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Thermodynamics of the pyrochlore Heisenberg ferromagnet with arbitrary spin S
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We use the rotation-invariant Green’s function method (RGM) and the high-temperature expansion (HTE) to
study the thermodynamic properties of the spin-S Heisenberg ferromagnet on the pyrochlore lattice. We examine
the excitation spectra as well as various thermodynamic quantities, such as the order parameter (magnetization),
the uniform static susceptibility, the correlation length, the spin-spin correlations, and the specific heat, as well
as the static and dynamic structure factors. We discuss the influence of the spin quantum number S on the
temperature dependence of these quantities. We compare our results for the pyrochlore ferromagnet with the
corresponding ones for the simple-cubic lattice both having the same coordination number z = 6. We find a
significant suppression of magnetic ordering for the pyrochlore lattice due to its geometry with corner-sharing
tetrahedra.
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I. INTRODUCTION

There has been much interest in frustrated spin systems
during the last decades [1,2]. Competing interactions due
to lattice geometry together with quantum fluctuations due
to small coordination numbers and/or low spin quantum
numbers S can prevent magnetic ordering even in the ground
state and give rise to a rich diversity of quantum phases.
The most popular lattices used for the study of frustrations
are the lattices of corner-sharing triangles or tetrahedra. In
particular, the network of corner-sharing tetrahedra known
as the three-dimensional pyrochlore lattice was in the focus
of many researchers during the past 25 years both from
experimental and theoretical sides [3].

Among the magnetic models on the pyrochlore lattice
the quantum Heisenberg antiferromagnet is likely the most
challenging one [4–12]. Thus, until now neither the nature
of the ground state is understood nor precise values for the
ground state energy are available. On the material side, there
are numerous realizations of antiferromagnetically coupled
Heisenberg spins on the pyrochlore lattice [3], however, side
effects, such as magnetostatic dipole-dipole interactions or
coupling to lattice degrees of freedom, may influence the
magnetic properties of pyrochlore compounds.

Much less attention has been paid to the quantum py-
rochlore ferromagnet. Clearly, the ground state of the fer-
romagnet and its energy are not affected by geometrical
frustration. It is also clear that the set of the eigenstates of
the Heisenberg Hamiltonian does not depend on the sign of
the exchange interaction, but the arrangement of eigenstates
according to their energy is opposite for antiferromagnetic
and ferromagnetic interactions, i.e., the low-energy states of
the antiferromagnet correspond to the high-energy states of
the ferromagnet. Therefore, for the ferromagnet the frustrated
geometry of the corner-sharing tetrahedra leads to a shift
of the upper bound of the spectrum (given by the absolute
value of the antiferromagnetic ground-state energy) towards
the (unshifted) ferromagnetic ground-state energy. Thus, due
to frustration the energy spectrum becomes “compressed” and,

as a result, the excited states for the ferromagnet on a frustrated
lattice become better accessible as the temperature increases.
This finite-temperature frustration effect in ferromagnets man-
ifests itself in a decrease of the Curie temperature Tc [13–15].
With respect to the pyrochlore ferromagnet it is reasonable to
compare it with the corresponding ferromagnet on the bipartite
simple-cubic lattice, where no frustration effects are present.
Since the coordination number for both lattices is the same,
z = 6, the thermodynamics on the mean-field level of both
models is identical. However, using more accurate approaches
the influence of the lattice geometry should be visible in the
temperature profile of thermodynamic quantities.

There are only a few universal approaches to calculate ther-
modynamic quantities of Heisenberg quantum spin systems
of arbitrary lattice geometry, such as the Green-function tech-
nique [16–18] and the high-temperature expansion [14,19–27];
both are used in the present study to derive various finite-
temperature characteristics of the pyrochlore Heisenberg
ferromagnet with spin quantum number S � 1/2.

It is in order to mention here a solid-state realization
of the S = 1/2 Heisenberg ferromagnet on the pyrochlore
lattice [28–30]. Lu2V2O7 is a ferromagnetic, small-gap Mott
insulator that crystallizes in the pyrochlore structure, i.e.,
the V4+ ions carrying S = 1/2 occupy the sites of the py-
rochlore lattice. However, the low symmetry of the pyrochlore
lattice allows for a Dzyaloshinskii-Moriya interaction. From
the bulk measurements for Lu2V2O7 it is known that the Curie
temperature is Tc = 70 K, and neutron inelastic scattering
data are in an excellent agreement with a minimal model
that includes a nearest-neighbor Heisenberg exchange |J | =
8.22(2) meV and (possibly) a Dzyaloshinskii-Moriya interac-
tion D = 1.5(1) meV, i.e., Tc ≈ 0.73|J |. We will discuss the
relation to our work in the summary section.

What follows is organized as follows. First we introduce
the model (Sec. II) and explain the methods to be used
(Sec. III). Then we discuss the obtained results comparing
the outcomes of two different methods, the rotation-invariant
Green’s function method and the high-temperature expansion,
and the results for the pyrochlore and simple-cubic lattices
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FIG. 1. The pyrochlore lattice can be visualized as a structure
which consists of alternating kagome and triangular planar layers. The
kagome (triangular) planes are colored in green (blue). The four-site
unit cell is marked with the red bonds.

(Sec. IV). We end up with conclusions emphasizing the
peculiarities of the studied thermodynamics due to lattice
geometry (Sec. V).

II. MODEL

We consider the Heisenberg model

Ĥ = J
∑

〈mα,nβ〉
Ŝmα · Ŝnβ (1)

on the pyrochlore lattice, see Fig. 1. The ferromagnetic nearest-
neighbor coupling is set to J = −1 and arbitrary spin quantum

number S is considered, Ŝ
2
mα = S(S + 1). In the sum over all

nearest-neighbor bonds in Eq. (1), the Latin indices denote the
corresponding unit cell, whereas the Greek indices mark the
corresponding spin within a unit cell, see below.

For the presentation of the methods used in the present
paper as well as for the discussion of the results it is useful
to provide a short description of the pyrochlore lattice. The
lattice can be visualized in different ways. It can be described
as four interpenetrating face-centered-cubic sublattices. The
edge length of the cubic cell of each face-centered-cubic
sublattice is set to unity. The origins of the four face-
centered-cubic sublattices are taken to be r1 = (0,0,0), r2 =
(0,1/4,1/4), r3 = (1/4,0,1/4), and r4 = (1/4,1/4,0). The
sites of the face-centered-cubic lattice are determined by Rm =
m1e1 + m2e2 + m3e3, where m1, m2, m3 are integers and
e1 = (0,1/2,1/2), e2 = (1/2,0,1/2), e3 = (1/2,1/2,0). Then
for the sites of the pyrochlore lattice mα, m = 1, . . . ,N , N =
N/4 we have Rmα = Rm + rα , where α = 1,2,3,4 labels the
sites in a unit cell. Geometrically this unit cell is a tetrahedron,
where the corners are connected by J bonds, see the tetrahe-
dron with red edges in Fig. 1. The distance between the nearest-
neighbor sites is 1/

√
8, the distance between the next-nearest-

neighbor sites is
√

3/8, etc. The pyrochlore lattice can be also
viewed as alternating planes of triangular and kagome lattices,
see Fig. 1. Each spin on the pyrochlore lattice has z = 6 nearest
neighbors. Thus the comparison with the simple-cubic lattice
with the same coordination number z = 6 is natural.

