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One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
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We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1
Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled
Haldane chains (J ′ � J ) and the isotropic triangular lattice (J ′ = J ). We use the density-matrix renormalization
group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point
solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered
regime at (J ′/J )c ∼ 0.42, signaled by the sudden closing of the spin gap. Coming from the magnetically ordered
side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral
magnetic order toward a magnetically disordered phase with one-dimensional features at (J ′/J )c ∼ 0.43. The
agreement of these complementary methods, along with the strong difference found between the intra- and the
interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests
that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the
one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
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I. INTRODUCTION

The role played by quantum fluctuations in low-
dimensional antiferromagnets is quite well understood when
frustration is not present [1]. For one-dimensional (1D)
systems the Haldane conjecture [2], regarding the gapless
and gapped magnetic excitations for s = 1/2 and s = 1,
respectively, has been largely confirmed theoretical and ex-
perimentally [3]. Here, the magnetic excitation spectra of
the critical (s = 1/2) and the Haldane (s = 1) phases are
successfully interpreted in terms of spin-1/2 spinons and
spin-1 triplet excitations, respectively. In two dimensions, like
in the square lattice, the rupture of the SU (2) symmetry of
the Néel ground state has been widely confirmed [4] in both
cases, s = 1/2 and s = 1, where the magnetic excitations
are well described by spin-1 magnonic excitations. In the
spin-1/2 case, however, it has been proposed that some high-
energy anomalies observed in the spectrum of the cuprates
superconductors could be explained by the mean of fermionic
spinon excitations [5].

The effect of the dimensional crossover in these systems is
also very interesting. In interpolating from decoupled spin
chains to the square spin lattice (see Fig. 1 with J = 1,
J ′′ = 0, and J ′ varying from 0 to 1) the behavior of the
antiferromagnetic (AF) Heisenberg model depends strongly
on the spin value. The critical feature of the spin-1/2 chain
ground state makes the system susceptible to breaking the
SU (2) symmetry with an infinitesimal interchain coupling
J ′/J and develops long-range Néel order; however, for the
spin-1 case [6], it takes a very small value (J ′/J )c ∼ 0.0436,
notably one order of magnitude smaller than the spin chain gap,
to quench the Haldane phase and, simultaneously, to develop
long-range Néel order [7].

The interpolation between the decoupled chains and the
frustrated triangular lattice (see Fig. 1 with J=1 and J ′′=J ′,
with J ′ varying from 0 to 1), for spin-1/2, yields a non-
trivial interplay between the dimensional crossover and the
quantum fluctuation effects that induces a marked reduction
of the interchain correlations. This effective reduction of

the dimension due to magnetic frustration has been called
one dimensionalization [8]. Several analytical methods [9]
predict that such a quasi-one-dimensional regime persists until
J ′/J < 0.7; however, a variational Monte Carlo approach
[10] predicts a sequence of continuous transitions: one at
J ′/J ∼ 0.6 from a 1D spin liquid phase to a two-dimensional
(2D) spin liquid phase and another one at J ′/J ∼ 0.85 to a 2D
magnetic phase.

It is believed that this phenomenon is realized in the
frustrated 2D magnetic compound Cs2CuCl4, where the broad
continuum found in the spectrum measured by inelastic
neutron scattering experiments was originally interpreted
[11] as a signal of 2D spinon excitation. Subsequent works
[12,13], however, gave enough evidence of the 1D char-
acter of the spinon excitations in agreement with the one-
dimensionalization scenario. More recently [14], the dimen-
sional reduction has been accomplished by controlling the
pressure in the spin-1/2 magnetic material CuF2(D2O)2(pyz)
(pyz = pyrazine), allowing us to investigate the passage from
spin wave to spinon excitation in the same triangular geometry.

On the other hand, for the spin-1 case the interplay between
frustration and dimensional crossover has been little explored
in the literature. On one side, numerical exact diagonalization
studies [15] do not allow estimating a reliable critical value due
to the small system sizes investigated; on the other hand, using
series expansion [16], Pardini and Singh estimated that the
critical value between spiral magnetic and disordered phases
is within the range 0.33 < J ′/J < 0.6. However, the lack of
an unbiased study of the short-range correlations did not allow
discerning whether the effective reduction of the dimension
actually occurs.

