(2L2)
causes a FM− metastable region to appear in the positive H

field region. Figures 12(c) and 12(d) illustrate the case of a
point lying on the coexistence line between the FM+ phase
and AFM phases, inside the FM− metastable region. The
small drop in the free energy in (d) near m = −1 indicates
the metastable FM− phase. Figures 12(a) and 12(b) illustrate
a point at H = 0 and at a low T , where both FM phases are
metastable.

FIG. 12. Free-energy contour, F (mA,mB ) [Eq. (10)], and free
energies, F (m), for phase points with metastable FM phases for A = 7
and T = 1. Panels (c) and (d) show H = 0.5005 which is a point lying
on the coexistence line between the stable FM+ phase and the stable
AFM phase. The small drop near m = −1 [(mA,mB ) = (−1,−1)]
indicates the presence of the metastable FM− phase. Panels (a) and
(b) show a point at the same T and at H = 0, as marked in Fig. 5(b).
Here, AFM is stable and the two FM phases are equally metastable.
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FIG. 13. Comparing joint probability densities for A = 8 (first row) and A = 8.1 (second row) for H = 0. Panels (a) and (b) show T = 0.5,
(c) and (d) show T = 2.1, (e) and (f) show T = 2.33, and (g) and (h) show T = 2.38. These points are marked in Figs. 5(c), 14(a), and 14(b).
Panel (a) shows that all the AFM phases and the FM± phases are stable phases for A = 8 at low T and H = 0. Panel (b) shows that when A

increases to 8.1, the two FM phases dominate and become the only stable phases. The two AFM phases become metastable, but are too weak
to be observed in (b). Panel (c) shows that increasing the temperature for A = 8 makes the AFM phases become stable, and the FM± phases
become metastable. When A is increased to 8.1 as in (d), the stable phases and metastable phases exchange. Similarly, (e) shows that increasing
the temperature to a point above the critical line makes the disordered phase become stable and the FM± phases metastable. Again, when A

changes to 8.1 in (f), the metastable and stable phases exchange. Panel (g) shows that when T is high enough, both A = 8 and 8.1 will have
the disordered phase as the stable phase, but the metastable FM± phases are still visible for A = 8.1 as shown in (h).

Second, observe that the coexistence lines turn toward
stronger |H | when approaching the mean-field critical points
(Fig. 5). This is because the disordered phase is more favorable
than the FM phases at high T , so a stronger |H | field is required
to balance this effect.

Third, when A increases, the mean-field critical temperature
also increases, which makes the area of the horn region in-
crease. This is because the ferromagnetic effects increase with
A according to the Hamiltonian (1), so a stronger disordering
effect (higher temperature) is required to balance it.

Fourth, the coexistence line moves toward lower |H | as
A increases, which makes the stable AFM region shrink
and the stable FM regions grow. This is because strong
−AM2/(2L2) stabilizes the ferromagnetic phases at lower
|H |. The coexistence line for A = 8 is at H = 0 for low T

[Fig. 5(c)]. In that case, the two AFM phases and the two FM

phases are equally probable as shown in Fig. 13(a). When
T increases to a high enough value, disorder effects start
to show up, making |ms | decrease from 1 [Fig. 13(c)]. At
low |H | and high T , the disordered phase is preferred over
the ferromagnetic phase. This effect starts to show up before
reaching the critical temperature, making the coexistence line
turn away from H = 0 before it crosses the critical line, as
shown in Fig. 14(a).

Fifth, the FM− spinodal line continues moving toward
higher T when A increases as the ferromagnetic phase is
getting stronger. At A = 8, the FM− spinodal line has moved
above the critical line. This produces a region [Fig. 14(a)] that
is stable in the FM+ phase, and metastable in both the FM−
and disordered phases (region VIII), and another region that
is stable in the disordered phase, and metastable in both FM±
phases (region VII).
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FIG. 14. Horn regions of the phase diagrams for (a) A = 8, (b) A = 8.1, and (c) A = 9. Comparing with the phase diagrams for A = 6,7,

and 8, increasing A makes the coexistence line move toward lower |H |, and also makes the mean-field critical point move to higher T .
Moreover, the disordered spinodal line and the FM− spinodal line intersect on the T axis at a higher T . Note that for A = 8, the FM− spinodal
line is above the critical line, which creates new metastable regions: region VII, which is stable in the disordered phase and metastable in both
FM± phases, and region VIII, which is stable in the FM+ phase and metastable in both the FM− and disordered phases. The red dots mark
the points that are discussed in Fig. 13. A broader view for A = 9 is shown in Fig. 16(a).
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FIG. 15. Data for (T ,H,A) = (3.67,0,9), a point on the T axis,
close to the coexistence line for A = 9 [marked in Fig. 14(c)]. The
three peaks in P (m), which correspond to the FM± phases and the
disordered phase, have similar areas and are connected with each
other. When the system size is increased, the three peaks should
become sharper and the connecting bridges should disappear.