III. METHODS

A. Rotation-invariant Green’s function method (RGM)

Double-time temperature-dependent Green’s functions are
widely used in quantum many-body physics [16–18]. An
important contribution to the development of this technique
was made by Kondo and Yamaji [31]. They considered the
hierarchy of the equations of motion of the Green’s functions
for the one-dimensional S = 1/2 Heisenberg model. In order
to describe short-range order at T > 0 they decoupled the
hierarchy at one step further than Tyablikov’s decoupling [also
called random-phase approximation (RPA)] [16,17,32] and
established rotational invariance by setting 〈Ŝz

i 〉 = 0 in the
equations of motions. In addition, the approximate decoupling
of higher-order correlation functions is partly “repaired” by
introducing so-called vertex parameters. Within this rotation-
invariant Green’s function method (RGM) magnetic long-
range order is then described by the long-range term in
the spin-spin correlation function. Over time the RGM was
further developed and brought into shape to include arbitrary
quantum spin numbers S in higher-dimensional lattices with
nonprimitive unit cells [33–47]. Nowadays the RGM is a well
established method and has been the tool of choice in numerous
recent publications on the theory of spin systems including
geometrically frustrated ones [13,15,39–47].

The key point of the double-time temperature-dependent
Green’s functions approach is the determination of a set
of Green’s functions 〈〈Ŝμ

qα; Ŝν
qβ〉〉ω which are related to the

dynamic susceptibilities of the spin system by 〈〈Ŝμ
qα; Ŝν

qβ〉〉ω =
−χ

μν
qαβ(ω) [16,17]. Here typically μν is +− or zz and Ŝ+

qα =
(1/

√
N )

∑
m exp(−iq · Rm)Ŝ+

mα , etc., where the sum runs
over all unit cells, m = 1, . . . ,N , N = N/4. Furthermore,
〈〈X̂; Ŷ 〉〉 = −i�(t − t ′)〈[X̂(t),Ŷ (t ′)]−〉 and the subscript ω

means the Fourier transform with respect to the time t − t ′.
The Green’s functions obey a set of equations of motion, which
involves Green’s functions of higher order than the initial ones.
The RGM considers the equation of motion up to the second
order, i.e.,

ω2
〈〈
Ŝz

qα; Ŝz
qβ

〉〉
ω

= 〈[
i ˙̂Sz

qα,Ŝz
qβ

]
−
〉 − 〈〈 ¨̂Sz

qα; Ŝz
qβ

〉〉
ω
. (2)

The operator − ¨̂Sz
qα = [[Ŝz

qα,Ĥ ]−,Ĥ ]− consists of several com-

binations of three-spin operators made of Ŝ
μ
qα with μ = +,−,

z, which can be obtained explicitly using the commutation
relations [Ŝx,Ŝy]− = iŜz etc. These products of three-spin
operators have to be simplified by a decoupling scheme. The
spirit of the decoupling within − ¨̂Sz

qα is exemplarily sketched
as follows:

Ŝ+
A Ŝ−

B Ŝz
C → αABc+−

AB Ŝz
C,

Ŝ+
A Ŝ−

A Ŝz
B → 2

3S(S + 1)Ŝz
B,

Ŝ+
A Ŝ−

B Ŝz
B → λABc+−

AB Ŝz
B. (3)

Here A, B, and C represent different sites of the pyrochlore
lattice, c+−

AB = 〈Ŝ+
A Ŝ−

B 〉, and the conservation of total Sz is
implied, i.e., c+z

AB = c−z
AB = 0. In Eq. (3) two kinds of so-called

vertex parameters αAB and λAB have been introduced to
improve the approximation made by the decoupling. The
vertex parameter αAB appears in the decoupling scheme if
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all sites are pairwise different, see the first line in Eq. (3). In
the second line in Eq. (3) the correlation 〈Ŝ+

A Ŝ−
A 〉 is determined

by the operator identity Ŝ2 = Ŝ+Ŝ− − Ŝz + (Ŝz)2. The vertex
parameter λAB introduced in the third line of Eq. (3) appears
only for S > 1/2 if two site indices coincide and the remaining
correlation function cannot be determined by an operator
identity. The described scheme has been successfully applied
and tested in the mentioned above papers in the past.

After implementation of this approximation, the set of
equations in Eq. (2) can be compactly written in the matrix

form as follows:

(ω2I − Fq)χ+−
q (ω) = −Mq. (4)

Here I denotes the 4 × 4 unit matrix and we have introduced
the Hermitian 4 × 4 matrices Fq (the frequency matrix),
χ+−

q (ω) (the susceptibility matrix), and Mq (the momentum
matrix). Clearly, the 4 × 4 matrices appear here because the
unit cell contains four sites. For the matrix elements of the
momentum matrix and the frequency matrix for the model at
hand explicit expressions can be found:

Mq11

J
= Mq22

J
= Mq33

J
= Mq44

J
= −12c100,

Mq12

J
= 4c100cos

qx + qy

4
,

Mq13

J
= 4c100cos

qx + qz

4
,

Mq14

J
= 4c100cos

qy + qz

4
,

Mq23

J
= 4c100cos

qy − qz

4
,

Mq24

J
= 4c100cos

qx − qz

4
,

Mq34

J
= 4c100cos

qx − qy

4
(5)

and

Fq11

J 2
= 2

(
f1 + α̃100

(
cos

qx + qy

2
+ cos

qx + qz

2
+ cos

qy + qz

2

))
,

Fq22

J 2
= 2

(
f1 + α̃100

(
cos

qx + qy

2
+ cos

qx − qz

2
+ cos

qy − qz

2

))
,

Fq33

J 2
= 2

(
f1 + α̃100

(
cos

qx − qy

2
+ cos

qx + qz

2
+ cos

qy − qz

2

))
,

Fq44

J 2
= 2

(
f1 + α̃100

(
cos

qx − qy

2
+ cos

qx − qz

2
+ cos

qy + qz

2

))
,

Fq12

J 2
= 2

3

(
6α̃100 cos

qz

2
cos

qx − qy

4
− f2 cos

qx + qy

4

)
,

Fq13

J 2
= 2

3

(
6α̃100 cos

qy

2
cos

qx − qz

4
− f2 cos

qx + qz

4

)
,

Fq14

J 2
= 2

3

(
6α̃100 cos

qx

2
cos

qy − qz

4
− f2 cos

qy + qz

4

)
,

Fq23

J 2
= 2

3

(
6α̃100 cos

qx

2
cos

qy + qz

4
− f2 cos

qy − qz

4

)
,

Fq24

J 2
= 2

3

(
6α̃100 cos

qy

2
cos

qx + qz

4
− f2 cos

qx − qz

4

)
,

Fq34

J 2
= 2

3

(
6α̃100 cos

qz

2
cos

qx + qy

4
− f2 cos

qx − qy

4

)
(6)