In this paper we investigate the phenomenon of one
dimensionalization in the AF spin-1 Heisenberg model that
interpolates between the 1D decoupled chains and the triangu-
lar lattice by mean of two complementary methods: density-
matrix renormalization group (DMRG) and the Schwinger bo-
son theory performed at the more reliable Gaussian correction
level above the saddle-point solution. The DMRG results are
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FIG. 1. Geometry of the AF exchange interactions. The interpo-
lation among the different systems is explained in the text.

very accurate for the regime of weakly coupled chains,
while the Schwinger boson theory is suitable for the 2D
magnetically ordered regime. The main DMRG result is that
there is an abrupt transition between the decoupled spin
chains and the spirally ordered regimes at (J ′/J )c ∼ 0.42
signaled by the sudden closing of the spin gap. This is
in contrast to the unfrustrated case, where the gap closes
continuously until long-range Néel order is set in. Coming
from the 2D magnetically ordered side, Schwinger boson
theory predicts the instability of the spiral magnetic order
at (J ′/J )c ∼ 0.43 toward a magnetically disordered phase
with one-dimensional features. This agreement, along with the
strong difference found with DMRG between the intra- and
interchain short spin-spin correlations for sufficiently large
values of the interchain coupling, allows us to confirm that the
one-dimensionalization phenomenon is realized in the present
frustrated spin-1 model.

This paper is organized as follows: in Sec. II we explain
the model Hamiltonian. In Sec. III we describe the details of
the DMRG method and the results. In Sec. IV we develop the
Schwinger boson theory up to Gaussian correction level along
with the results. In Sec. V we close with the conclusions.

II. MODEL

The spin-1 Heisenberg Hamiltonian that interpolates from
1D decoupled chains to the spatially isotropic square and
triangular lattices can be written as

H =
∑

i

[J Ŝi Ŝi+δ + J ′ Ŝi Ŝi+δ′ + J ′′ Ŝi Ŝi+δ′′ ], (1)

where the sum goes over all sites i of the square lattice
and the AF exchange interactions J , J ′, and J ′′ connect the
nearest-neighbor spins along the horizontal δ and diagonal
δ′ and δ′′ spatial directions, respectively, as shown in Fig. 1.
Throughout this work we take J = 1. As mentioned in the
Introduction, the interpolation between decoupled spin chains
and the square lattice is accomplished by varying J ′ from 0
to 1 while keeping J ′′ = 0. On the other hand, to study the
effect of frustration J ′ = J ′′ is assumed. So the interpolation
between decoupled spin chains and the triangular lattice is
accomplished by varying J ′ from 0 to 1.

III. DENSITY-MATRIX RENORMALIZATION GROUP

We use the standard density-matrix renormalization-group
algorithm [17] on square clusters L×L with cylindrical
boundary conditions (periodic boundary conditions along the
J chains) for systems of L = 4,6,8,10,12 (see Fig. 1). We keep

up to 1200 states for the worst-case scenario (J ′ = J ′′ = 1
and large L) in order to keep the truncation error below 10−5,
ensuring that errors become smaller than symbol size. In order
to avoid the characteristic edge states of the Haldane chains
(remember that for an S = 1 open chain the spin gap should
be calculated [17] as � = ESz=2 − EGS) periodic boundary
conditions are used along the J chains. This allows us to
calculate the spin gap as

� = ESz=1 − EGS (2)

in interpolating between the decoupled chain and the 2D
systems. The squared local magnetization is defined as

m2 = S(Q)

N
= 1

N2

∑
ij

〈Ŝi Ŝj 〉eik(Ri−Rj ), (3)

where S(Q) is the structure factor evaluated at the magnetic
wave vector Q and N = L×L.