Observe from Figs. 6 and 14(a) that the coexistence line
makes a relatively large bend at the critical end point. This
is because after passing through this point, the AFM phase
changes to the disordered phase, which is favored at high
temperature, making the coexistence line have a smaller slope.
Therefore, a relatively large bend in the coexistence line is
found at the critical end point. This agrees with the previously
observed result that d2H/dT 2 along the coexistence line
reaches a maximum at the critical end point [72–74]. Note
that the location of the coexistence lines given by Rikvold
et al. [24] is different from the current result for A = 7. The
former result may be due to incomplete ergodic sampling by
the mixed-start importance-sampling MC method used in that
work to locate the coexistence lines. This might also affect
experimental attempts to accurately detect phase coexistence.
Further analysis of the discrepancy between the importance-
sampling MC using the mixed-start method and the present
method in locating coexistence lines is in progress [75].

C. Transitional long-range interaction strength A = 8.1,9

From the ground-state analysis in Ref. [24], A = 8 is the
dividing line for the stable phase at T = 0. For A > 8, the
stable phase at T = 0, H > 0 can only be the FM+ phase.

Figures 13(a)–13(d) show that increasing A from 8 to 8.1
makes the FM phases overtake the AFM phases and become
the stable phases below the critical line. The Bragg-Williams
mean-field approximation [76,77] also suggests that phase
diagrams having A > 8 belong to the same group (large
long-range interaction group) and possess the same nature
[24]. While Ref. [24] has already pointed out that the Bragg-
Williams mean-field approximation fails in predicting the
existence of the horn regions (Figs. 6 and 14), here we find that
the existence of the horn region induces a range of transitional
long-range interaction strengths, between the medium long-
range interaction and the strong long-range interaction. A =
8.1 [Fig. 14(b)] and A = 9 [Fig. 14(c)] belong to this range.

In this transitional range of A, we notice several things.
First, the coexistence lines still exist, but the FM phases have
pushed them to meet the T axis at high temperatures, and
this intercept temperature increases with A (Fig. 14). Second,
however, for A = 8 and when T is low, the AFM phases and the
FM± phases are equally stable along the T axis [Fig. 13(a)].
Increasing A makes the FM± phases overtake the AFM phases
along the T axis. Figure 13 demonstrates this by comparing
four points on the T axis for A = 8 and 8.1. Third, the FM
phases push the two spinodal lines originating from the mean-
field critical point toward H = 0. As a result, at around A = 9
[Figs. 14(c) and 16(a)], the disordered spinodal lines nearly
touch the T axis before the two mean-field critical points from
the ±H side of the phase diagram coalesce at even higher A.

While Fig. 13(h) shows a point close to the coexistence
line for A = 8.1, which has the disordered phase spread to the
two AFM corners without connecting to the two FM± peaks,
Fig. 15 shows a point close to the coexistence line for A = 9,
which has the disordered phase connected to the two FM±
peaks. The connecting bridges should disappear and the three
peaks should become sharper, as the system size is increased.

D. Strong long-range interaction, A = 9.5,11

When the long-range interaction is sufficiently strong, the
two mean-field critical points in the ±H horn regions will

FIG. 16. Phase diagrams for (a) A = 9, (b) A = 9.5, and (c) A = 11. Region IX has stable disordered/FM+ phase and metastable
disordered/FM− phase, region XI has stable FM+ phase and both the FM− phase and the AFM phase are metastable. Region X lies near the
T axis between these two regions [see the inset in (c) for A = 11]. It corresponds to a stable FM+ phase with both the FM− phase and the
disordered phase metastable. (a) In a transitional range of long-range interaction strength, the FM phases push the disordered spinodal lines
toward H = 0, so these lines nearly touch the T axis before the two mean-field critical points from the ±H side of the phase diagram coalesce.
[The very small remaining horn region is shown in detail in Fig. 14(c).] Panels (b) and (c) correspond to strong long-range interactions. The
two mean-field critical points from the ±H side of the phase diagram have coalesced into one mean-field critical point at H = 0, with a critical
temperature that increases with A. The AFM and disordered spinodal lines merge with the critical line as A increases. The red dots in (c) and
in the inset mark phase points studied in the next few figures.
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FIG. 17. Data for (T ,H,A) = (6,0.01,11), a point in region IX
of Fig. 16(c). The marginal probability density P (m) has two peaks,
and the system has a stable disordered/FM+ phase and a metastable
disordered/FM− phase. See further discussion in Sec. IV D.