with f1 = 2S(S + 1) + 3(λ̃100 + 2(α̃100 + α̃110) + α̃200), f2 =
2S(S + 1) + 3(λ̃100 + 5α̃100 + 2α̃110 + α̃200), λ̃ijk = λijkcijk ,
and α̃ijk = αijkcijk . Here the indices ijk correspond to the
vector R = ir2 + jr3 + kr4, i.e., cijk ≡ 〈Ŝ+

0 Ŝ−
R 〉. Note also

that on grounds of the lattice symmetry the set of nonequivalent
correlators has been reduced in Eqs. (5) and (6).

The derivation of Eqs. (4), (5), and (6) is the central task
within the RGM approach. To perform the underlying tedious

calculations, we use the symbolic computation software
Mathematica. We notice that Eqs. (4), (5), and (6) hold for
antiferromagnetic coupling J = 1, too. For easy references,
we provide in addition the corresponding equations for the
S = 1/2 simple-cubic Heisenberg model in Appendix A (see
also Refs. [48,49]).

Going back to Eq. (4), it is important to note that the
momentum matrix Mq and the frequency matrix Fq commute:
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[Mq,Fq]− = 0. Let us denote as |γ q〉, γ = 1,2,3,4 the
common eigenvectors of the matrices Mq and Fq. Moreover,
let us introduce their eigenvalues, i.e., Mq|γ q〉 = mγ q|γ q〉
and Fq|γ q〉 = ω2

γ q|γ q〉. As usually, the square root of the
eigenvalues ω2

γ q yields the branches of the excitation spectrum
ωγ q, γ = 1,2,3,4.

Before finding χ+−
qαβ(ω) from Eq. (4), it is worth it to discuss

the eigenvalues of the matrices Mq and Fq, that is, mγ q and
ω2

γ q, respectively. We have found

m1q

J
= m2q

J
= m3q

J
+ m4q

J
= −16c100,

m3q

J
− m4q

J
= −8c100Dq (7)

with

D2
q = 1 + cos

qx

2
cos

qy

2
+ cos

qx

2
cos

qz

2
+ cos

qy

2
cos

qz

2
(8)

and

ω2
1q

J 2
= ω2

2q

J 2
= 8

3
(2S(S + 1) + 3λ̃100

+ 9α̃100 + 6α̃110 + 3α̃200),

ω2
3q

J 2
+ ω2

4q

J 2
= 8

3

(
2S(S + 1) + 3λ̃100

+ 3
(
D2

q − 1
)
α̃100 + 6α̃110 + 3α̃200

)
,

ω2
3q

J 2
− ω2

4q

J 2
= 8

3
DqS(S + 1)

+ 4Dq(λ̃100 + 3α̃100 + 2α̃110 + α̃200). (9)

As it immediately follows from Eq. (9), there are two
dispersionless (flat) branches of the spectrum, i.e., ω1q and ω2q
do not depend on q. We may also consider the limit |q| → 0+
when D2

q → 4, m3q → m1q = m2q, m4q → 0+, ω2
3q → ω2

1q =
ω2

2q, and ω2
4q → 0+. Evidently, ω4q is the acoustic branch

of the spectrum. It is obvious that the excitation energies
calculated within the RGM, see Eq. (9), exhibit a temperature
renormalization that is proportional to the correlation func-
tions. Moreover, the renormalization is wavelength dependent
for the dispersive branches ω3q and ω4q. That is different
from the RPA, where the temperature renormalization of the
excitations is independent of the wavelength and proportional
to the magnetization, see, e.g., Refs. [16,17], i.e., the RPA
fails in describing magnetic excitations (and also magnetic
short-range order) for T > Tc.

At zero and infinite temperatures, we can get simplified ex-
pressions for the excitation energies given in Eq. (9). For T = 0
we have cijk = 2S2/3, αijk = 3/2, and λijk = 2 − 1/S, see be-
low. As a result, we get ω2

1q/J
2 = ω2

2q/J
2 = 64S2, ω2

3q/J
2 =

4S2(Dq + 2)2, and ω2
4q/J

2 = 4S2(Dq − 2)2. As T → ∞,
we have cijk = 0 resulting in ω2

1q/J
2 = ω2

2q/J
2 = 16S(S +

1)/3, ω2
3q/J

2 = 4S(S + 1)(2 + Dq)/3, and ω2
4q/J

2 = 4S(S +
1)(2 − Dq)/3. The branches of the spectrum (9) in the ground
state and in the infinite-temperature limit are shown in Fig. 2.

Although the eigenvectors |γ q〉 of the matrices Mq and Fq
are also known explicitly, they are too lengthy to be presented

FIG. 2. Dispersion of the excitation energies ωqγ [Eq. (9),
J = −1] at zero temperature T = 0 (upper panel) and in the
infinite-temperature limit T → ∞ (lower panel). Note that ωqγ /S is
independent of S at T = 0, whereas ωqγ /

√
S(S + 1) is independent

of S at T → ∞. The points 
, X, W, and K in the first Brillouin zone
of a face-centered-cubic Bravais lattice are given by 
 = (0,0,0), X =
(0,2π,0), W = (π,2π,0), K = (3π/2,3π/2,0), see, e.g., Ref. [50].

here (but they are given in Appendix B). However, at the 


point q = 0 the eigenvectors |γ q〉 have a very simple form:

|10〉 = 1√
2

⎛
⎜⎝

−1
0
0
1

⎞
⎟⎠, |20〉 = 1√

2

⎛
⎜⎝

−1
0
1
0

⎞
⎟⎠,

|30〉 = 1√
2

⎛
⎜⎝

−1
1
0
0

⎞
⎟⎠, |40〉 = 1

2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠. (10)

Note that the eigenvectors |10〉, |20〉, and |30〉 correspond to the
threefold degenerate eigenvalue (either mγ 0 or ω2

γ 0, γ = 1,2,3)
and therefore any linear combination of |10〉, |20〉, and |30〉
given in Eq. (10) also belongs to a set of the eigenvectors at
the 
 point q = 0. Interestingly, the eigenvectors |γ q〉 do not
depend on the temperature, see Appendix B.