In order to validate our DMRG method we have investigated
the interpolation between the decoupled chain regime and
the Néel order regime of the square lattice (J ′′ = 0), studied
previously [6,18]. Figure 2 shows the gap � (top panel)
and the squared staggered magnetization m2 (bottom panel)
versus 1/L for L = 4,6,8,10,12 and different values of the
interchain coupling J ′. A quantum critical point is observed
which is signaled by a continuous reduction of both the gap
and the squared magnetization as the interchain coupling J ′
approaches a critical value J ′

c. To quantitatively determine
J ′

c we use a finite-size scaling analysis over the gap � and
the squared staggered magnetization m2 as follows: near the
quantum critical point the product L� (or Lm2) is given by
a universal function, L� = f (C(J ′

c − J ′)L
1
ν ), where L is the

linear size of the system, C is independent of L, and ν is the
correlation length exponent [18]. When J ′ = J ′

c, L� = f (0)
does not depend on the size L. Then, by assuming that the
quantum critical point is scale invariant, a crossing of all
curves L� versus J ′ at the critical interchain coupling J ′

c (see
Fig. 3) is expected. Due to the existence of finite-size effects
such a crossing of the curves does not occurs. Therefore, in
order to find J ′

c in the thermodynamic limit, it is necessary to
extrapolate the different crossing points for successive lattice
sizes, as shown in the inset of Fig. 3. The value we find
is J ′

c = 0.042, which agrees with the quantum Monte Carlo
[6] J ′

c = 0.043648 and two-step DMRG [18] J ′
c = 0.043613

predictions. Notice that by applying the above finite-size
procedure to the quantity Lm2 we find the same critical value.
Even if the small value of J ′

c with respect to the Haldane
gap � ∼ 0.41 has been pointed out previously [16], why
J ′

c � � has not been explained. Using heuristic arguments, the
mean-field energy gain due to J ′ coupling seems to be of order
zJ ′s2ξ , where ξ ∼ 6 is the Haldane chain correlation length
and z is the number of neighboring chains. Then, at the quan-
tum critical point we find that 2J ′

cs
2ξ is of the same order of �.

Once the DMRG procedure has been validated, we tackle
the frustrated case, J ′ = J ′′, where the behavior of the ground
state with the interchain coupling is completely different from
the unfrustrated case. In Fig. 4 it is observed that the gap is
practically unaltered for an important range of the interchain
coupling. Furthermore, there is a sudden closing of the gap for
each lattice size studied. The inset of Fig. 4 plots the scaling
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FIG. 2. DMRG results for the unfrustrated case J ′′ = 0: scaling
of the spin gap � (top panel) and the squared staggered magnetization
m2 (bottom panel) versus 1/L for different values of the interchain
coupling J ′. The system sizes shown are L = 4,6,8,10, and 12.

of J ′
c with 1/N where the critical value is assumed when

the gap is halved for each size, being the extrapolated value
J ′

c = 0.42. Interestingly, this value is very close to the Haldane
gap, in contrast to the unfrustrated case, where the interchain
coupling is one order of magnitude smaller. Here, the previous
mean-field arguments cannot be applied due to the frustration.
Therefore, the magnetic frustration induced by the dimensional
crossover seems to preserve the robustness of the Haldane
phase. To investigate whether there is an effective reduction
of the dimension we have studied the intra- and interchain
short-range spin-spin correlations, which are shown in Fig. 5.
Here, the quite abrupt change of the interchain correlations for
large values of the interchain coupling resembles the behavior
of the spin gap. For the 8×8 lattice we have not continued
the calculation up to J ′ = 1 because the 120◦ Néel order does
not match this lattice size, and consequently, the isotropic
regime is not recovered as in the 6×6 lattice. Although not
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FIG. 3. DMRG results for the unfrustrated case J ′′ = 0: L×�

versus interchain coupling J ′ for different system sizes. Inset:
extrapolation of J ′

c as the different crossing points for successive
lattice sizes versus 1/L. See the text.

shown in the figure, it should be noted that for the unfrustrated
case the interchain short-range spin-spin correlations increase
smoothly as a function of J ′.