coalesce into one critical point as shown in the phase diagrams
for A = 9.5 and 11 in Figs. 16(b) and 16(c). Above this mean-
field critical temperature, the system is in a disordered phase. If
we increase H , the system undergoes a continuous crossover
from the disordered phase to the FM+ phase, but there is
no sharp transition point. The combined mean-field critical
point is also the end point of the FM± spinodal lines. When
H > 0 and T is below the FM− spinodal line (region IX
in Fig. 16), the marginal probability density P (m) has two
peaks, and the system has a stable disordered/FM+ phase
and a metastable disordered/FM− phase (Fig. 17). As there
is a continuous crossover between the disordered phase and
the FM+ phase above Tc, it is natural that near the mean-
field critical point, the marginal probability density has a large
peak at a value of |m| that is smaller than 0.5. Moreover, the
metastable phase can show very strong disordered properties,
so we consider the metastable phase below the FM− spinodal
line to be a disordered/FM− phase. The topology of the phase

FIG. 18. Joint probability density, P (mA,mB ), and marginal
probability density, P (m), for A = 11: (a) and (b) at the mean-field
critical point, (H,T ) = (0,6.2239); (c) and (d) at a point slightly
below the mean-field critical point, (H,T ) = (0,6) in region IX. These
two points are marked in Fig. 16(c). Note that there is a continuous
crossover between the disordered phase and the FM± phases, so it
is natural that the marginal probability density in (d) has big peaks
at a value of |m| that is smaller than 0.5, and we regard it as stable
disordered/FM± phases.

diagrams for A = 9.5 and 11 is the same as found for A = 10
in Ref. [24].

Figures 18(a) and 18(b) show probability densities at the
coalesced mean-field critical point. It is found by extrapolation
of the FM− spinodal line and Eq. (19). Note that as the critical
point is in the mean-field universality class, at T = 6, which is
below the critical point for A = 11 as shown in Figs. 18(c) and
18(d), we regard it as having stable FM± phases, connected by
fluctuations resembling the disordered phase. However, we do
not regard the system as having a metastable disordered phase.
The fluctuation connection has disappeared at around T = 5.5.
At T = 2.5 as shown in Figs. 19(a) and 19(b), the system is
close to the AFM and disordered spinodal line; the free energy
in (b) shows a flat maximum around m = 0. Figures 19(c) and
19(d) shows the case at T = 2.35 for A = 11, which is a point
in region X in the phase diagram of Fig. 16(c). The free-energy
contour and the free-energy drop near m = 0 indicate the
existence of the metastable disordered phase. Further reduction
in T below the critical line brings the system to the stable
FM+ phase with metastable AFM phases, i.e., region XI in the
phase diagram of Fig. 16(c), as shown in Figs. 19(e) and 19(f)

FIG. 19. Free energy with A = 11 for three different points lying
in the three different regions as marked in the inset of Fig. 16(c).
As the three points are lying on the T axis, both the FM± phases
are stable. Panels (a) and (b) show (H,T ) = (0,2.5) in region IX,
which has no metastable phase; the stable phases are the FM± which
have no disordered properties, in contrast to the situation near the
mean-field critical point shown in Fig. 18(d). Panels (c) and (d) show
(H,T ) = (0,2.35) in region X, which has a metastable disordered
phase. Panels (e) and (f) show (H,T ) = (0,2.2) in region XI, which
has metastable AFM phases.
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for T = 2.2. The free-energy contour, and the drop in free
energy near m = 0, indicate the existence of the metastable
AFM phases. As A increases (Fig. 16), the disordered/AFM
spinodal line merges with the critical line. We expect region
X, the disordered metastable phase region, to disappear when
A becomes very large.

V. SUMMARY AND CONCLUSION

In this paper we have presented detailed phase diagrams,
free-energy landscapes, and order-parameter distributions for
a model SC material with antiferromagnetic-like nearest-
neighbor and ferromagnetic-like long-range interactions [24],
covering a wide range of temperatures T , fields H , and long-
range interaction strengths A. This was accomplished with a
relatively modest computational effort by a recently developed,
macroscopically constrained WL method for systems with
multiple order parameters [44]. The method produces DOS
for given values of the system energy E, magnetization m,
and staggered magnetization ms for a square-lattice Ising anti-
ferromagnet (i.e., A = 0) in zero field. The DOS for arbitrary
values of H and A are then found by a simple transformation of
E [Eq. (5)], without the need for additional simulations. From
the transformed DOS, we obtain free-energy landscapes and
(H,T ) phase diagrams, including metastable regions important
to applications of SC materials [13,15,21,22]. Topologically
different phase diagrams are obtained, depending on the
strength of A. For A = 0, the numerically well-known phase
diagram for the square-lattice antiferromagnet is recovered
(Fig. 1).