Let us come back to Eq. (4). The set of dynamic suscepti-
bilities (and thus the set of Green’s functions) is determined

174419-4



THERMODYNAMICS OF THE PYROCHLORE HEISENBERG . . . PHYSICAL REVIEW B 96, 174419 (2017)

and given by

χ+−
qαβ(ω) = −

∑
γ

mγ q

ω2 − ω2
γ q

〈α|γ q〉〈γ q|β〉, (11)

where 〈α|γ q〉 is the αth component of the eigenvector |γ q〉.
The correlation functions are obtained by applying the spectral
theorem

cmα,nβ = 1

N
∑
q 
=Q

cqαβ cos(q · rmα,nβ )

+
∑

Q

CQαβ cos(Q · rmα,nβ ) (12)

with

cqαβ =
∑

γ

mγ q

2ωγ q
(1 + 2n(ωγ q))〈α|γ q〉〈γ q|β〉, (13)

where N = N/4 is the number of unit cells, n(ω) =
1/(exp(ω/T ) − 1) is the Bose-Einstein distribution function,
and CQαβ is the so-called condensation term which is related to
magnetic long-range order, see, e.g., Refs. [34,37,40]. In our
case (ferromagnet) only one condensation term at Q = 0 is
relevant, i.e., C0αβ = C0, and the total magnetization is given
by the expression M = √

3C0/2.
We end this subsection with some comments on the

self-consistent solution of the equations for the correlation
functions c100, c110, c200, the condensation term C0, and the
vertex parameters. We mention first that we adopt the so-called
minimal version of RGM which is a well established approxi-
mation for ferromagnets, i.e., we use only one vertex parameter
in each class αijk = α, λijk = λ. To neglect the real space
dependence of the vertex parameters in the minimal version
of the RGM can be justified by the fact that all correlations
have the same sign in a wide range of temperatures. (For
antiferromagnets, space-dependent vertex parameters may
improve the outcomes, however, the theory becomes more
complicated and needs an additional external input, see, e.g.,
Refs. [40,44].) We begin with the high-temperature limit when
C0 = 0 (paramagnetic phase). We have three equations for
c100, c110, c200 which follow from Eq. (12), as well as the
equation

2

3
S(S + 1) = 1

N
∑
q 
=0

cqαα (14)

[the sum rule 3cmα,mα/2 = S(S + 1)] which also follows from
Eq. (12). Now only one missing equation, say to determine
λ, is left. A usual assumption is to treat the ratio r(T ) =
(λ(T ) − λ(∞))/(α(T ) − α(∞)) as temperature independent,
see, e.g., Refs. [15,43,44]. The values α(∞) = 1 and λ(∞) =
1 − 3/(4S(S + 1)) at T → ∞ are known and can be verified
by comparison with the high-temperature expansion, see, e.g.,
Ref. [43]. The values α(0) = 3/2 and λ(0) = 2 − 1/S at T = 0
are also exactly known, see below. Now, solving the system
of equations numerically, we calculate the (static) uniform
susceptibility χ0 ≡ χzz

0 = χ+−
0 /2. The uniform susceptibility

χ0 is given by the expression

χ0 = lim
(q,ω)→(0,0)

1

4

∑
α

∑
β

χ+−
qαβ(ω)

2

= lim
(q,ω)→(0,0)

1

8

∑
α,β

χ+−
qαβ(ω) = lim

q→0

(
m4q

2ω2
4q

+ · · ·
)

= −3c100

�
,

�

J
= 2S(S + 1) + 3λ̃100 − 15α̃100 + 6α̃110 + 3α̃200. (15)

At the critical temperature Tc, when � = 0, the uniform
susceptibility χ0 diverges. Moreover, � = 0 holds for all
temperatures below Tc. By using Eq. (15) this can be cast
into

2S(S + 1) + 3λ̃100 − 15α̃100 + 6α̃110 + 3α̃200 = 0. (16)

Therefore, for 0 � T < Tc (ferromagnetic phase) the formula
(16) provides one more equation, which is necessary to
determine one more quantity, namely, the condensation term
C0 
= 0.

In the fully polarized ferromagnetic ground state we have
〈Ŝ0 · ŜR〉 = S2, i.e., cijk = 2S2/3, and as a result Eq. (16) be-
comes 2S(S + 1) + 2S2λ − 4S2α = 0. Considering the sum
rule, i.e., 2S/3 = (1/(4N ))

∑
q 
=0

∑
γ (mγ q/(2ωγ q)) including

Eqs. (7) and (9) at T = 0 we get a second equation for α and
λ. Combining both equations we derive α(T = 0) = 3/2 and
λ(T = 0) = 2 − 1/S.

Knowing the dynamic susceptibilities or the Green’s func-
tions (11) and the correlation functions (12), (13), we can easily
obtain the static uniform susceptibility χ0, the critical (Curie)
temperature Tc, the correlation length ξ , the magnetization M ,
and the specific heat CV . Furthermore, using Eq. (13) we can
also obtain the static structure factor Sq = 3S+−

q /2, S+−
q =∑

α,β cqαβ/4, cf. Eq. (15). Bearing in mind a comparison
of the RGM static structure factor with the results coming
from high-temperature series, see Sec. III B and Eq. (17), it is
useful to note the following, see Ref. [51]. First, combining the
Kramers-Kronig relation and the fluctuation-dissipation theo-
rem we have χ+−

q = (1/(2π ))
∫ ∞
−∞ dω(1 − e−ω/T )S+−

q (ω)/ω
with S+−

q (ω) = ∫ ∞
−∞ dteiωtS+−

q (t). At high temperatures T =
1/β → ∞ this can be cast into χ+−

q ≈ βS+−
q (t = 0), i.e.,

χ+−
q ≈ βS+−

q . Second, by comparison of Eq. (13) in the limit
(q,ω) → (0,0) and Eq. (15) one concludes that χ+−

0 and βS+−
0

coincide in the whole paramagnetic region T > Tc. Last but
not least, the dynamic structure factor Szz

q (ω) = S+−
q (ω)/2 fol-

lows from the fluctuation-dissipation theorem, i.e., S+−
q (ω) =

(2/(1 − e−ω/T ))�χ+−
q (ω), χ+−

q (ω) = ∑
α,β χ+−

qαβ(ω)/4.