Unfortunately, coming from the 2D magnetically ordered
regime, the DMRG computation of the critical value J ′

c is quite
difficult to determine since incommensurate spiral phases are
expected near the transition to the Haldane regime. This re-
quires the implementation of open boundary conditions along
with larger lattice sizes in order to properly accommodate the
magnetic wave vector [19]. Given this difficulty, in the next
section, we resort to the Schwinger boson theory, which is
reliable for the study of 2D systems [20–23].
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FIG. 4. DMRG results for the frustrated case J ′ = J ′′: spin gap �

versus interchain coupling J ′. The system sizes shown are L = 6,8,
and 10.
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FIG. 5. DMRG results for the frustrated case J ′ = J ′′: intra-
and interchain spin-spin correlations between nearest neighbors as
a function of J ′.

IV. SCHWINGER BOSON THEORY

In the Schwinger boson theory the spin operator is rep-
resented as Si = 1

2 b†
i �σ bi , with �σ being the Pauli matrices

and the spinor b†
i = (b̂†i↑; b̂†i↓) composed of the Schwinger

spin- 1
2 bosons b̂↑ and b̂↓, subject to the local constraint∑

σ b̂
†
iσ b̂iσ = 2s. Then, Eq. (1) can be rewritten as

H =
∑
〈i,j〉

Jij (: B̂
†
ij B̂ij : −Â

†
ij Âij ), (4)

where the link operators B̂
†
ij = 1

2

∑
σ b̂

†
iσ b̂jσ and Âij =

1
2

∑
σ σ b̂iσ b̂j σ̄ are SU (2) invariant and Jij takes the values

J,J ′,J ′′, depending on the link direction ij = δ,δ′,δ′′, respec-
tively, as shown in Fig. 1.

The partition function is written as the functional integral
over coherent states of Schwinger bosons [1],

Z =
∫

Dλ[DbDb] e− ∫ β

0 dτ [
∑

i,σ b
τ

i,σ ∂τ b
τ
i,σ +H (b,b)]

× e− ∫ β

0 dτ [i
∑

i λτ
i (

∑
σ b

τ

i,σ bτ
i,σ −2S)], (5)

where the boson operators are replaced by complex variables,
the λ field is added to enforce the local constraint over the
number of bosons per site, and the integral measures are de-

fined as [DbDb] = �
db

τ

i,σ dbτ
i,σ

2πi
and Dλ = �

dλτ
i

2πi
. Two types of

Hubbard-Stratonovich transformations are introduced [21,23]
to decouple the B̂

†
ij B̂ij and Â

†
ij Âij terms of Hamiltonian (4),

so the partition function can be rewritten as

Z =
∫

DWDWDλ e−Seff(W,W,λ), (6)

where DWDW denotes the measure of the new Hubbard-
Stratonovich complex fields W

Aτ

ij , W
Bτ

ij , WAτ
ij , and WBτ

ij , which
depend on site i, imaginary time τ , link direction ij , and field
index A, B according to the term they are decoupling in Eq. (4).

The effective action Seff is given by

Seff =
∫ β

0
dτ

⎛
⎝∑

i,j,μ

JδW
μ,τ

ij W
μ,τ

ij − i2S
∑

i

λτ
i

⎞
⎠ − ln Zbos,

(7)

where μ sums over the A, B index fields and Zbos is the bosonic
partition function

Zbos =
∫

[DbDb]e−Sbos(b,b), (8)

with the resulting quadratic bosonic action given by

Sbos =
∫ β

0
dτ

∑
i,j

�bτ†
i Mτ

i,j
�bτ
j , (9)

where �bτ†
i = (b

τ

i↑,bτ
i↓) and Mτ

i,j is the dynamical matrix,
defined as

M11
ij = (∂τ + iλi)δij + Jij

2

(
WB

ij − W
B

ji

)
, M22

ij = −M11
ij ,

M12
ij = Jij

2

(
WA

ji − WA
ij

)
, M21

ij = M12
ij .