For weak long-range interactions, 0 < A � 4, the high-
temperature critical line terminates in a tricritical point at a
nonzero temperature, from which sharp spinodal lines marking
the extent of metastable phase regions extend to T = 0 (Fig. 2).
In this parameter range, the phase diagram is topologically
identical to what is predicted by a simple Bragg-Williams
mean-field approximation as discussed in Ref. [44].

At a value of A between 4 and 6 (which we have
not attempted to determine accurately), the tricritical point
decomposes into a critical end point and a mean-field critical
point at a higher temperature. The resulting horn structure
of the phase diagram, which is not seen in simple Bragg-
Williams mean-field calculations, is illustrated in Fig. 5 for
the intermediate interaction strengths, A = 6, 7, and 8. The
phase diagram obtained for A = 7 (Fig. 6) is in excellent
agreement with that obtained by computationally intensive
importance-sampling MC simulations in Ref. [24]. The only
clear difference is the shape of the AFM/FM coexistence lines.
A detailed investigation of this issue is in progress [75]. (Very
recently, horn regions and asymmetric, two-step hysteresis
loops, analogous to those seen in the model studied here, have
also been observed for a model with antiferromagnetic-like
nearest-neighbor interactions and genuine elastic interactions
[78].) The horn structure gives rise to asymmetric, two-step
hysteresis loops (see example in Fig. 11) that are similar to
experimental observations in several different SC materials
[25–42].

For A > 8, the AFM phase is no longer a possible ground
state of the model. In the transitional region, 8 < A � 9, the
horn region shrinks as shown in Fig. 14, until the two mean-

A 4
A 7
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0.005

0.005

0.010

0.015
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FIG. 20. Comparison of points on the critical lines for A = 4
and A = 7 obtained in this paper with L = 32, and those obtained
through importance-sampling MC with L � 1024 in Ref. [24]. For
each value of H , �T > 0 means that Ref. [24] locates the critical
point at a higher temperature than obtained in the present paper. As
H increases, �T increases from negative to positive. However, even
near the end of the critical line, this error is less than the symbol size
in all the phase diagrams shown in the present paper, except Fig. 6.

field critical points coalesce into a single critical point at H = 0
for a value of A somewhere between 9 and 9.5. (This value
we also have not attempted to determine accurately.) To our
knowledge, this regime of transitional interaction strengths has
not been investigated before. Phase diagrams for the strong-
interaction case, represented by A = 9.5 and 11, are shown
in Fig. 16. These are topologically identical to the one shown
for A = 10 in Ref. [24]. We believe our results can contribute
to the interpretation of the fascinating phase diagrams and
hysteresis loops observed in many SC materials and other
systems with competing short- and long-range interactions.
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APPENDIX: FINITE-SIZE EFFECTS AND ERROR
ESTIMATES

The questions of finite system sizes and error estimates are
intimately connected, and it is reasonable to ask whether the
system size of L = 32 that we use here is sufficient to ensure
reliable results. The fourth-order Binder cumulant presumably
leads to cancellation of leading corrections to scaling [58]
and is a remarkably accurate method to locate critical points.
The most general way to utilize the method is to look for the
crossings between plots of cumulant vs temperature or field for
different system sizes. However, the model studied here fulfills
all the symmetry requirements to yield a fixed-point value of
0.6106924(16) [62–65]. As a consequence, it is possible to
obtain good estimates of critical points as the phase points
where the cumulant is near this value for a single system size, as
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we have done here. This is demonstrated in Fig. 20, where we
compare critical lines obtained here using the macroscopically
constrained WL method with L = 32, with those obtained
in Ref. [24] by importance-sampling MC using the standard
method of cumulant crossings for L � 1024. The differences
are indeed very small, and although they are included as error
bars in all the phase diagrams shown in this paper, they only
exceed the symbol size in the lower right quadrant of the

enlarged view of the horn region for A = 7, shown in Fig. 6.
The finite-size effects are even smaller for the spinodal lines
(not shown here), and again the error bars obtained from the
differences with the results of Ref. [24] are only visible in
Fig. 6. Statistical errors were reduced below the level of the
finite-size effects by averaging the DOS over ten independent
macroscopically constrained WL simulations as described in
Appendix C of Ref. [44].
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