B. High-temperature expansion (HTE)

Another universal straightforward approach to calculate
thermodynamic quantities of spin systems is the high-
temperature expansion (HTE) [19]. More specifically, in
this study we use the HTE program of Ref. [14] freely
available at “http://www.uni-magdeburg.de/jschulen/HTE/” in
an extended version up to eleventh order to compute the series
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of the susceptibility χ0 = ∑
n cnβ

n and the specific heat CV =∑
n dnβ

n with respect to the inverse temperature β = 1/T .
To extend the region of validity of the power series, Padé
approximants are a useful and well-established transformation.
These approximants are ratios of two polynomials of degree
m and n, [m,n] = Pm(β)/Qn(β), constructed in such a way
that they reproduce correctly m + n terms in the power
series. Using the power series of the uniform susceptibility
χ0 the roots of the equation Qn(β) = 0 can provide an
estimate of the critical temperature Tc. Alternatively one can
consider the ratio qn = cn/cn−1. Assuming critical behavior,
i.e., χ0 ∝ (T − Tc)−γ , where γ is the critical exponent, Tc is
given by a linear fit limn→∞ qn ∝ Tc + (γ − 1)Tc/n, see, e.g.,
Refs. [14,52].

Furthermore, the high-temperature series of 〈Ŝi · Ŝj 〉 are
calculated up to ninth order of β following the lines illustrated
in Refs. [14,23]. Using the series of the correlation functions
we determine the magnetic structure factor

Sq = 1

N

∑
i,j

〈Ŝi · Ŝj 〉 cos(q · (Ri − Rj )), (17)

see, e.g., Ref. [26]. Here i and j are the sites of the pyrochlore
lattice labeled in Sec. II by mα. Evidently, Sq = 3S+−

q /2.
Furthermore, substituting q = 0 in Eq. (17) one gets S0 =
3〈ŜzŜz〉/N with Ŝz = ∑

i Ŝ
z
i . On the other hand, calculating

the uniform susceptibility per site χzz from the partition
function one arrives at χzz = β(〈ŜzŜz〉 − 〈Ŝz〉〈Ŝz〉)/N . As a
result, we have 3χzz

0 = βS0 in the paramagnetic region, and
this general relation holds also for the RGM, see the end of
Sec. III A.

IV. FINITE-TEMPERATURE PROPERTIES

A. Excitation spectra, spin stiffness, and excitation velocity

We begin with a discussion of the excitation-energy spectra
for the spin-S Heisenberg ferromagnet on the pyrochlore
lattice. The dispersion relations are given in Eq. (9). For
the zero-temperature case the excitation energies, given
by ω2

1q/J
2 = ω2

2q/J
2 = 64S2, ω2

3q/J
2 = 4S2(Dq + 2)2, and

ω2
4q/J

2 = 4S2(Dq − 2)2, are plotted in the upper panel of
Fig. 2. In general, the excitation spectra have not to coincide
with the linear-spin-wave energies: While the latter ones
are temperature-independent harmonic oscillations around the
classical (S → ∞) ground state, the excitations calculated
within the RGM approach depend on temperature-dependent
correlation functions. However, at zero temperature both
approaches yield identical excitation energies [see Fig. 1(c)
of Ref. [30] for the linear-spin-wave results], since the
excitations are above the exact ferromagnetic ground state
that does not exhibit quantum fluctuations, and, therefore,
the low-temperature excitations (9) are the linear spin waves.
Note further that the excitation energies given above coin-
cide with the one-magnon excitation branches reported in
Ref. [53], see Eq. (11) of that paper. For finite temperatures
the excitation energies (9) are renormalized due to the
temperature dependence of the correlation functions entering
Eq. (9). In the infinite-temperature limit again we find simple
expressions: ω2

1q/J
2 = ω2

2q/J
2 = 16S(S + 1)/3, ω2

3q/J
2 =

4S(S + 1)(2 + Dq)/3, and ω2
4q/J

2 = 4S(S + 1)(2 − Dq)/3.

The graphical presentation of these expressions is given in the
lower panel of Fig. 2. Except the temperature renormalization
of the absolute values of the energies, the most relevant change
is found in the long-wavelength behavior (i.e., around the 


point), where we have a linear dependence on |q| at T → ∞
instead of the quadratic dispersion at T = 0, cf. the lower and
upper panels of Fig. 2.

Let us discuss the small-wave-vector excitations in some
detail. By expansion around the 
 = (0,0,0) point in the q
space we get

ω2
4q ≈ v2|q|2 + �2|q|4 − J�

1152

(
q2

xq
2
y + q2

xq
2
z + q2

yq
2
z

)
,

v2

J 2
= 1

24
(2S(S + 1) + 3λ̃100 − 15α̃100 + 6α̃110 + 3α̃200)

= �

24J
,

�2

J 2
= 1

4608
(−2S(S + 1) − 3λ̃100 + 87α̃100 − 6α̃110

−3α̃200) = −� + 72α̃100J

4608J
, (18)

where � is defined in Eq. (15). Clearly, the excitation velocity
vanishes below Tc (where we have � = 0) and the small-wave-
vector excitation energies depend quadratically on the wave
vector with the spin stiffness ρ = �|�=0 = |J |√α̃100/8. The
stiffness is related to the stability of the ferromagnetic regime
and can be an indicator of unusual effects like order-from-
disorder effects or the rise of another magnetically ordered
phase, see, e.g., Refs. [15] and [54]. At T = 0 the spin stiffness
is ρ(0) = S|J |/8. This result for ρ(0) for the pyrochlore
ferromagnet should be contrasted to the result for the simple-
cubic ferromagnet ρ(0) = S|J |. The factor 1/8 is easily
understood by simple linear-spin-wave-theory arguments, see,
e.g., Ref. [55]. Indeed, in linear-spin-wave theory the stiffness
is given by ρ = (S/(2N ))

∑
i,j Jij (q · Rij )2/|q|2, where the

sum runs over all N lattice sites, however, Jij is nonzero
only when Rij connects the neighboring sites i and j on
the lattice. For the simple-cubic lattice, any site i has six
neighbors with Rij = (±1,0,0), (0,±1,0), (0,0,±1) (i.e., the
nearest-neighbor separation is 1). As a result, we get ρ = S|J |.
For the pyrochlore lattice, we have to consider four different
sites i1, i2, i3, i4 each of which has six neighbors, and,
most importantly, the nearest-neighbor separation is 1/

√
8,

see Sec. II. That after all yields ρ = S|J |/8.
Above Tc, the small-wave-vector excitation energies de-

pend linearly on the wave vector with the excitation ve-
locity v = √

J�/24. In the limit T → ∞ we have v =
|J |√S(S + 1)/12 (i.e., v = |J |/4 for S = 1/2). For the
S = 1/2 simple-cubic Heisenberg ferromagnet the infinite-
temperature value of excitation velocity is v = |J |/√2, see
Eqs. (A3), (A4). Again, the factor of 1/

√
8 between the

simple-cubic and the pyrochlore lattices is related to the
difference in the nearest-neighbor separation.