So far the formulation of the partition function Z is exact.
To compute approximately Eq. (6) the effective action Seff is
expanded around the saddle-point solution of the fields. Going
to frequency and momentum space, the effective action to
quadratic order results in

Seff ≈ S0
eff + 1

2

∑
α1,α2

� �φ†
α1

S(2)
α1,α2

� �φα2 , (10)

where S0
eff and S(2)

α1,α2
= ∂2Seff

∂ �φ†
α1 ∂ �φα2

are the effective action and the

fluctuation matrix, respectively, both evaluated at the saddle-
point solutions, while � �φ†

α = �φ†
α − �φ†

sp are the fluctuations

of the fields �φα = (WB
αδ,W

B

−αδ,W
A
αδ,W

A

−αδ,λα)T around the

saddle-point solutions �φ†
sp, which are assumed to be static

and homogeneous. Notice that each link field has components
along the δ = δ, δ′, and δ′′ directions and α = k,ω. The
partition function (6) thus approximated consists of carrying
out the Gaussian integral over the fluctuation fields (see below).
In principle, this approximation is valid for a large number of
Schwinger boson flavors N [1]. In fact, for N = ∞ the saddle-
point solution is exact. However, for N = 2 it has already been
shown that such Gaussian corrections notably improve the
saddle-point solution in related Heisenberg models [21,22].

A. Saddle-point approximation

The saddle-point solution is found by solving

∂Seff

∂ �φα

= �ψ†
α − Tr(Gspvα) = 0, (11)

where �ψ†
α = (JW

B

αδ,JWB
−αδ,JW

A

αδ,JWA
−αδ,−i2S(Nβ)

1
2 δα,0);

the trace goes over momentum k, frequency ω, and the bosonic
flavor index; vα = ∂M/∂ �ψα; and Gsp is the saddle-point
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Green’s function, defined as Gsp = M−1
sp , with

Msp =
([

iω + λ + γ B
k

] −γ A
k

−γ A
k

[−iω + λ + γ B
k

]
)

, (12)

γ B
k = ∑

δ JδBδ cos(k · δ), and γ A
k = ∑

δ JδAδ sin(k · δ). Here,
Aδ , Bδ , and λ are the mean-field parameters which are chosen
to be real and related to the saddle-point fields as

W
B

0,δ

∣∣
sp = (Nβ)

1
2 Bδ, W

A

0,δ

∣∣
sp = −i(Nβ)

1
2 Aδ,

WB
0,δ

∣∣
sp = −(Nβ)

1
2 Bδ, WA

0,δ

∣∣
sp = i(Nβ)

1
2 Aδ,

λ|sp = iλ.

(13)

As a consequence of the sign difference [21,23] of each term

in Eq. (4), W
B

0,δ|sp
= −WB

0,δ|sp
, whereas W

A

0,δ|sp
= (WA

0,δ|sp
)∗.

The poles of Gsp correspond to the free spin-1/2 spinon
excitation

εk =
√(

γ B
k + λ

)2 − (
γ A

k

)2
, (14)

which is usually found within the Schwinger boson mean-field
theory [20,24]. The self-consistent equations, resulting from
Eq. (11), have the well-known zero-temperature form

Aδ = 1

2N

∑
k

γ A
k

εk
sin(k · δ), (15)

Bδ = 1

2N

∑
k

γ B
k + λ

εk
cos(k · δ) (16)

S + 1

2
= 1

2N

∑
k

γ B
k + λ

εk
. (17)

The solutions of the above saddle-point equations correspond
to a singlet ground state [24]. However, as the system size
N increases the ground state develops magnetic correlations
signaled by the minimum gap of the spinon dispersion located
at momenta ±Q0/2, where Q0 is the magnetic wave vector
that varies according to the values of J,J ′, and J ′′. In two
dimensions the spinon gap may behave as ε±Q0/2 ∼ 1/N .
In this case, for large system sizes, the zero modes can be
treated as a Bose condensation which is interpreted as the
rupture of the SU (2) symmetry [25,26]. Usually, the presence
of long-range order is described by the local magnetization
m(Q0). Alternatively, one can compute the spin stiffness
in the following way [22]: the self-consistent equations are
solved with twisted boundary conditions to get the saddle-
point solution corresponding to a magnetic structure slightly
twisted an amount �Q with respect to the periodic boundary
conditions case Q0. For different values of the exchange
coupling the saddle-point ground-state energy takes the form