In Fig. 3 we show the temperature dependences of the
normalized spin stiffness and excitation velocity obtained from
Eq. (18). As it has been explained above, the spin stiffness
and the excitation velocity in the S = 1/2 case are essentially
smaller for the pyrochlore lattice than for the simple-cubic
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FIG. 3. Main panel: normalized spin stiffness ρ/(S|J |) (dashed)
and normalized excitation velocity v/(S|J |) (solid) as a function of
the normalized temperature T/Tc. We report results for different spin
values S = 1/2, 1, 3/2, 3 for the pyrochlore-lattice case (thin lines)
and for S = 1/2 for the simple-cubic case (thick lines). Inset: spin
stiffness ρ/ρ(0) versus T/|J | for the S = 1/2 pyrochlore (dashed
thin red line) and simple-cubic (dashed thick black line) lattices.

one due to the difference in the nearest-neighbor separation.
Moreover, both quantities decrease as S increases. In the inset
in Fig. 3 we show ρ/ρ(T = 0) as a function of T/|J |. This
plot shows that the simple-cubic ferromagnet at 0 < T < Tc

is more “stiff” in comparison to the pyrochlore one, i.e., there
is an indication that the ferromagnetic phase in the pyrochlore
ferromagnet is less stable against thermal fluctuations.

B. Susceptibility, magnetization, critical temperature

As was already mentioned in Sec. III A, one straightforward
outcome from the RGM equations is the uniform susceptibility
χ0 given in Eq. (15), see Figs. 4 and 5. Another straight-
forward outcome is the spontaneous magnetization M (order
parameter) related to the condensation term, see Fig. 4. The
temperature dependence of χ0 or M is used to determine the
critical (Curie) temperature Tc. Within the RGM, Tc follows
from the equations C0 = 0 and � = 0 [for the latter one, see

FIG. 4. RGM data for the normalized magnetization M/S of the
ferromagnet on the simple-cubic lattice (S = 1/2) (thick solid black
line) and the pyrochlore lattice (S = 1/2,1,3/2,3) (thin solid lines)
as a function of the normalized temperature T/Tc. Dashed curves
correspond to the inverse uniform susceptibility 1/χ0 above Tc. Note
that the thin dashed curves for S > 1/2 almost coincide.

 0

 0.2

 0.4

 0.6

 0.8
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 1  1.2  1.4  1.6  1.8  2

1/
χ 0

T/(S(S+1))

S=1/2
S=1

S=3/2
S=3

SC

FIG. 5. Inverse uniform susceptibility 1/χ0 of the ferromagnet
on the pyrochlore lattice obtained by the RGM (thin solid lines) and
by the HTE approach (Padé [5,6]—thin dashed lines) as a function of
the normalized temperature T/(S(S + 1)) for several spin quantum
numbers S. We also show the RGM results for the simple-cubic-lattice
case with S = 1/2 (thick black line). Note that the energy scale is set
by J = −1.

Eq. (16)]. In Fig. 4 we report the temperature dependences of
the magnetization as well as of the inverse uniform suscepti-
bility. According to these graphs, for a fixed value of T/Tc < 1
the magnetization is larger for the S = 1/2 simple-cubic
ferromagnet than for the S = 1/2 pyrochlore ferromagnet.
Comparing results for various spin quantum numbers S we
notice that the magnetization decreases with further increasing
of S for the pyrochlore ferromagnet. Thus the M(T/Tc)/S
graphs for the pyrochlore case with large S show a character-
istic flattening. Note that this kind of flattening was also found
to be a typical feature of disordered ferromagnets [56].

In Fig. 5 we compare the temperature dependences of 1/χ0
in some detail for different spin values S obtained by RGM
and HTE. Although overall agreement of the two approaches
is good, there are noticeable differences in the values of Tc

derived by the zeros of the inverse susceptibility, see also Fig. 6.

 0.8

 0.9
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 1.1

 1.2
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 1.4

 1.5

 0  0.5  1  1.5  2

T c
/(S
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pyro,HTE,qn

pyro,HTE,[5,5]
pyro,HTE,[5,6]
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FIG. 6. Normalized Curie temperatures Tc/(S(S + 1)) of the
ferromagnet on the simple-cubic lattice and the pyrochlore lattice
within the RGM approach and the HTE approach (up to the eleventh
order) as a function of the inverse spin quantum number 1/S. The
HTE data labeled by “pyro,HTE,[5,5]” are taken from Ref. [14].
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TABLE I. Critical temperature Tc for the quantum (S = 1/2)
pyrochlore and simple-cubic Heisenberg ferromagnets (|J | = 1).

Method Pyrochlore lattice Simple-cubic lattice

RGM 0.778 0.926
HTE (Padé) 0.724 . . . 0.754 0.827
QMC 0.718 0.839(1)

Thus, according to Fig. 6 for the S = 1/2 pyrochlore (simple-
cubic) lattice the RGM yields Tc ≈ 0.778 (Tc ≈ 0.926) and
the HTE (Padé [5,5] and [5,6]) yields Tc ≈ 0.724 . . . 0.754
(Tc ≈ 0.827 [14]). The behavior of the susceptibility near the
critical point as shown in Fig. 5 may lead to the impression that
the critical exponent γ is different within the RGM and HTE
approaches. However, γ cannot be directly derived from the
pole in a Padé approximant of the HTE series, rather it requires
a specific analysis of the series [52,57], which goes beyond the
scope of the present study. Moreover, within the RGM, where
due to the decoupling some mean-field features are present,
we cannot expect precise values for critical exponents.

As already discussed above, the simple-cubic ferromagnet
is more “stiff” against thermal fluctuations, and, as a result,
Tc for the simple-cubic ferromagnet is obviously higher
than that for the pyrochlore ferromagnet. Our results for the
simple-cubic case may be compared to the quantum Monte
Carlo result Tc = 0.839(1) [58]. We have also performed
quantum Monte Carlo simulations for the S = 1/2 pyrochlore
ferromagnet using ALPS package (looper algorithm) [59] and
found Tc ≈ 0.718.

A similar comparison can be performed in the other limiting
case S → ∞. In this case for the pyrochlore lattice the RGM
yields Tc/(S(S + 1)) ≈ 1.172, the HTE (Padé [5,5] and [5,6])
yields Tc/(S(S + 1)) ≈ 1.316 . . . 1.396, whereas the classical
Monte Carlo simulations yield Tc/(S(S + 1)) ≈ 1.317 [60].
For the simple-cubic lattice we have Tc/(S(S + 1)) ≈ 1.330
(RGM), Tc/(S(S + 1)) ≈ 1.438 (HTE) [14], Tc/(S(S + 1)) ≈
1.443 (classical Monte Carlo [60,61]), respectively. Although
there is some variance in the values of Tc obtained by different
methods, all results indicate that the Curie temperature of the
pyrochlore Heisenberg ferromagnet is about 85% (S = 1/2)
or about 90% (S → ∞) of the Curie temperature of the
simple-cubic Heisenberg ferromagnet. For convenience, we
have collected these data for Tc in Tables I and II.

TABLE II. Critical temperature Tc/(S(S + 1)) for the classical
(S → ∞) pyrochlore and simple-cubic Heisenberg ferromagnets
(|J | = 1). The corresponding results for the S = 1/2 (quantum) case
are given in parentheses.

Method Pyrochlore lattice Simple-cubic lattice

RGM 1.172 1.330
(1.037) (1.235)

HTE (Padé) 1.316 . . . 1.396 1.438
(0.965 . . . 1.005) (1.103)

CMC 1.317 1.443
(QMC) (0.957) (1.119)

FIG. 7. Main panel: normalized correlation functions 〈Ŝ0 ·
ŜR〉/S2 (nearest neighbors—solid; next-nearest neighbors—dashed)
as a function of the normalized temperature T/Tc for the spin-S
pyrochlore ferromagnet for several spin quantum numbers S (thin
lines). We also show the results for the S = 1/2 simple-cubic
ferromagnet (thick lines). Inset: 〈Ŝ0 · ŜR〉/S2 versus T/|J | for the
S = 1/2 case.

We mention further that the Curie temperature Tc of the
S = 1/2 pyrochlore ferromagnet was determined previously
to Tc = 0 using a phenomenological renormalization group
method [62]. This result is certainly an artifact of the applied
approach.

An important quantity which can be obtained from the q-
dependent susceptibility

χq = lim
ω→0

1

8

∑
α,β

χ+−
qαβ(ω) (19)

is the correlation length ξQ. By expanding the susceptibility
χq (19) around the magnetic order wave vector Q = 0 we
get χQ+�q ≈ χQ/(1 + ξ 2

Q(�q)2), see, e.g., Refs. [15,42–44].
We find ξ0 = √|J |α100χ0/8 for the pyrochlore ferromagnet.
The RGM approach for the simple-cubic ferromagnet yields
the value ξ0 = √|J |α100χ0. Clearly, because of these relations
between ξ0 and χ0, the qualitative behavior of the correlation
length as a function of temperature can be estimated from
Figs. 4 and 5.

Summarizing the discussion of the temperature depen-
dences of the magnetization and of the susceptibility as well as
the results of the critical temperature, we again may conclude
that the ferromagnetic phase in the pyrochlore ferromagnet is
stronger affected by temperature fluctuations, which can be
related to the frustrated geometry of the pyrochlore lattice,
see the general discussion of this issue in the introduction.
The difference between the RGM results and available Monte
Carlo data for Tc provides an impression of the accuracy of
the RGM approach.

C. Spin-spin correlation functions, specific heat,
and structure factor

The RGM approach yields straightforwardly spin-spin
correlation functions, see Eqs. (12) and (13). In Fig. 7
we show the temperature dependences of the normalized
correlation functions, 〈Ŝ0 · ŜR〉/S2, for nearest-neighbor and
next-nearest-neighbor separations for S = 1/2,1,3/2, and 3.
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FIG. 8. Specific heat of the ferromagnet on the pyrochlore lattice
within the RGM (thin solid lines) and the HTE approach (Padé
[5,6]—thin dashed lines) as a function of the normalized temperature
T/(S(S + 1)) for several values of the spin quantum numbers S. We
also show the RGM results for the S = 1/2 simple-cubic ferromagnet
(thick solid line).

As increasing of S the decrease of 〈Ŝ0 · ŜR〉/S2 with growing
temperature becomes faster. As expected, the decay of the
next-nearest-neighbor correlations is more rapid, but above Tc

the pronounced short-range order is obvious. Furthermore, in
the inset of Fig. 7 we compare results for the S = 1/2 simple-
cubic and pyrochlore ferromagnets showing the dependence of
nearest-neighbor (solid) and next-nearest-neighbor (dashed)
correlation functions as a function of T/|J |. Again, with
increasing temperature, the correlations for the pyrochlore
lattice vanish more rapidly than for the simple-cubic lattice.
Since the nearest-neighbor correlation function is proportional
to the internal energy of the spin model (1) the temperature
profiles reported in Fig. 7 represent also the temperature
dependence of the internal energy.

Next we present the temperature dependence of the specific
heat CV (T ), see Fig. 8. It shows the typical cusp at Tc. We also
show the HTE results for the high-temperature part of CV (T ):
They begin to rise sharply as the temperature approaches Tc

from above, thus, indicating the phase transition. In the high-
temperature region the HTE and the RGM results coincide.

The correlation functions provide the access to the (static)
magnetic structure factor (17) which is related to an experi-
mentally accessible quantity, the total magnetic neutron cross
section dσ/d�. We present a contour plot of the structure
factor in several planes of the q space, namely, qz = 0 (left
panels of Fig. 9) and qx = qy (right panels of Fig. 9). In Fig. 9
we also compare the RGM and HTE predictions (above Tc)
shown in the middle and bottom rows, respectively. Clearly,
the results of both approaches are in good agreement. To get a
more quantitative profile of the structure factor we present the
dependence of S(q,q,q) on q for two values of T and S = 1/2
and S = 3 in Fig. 10. This q line corresponds to a diagonal
line in the right panels of Fig. 9.

As expected for ferromagnets, the magnetic structure factor
has rather simple features: It exhibits a pronounced maximum
around the 
 point q = (0,0,0). However, along the path
qx = qy = qz a second maximum appears, see Fig. 10 and the

-4π -2π  0 2π 4π
qx

-4π

-2π

 0

2π

4π

q y

 0
 10
 20
 30
 40
 50
 60

-4π -2π  0 2π 4π
qx=qy

-4π

-2π

 0

2π

4π

q z

 0
 10
 20
 30
 40
 50
 60

-4π -2π  0 2π 4π
qx

-4π

-2π

 0

2π

4π

q y

 0
 10
 20
 30
 40
 50
 60

-4π -2π  0 2π 4π
qx=qy

-4π

-2π

 0

2π

4π

q z

 0
 10
 20
 30
 40
 50
 60

-4π -2π  0 2π 4π
qx

-4π

-2π

 0

2π

4π

q y

 0

 10

 20

 30

 40

 50

 60

-4π -2π  0 2π 4π
qx=qy

-4π

-2π

 0

2π

4π

q z

 0

 10

 20

 30

 40

 50

 60

FIG. 9. Two top rows: magnetic structure factor Sq/(S(S + 1)) of
the S = 1/2 ferromagnet on the pyrochlore lattice within the RGM
approach at T = 1.3Tc (upper row) and T = 2Tc (middle row) in
the Bragg plane qz = 0 (left panels) and in the Bragg plane qx = qy