ESP(Q) = N
[
J
(
B2

δ − A2
δ

)+ J ′(B2
δ′ − A2

δ′
) + J ′′(B2

δ′′ − A2
δ′′

)]
,

(18)

where Q also depends on the twisted boundary conditions
imposed. Then, the saddle-point spin stiffness ρSP is obtained
numerically by computing ρSP = ∂2ESP(Q)/∂Q2. The reason
why we focus on the spin stiffness, instead of the local

magnetization, is because the ground-state energy E(Q) is
easier to compute to Gaussian order, giving us access to the
Gaussian corrections of ρSP (see below).

B. Gaussian fluctuations

The fluctuation matrix evaluated at the saddle-point solution
can be written as

S(2)
α1,α2

= ∂Seff

∂ �φ†
α1∂ �φα2

= ∂ �ψ†
α2

∂ �φ†
α1

− Tr[Gspvα2Gspvα1 ]. (19)

The computation to Gaussian order of the partition function (6)
implies carrying on the Gaussian integral

Z ∼= e−S0
eff

∫
D �φ†D �φ e− 1

2 � �φ†S(2)� �φ. (20)

However, some care must be taken into account since, due to
the rupture of the local gauge symmetry of the saddle-point
solution, S(2) has infinite zero-mode gauge fluctuations that
lead to divergences. To avoid them we introduce the Fadeev-
Popov trick which restricts the integration to field fluctuations
orthogonal to the gauge orbit [21]. This procedure gives the
following Gaussian correction of the free energy:

F (2) = −1

2β

∑
kωn

ln

[
�FP(k,iωn)

ω2
ndetS⊥(k,iωn)

]
, (21)

where �FP(k,iωn) = 8
∑

δ[(1 + cos k · δ)A2
δ − (1 − cos k ·

δ)B2
δ − (iωn)2] is the Fadeev-Popov determinant and

S⊥(k,iωn) is the projection of the fluctuation matrix onto the
subspace orthogonal by the right to the zero gauge modes. At
T = 0, the Gaussian correction to the ground-state energy is

E(2) = −1

4πN

∫ ∞

−∞
dω

∑
k

ln

[
�FP(k,ω)

ω2detS⊥(k,ω)

]
. (22)

Therefore, the ground-state energy for any twisted boundary
conditions turns out to be

EFL(Q) = ESP + E(2), (23)

where the Gaussian correction to the saddle-point spin stiffness
can be computed as ρFL = ∂2EFL(Q)/∂Q2.

C. Schwinger boson results

In this section we analyze the Schwinger boson results
going from the triangular isotropic case J = J ′ = J ′′ to the
completely decoupled chain case J ′ = J ′′ = 0. Semiclassi-
cally, this implies a change of the magnetic wave vector Q0

from ( 4π
3 ,0) to (π,0) via intermediate incommensurate spiral

values (see top left in Fig. 6). Actually, in the regime of
decoupled chains there are many degenerate ground states
which can be designated as (π,q), meaning that the spin-
spin correlations are Néel-like along the chains, whereas
the interchain spin-spin correlations are arbitrary. Figure 6
shows the magnetic wave vectors for different values of the
exchange couplings predicted by the Schwinger boson theory.
The saddle-point solutions (red squares) and the Gaussian
corrections (blue circles) are obtained from the minima of
Eqs. (18) and (23), respectively. Except for the isotropic case
where the magnetic wave vector Q0 = ( 4π

3 ,0) is maintained
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FIG. 6. Magnetic wave vector Q0 predicted by the Schwinger
bosons as a function of J ′ = J ′′. Red squares and blue circles
correspond to the saddle-point solution and Gaussian corrections,
respectively. The evolution of Q0 from the isotropic triangular to the
decoupled chain regime is shown in the top left (see the text).

after Gaussian corrections, for the anisotropic cases the
magnetic wave vectors of the incommensurate spiral orders
are renormalized. At the saddle-point level the transition
to the decoupled chain regime, Q0 = (π,0), occurs at the
critical value J ′

c = 0.13, while Gaussian corrections render the
incommensurate spiral orders unstable for 0.13 < J ′ < 0.43.
In particular, these instabilities occur for a given k and ω = 0
where the determinant of S⊥(k,ω) [in Eq. (22)] becomes
negative. In these cases E(2) cannot be calculated anymore.
Remarkably, the value J ′

c = 0.43 is very close to J ′
c = 0.42

found with DMRG (Sec. III). In addition, within the range
0 < J ′ < 0.43 the weakly coupled chain regime is stable
after Gaussian corrections. This precludes the possibility of
an intermediate 2D spin liquid state as in the spin- 1

2 case,
although it must be stressed that the weakly coupled chain
regime is not well described by the Schwinger boson theory.

Figure 7 shows the spin stiffness within the saddle-point
approximation (red squares) along with the Gaussian correc-
tions (blue circles). As explained previously, the saddle-point
spin stiffness is obtained by first solving the self-consistent
equations with twisted boundary conditions, then plugging
in the twisted mean-field parameters in Eq. (18), and finally
computing numerically the second-order derivative of the
ground-state energy ESP with respect to Q. On the other hand,
the Gaussian corrected spin stiffness is obtained by deriving
EFL once the twisted mean-field parameters are plugged into
Eq. (22). Coming from the isotropic case J ′ = 1 the Gaussian
corrections for the spiral phases tend to weaken the spin
stiffness until the ground state becomes unstable at J ′

c = 0.43,
in accordance with Fig. 6. Furthermore, there is an abrupt
transition to a magnetically disordered phase with 1D character
which is in line with the DMRG results in Sec. III. Based
on these results, in particular on the behavior of the DMRG
gap results, we can conclude that there is no room for an

0
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ρ
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FIG. 7. Spin stiffness predicted by the Schwinger bosons as a
function of J ′ = J ′′. Red squares and blue circles correspond to the
saddle-point solution and Gaussian corrections, respectively.

intermediate 2D spin liquid phase and that, in contrast to the
spin-1/2 case, the one-dimensionalization phenomenon for the
spin-1 case occurs quite abruptly near J ′

c = 0.42.
To complete our Schwinger boson study we report the

results for the anisotropic square-lattice case (J ′′ = 0). At the
saddle point, coming from the isotropic square lattice, the spin
stiffness vanishes at J ′

c = 0.0092, which matches previous
studies [27]. This value is far from the numerical [6,7,18]
results J ′

c = 0.043648. As in the frustrated case, this difference
can be attributed to the tendency of the Schwinger boson
mean field to favor magnetically ordered phases. The Gaussian
corrected spin stiffness, however, vanishes at J ′

c = 0.0265,
getting closer to the above numerical results.

V. CONCLUSIONS

We have investigated the one-dimensionalization phe-
nomenon in the spin-1 Heisenberg model on the anisotropic
triangular lattice using two complementary methods: DMRG
and Schwinger boson theory computed up to Gaussian correc-
tion level. Based on the ability of the DMRG method and the
Schwinger boson theory to give reliable results in interpolating
from the decoupled chain and the 2D regimes, respectively,
we can conclude that the effective reduction of the dimension
occurs abruptly near J ′

c = 0.42. This value is very close to
the Haldane gap and is in contrast to the unfrustrated case
where the critical value is one order of magnitude smaller than
the spin gap. Finally, even if the one-dimensionalization phe-
nomenon was first observed in the spin-1/2 case, we can con-
clude that it is not necessarily related to the critical nature of the
spin chain ground state but to the interplay between the frus-
tration and the dimensional crossover, which in the spin-1 case
seems to, effectively, promote the reduction of the dimension.

More recently, the one-dimensionalization phenomenon in
spin-1 systems has been studied [28] in the bilinear-biquadratic
Heisenberg model on the square lattice where an intermediate
Haldane phase has been found in a narrow range of parameter
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space between the usual Néel state and three sublattice states
forming 120◦. We hope the present work can help future studies
of the one-dimensionalization phenomenon in spin-1 systems.
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