(right panels). Bottom row: magnetic structure factor Sq/(S(S + 1))
of the S = 1/2 ferromagnet on the pyrochlore lattice within the HTE
approach (ninth order) at T = 2Tc in the Bragg plane qz = 0 (left
panel) and in the Bragg plane qx = qy (right panel).

right panels of Fig. 9. For a better understanding of the shape
of Sq we return to the definition of the magnetic structure
factor and rewrite Eq. (17) as a sequence of contributions
coming from on-site correlations, nearest-neighbor correla-
tions, next-nearest-neighbor correlations, third-neighbor cor-
relations, etc., i.e.,

Sq = S(S + 1) + 〈Ŝ0 · Ŝ1〉S(1)
q + 〈Ŝ0 · Ŝ2〉S(2)

q + · · · ,

S(1)
q = 1

4

∑
α

∑
j ′

cos(q · (Rmα − Rj ′)),

S(2)
q = 1

4

∑
α

∑
j ′′

cos(q · (Rmα − Rj ′′ )), (20)

where 〈Ŝ0 · Ŝ1〉 is the nearest-neighbor correlation function,
〈Ŝ0 · Ŝ2〉 is the next-nearest-neighbor correlation function,
etc., and the sum over j ′ runs over nearest neighbors of
the site i = mα, the sum over j ′′ runs over next-nearest
neighbors of the site i = mα, etc. Considering the path
along q = (q,q,q), one can easily explain the dependence
of the magnetic structure factor on q shown in Fig. 10.
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FIG. 10. Magnetic structure factor Sq/(S(S + 1)) of the py-
rochlore ferromagnet along the line qx = qy = qz for two temper-
atures: 1.3Tc (red) and 2Tc (blue). RGM results are shown by solid
lines, whereas HTE results are shown by dashed lines. Thin lines
correspond to the S = 1/2 case, thick lines correspond to the S = 3
case.

Really, since S
(1)
(0,0,0) = 6, S(1)

(π,π,π) = S
(1)
(2π,2π,2π) = S

(1)
(3π,3π,3π) =

0, S(1)
(4π,4π,4π) = 6, the nearest-neighbor correlations contribute

to Sq at q = (0,0,0) and q = (4π,4π,4π ), but do not contribute
at q = (2π,2π,2π ). Furthermore, Sq at q = (2π,2π,2π ) is
conditioned first of all by much weaker third-neighbor
(next-next-nearest-neighbor) correlations, since S

(2)
(2π,2π,2π) =

0, but S
(3)
(2π,2π,2π) = 6. As a result, the dependence S(q,q,q) on

q shows a high maximum at q = 0 (and q = 4π ) and a lower
one at q = 2π . Naturally, the heights of the maxima at q = 0
and q = 2π increase as the temperature decreases.

We end up with few further comments on the q depen-
dence shown in Fig. 10. Comparing thin solid (S = 1/2)
and thick solid (S = 3) lines we conclude that the peaks
of Sq/(S(S + 1)), especially at q = 0, become higher as S

increases. Comparing thin solid (RGM) and thin dashed (HTE)
lines at two temperatures, T = 1.3Tc (red) and T = 2Tc (blue),
we conclude that in general RGM and HTE results are in a
reasonable agreement and the agreement becomes better at
higher temperatures.

D. Dynamic structure factor

The RGM results given in Eq. (11) allow us to determine
the dynamic structure factor using the fluctuation-dissipation
theorem, see the end of Sec. III A. After some standard
manipulations we arrive at

Szz
q (ω) = π

1 − e− ω
T

∑
α,β

∑
γ

mγ q

8ωγ q

× (δ(ω − ωγ q) − δ(ω + ωγ q))〈α|γ q〉〈γ q|β〉. (21)

This quantity is related to neutron inelastic scattering data
accessible in experiments. We also note that integrating Szz

q (ω)
(21) over all ω we get the static structure factor:

∫ ∞

−∞
dωSzz

q (ω) = 2πSzz
q = 2π

1

3
Sq. (22)
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FIG. 11. Dynamic structure factor Szz
q (ω) of the S = 1/2 py-

rochlore ferromagnet along the line qx = qy = qz for T = 0.0425
(top) and T = 0.425 (bottom). We set ε = 0.1. The white lines
correspond to the excitation energies ωγ q (9).

In our numerical calculation we replace the δ-functions
in Eq. (21) by the Lorentzian function, i.e., δ(x) →
(1/π )(ε/(x2 + ε2)), where a “damping” parameter ε is chosen
as ε = 0.001 . . . 0.5. (Note that there is no intrinsic damping
in the RGM approach.)

In Fig. 11 we show Szz
q (ω), Eq. (21), in the wave vector q =

qx = qy = qz—frequency ω plane (cf. right panels in Fig. 9
and Fig. 10) for the S = 1/2 case at the temperatures T =
0.0425 (top) and T = 0.425 (bottom). The temperature value
0.0425|J | is related to experimental data of Ref. [30]: If J =
8.22 meV then 0.0425|J | corresponds to 4 K (and 0.425|J |
corresponds to 40 K). We also plot by white lines the excitation
energies ωγ q (9) along the line q = qx = qy = qz (cf. Fig. 2).
Evidently, Szz

q (ω) is concentrated along the excitation energy
lines ωγ q. However, its weight is distributed nonuniformly and
is mostly concentrated along the acoustic branch ω4q and the
branch ω3q, whereas high-energy flat-band branches ω1q and
ω2q [for the vectors q = (q,q,q)] are not visible.

To get a closer relation to the experimental paper [30] on
the pyrochlore ferromagnet Lu2V2O7, we show in Fig. 12
the dynamic structure factor as a function of the reduced
momentum t = 2 − Dq, see Eq. (8), along the path q =
(q,q,q), which corresponds to a diagonal line in the right
panels of Fig. 9. Then the reduced momentum t varies between
0 and 1. Note that Fig. 12 resembles Fig. 2 of Ref. [30].
However, in the experimental paper [30] an average over many
q points lying within a sphere around the 
 point of a given
radius is performed.
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FIG. 12. Dynamic structure factor Szz
q (ω) of the S = 1/2 py-

rochlore ferromagnet as a function of the reduced momentum t =
2 − Dq with q = (q,q,q) for T = 0.0425. We set ε = 0.1. The white
lines correspond to the excitation energies ωγ q (9).

By comparing experimental neutron inelastic scattering
data with theoretical predictions for Szz

q (ω) the parameters
of the Hamiltonian (i.e., the value of the nearest-neighbor
exchange coupling) can be determined for a certain magnetic
compound. In the case at hand, it is natural to consider the
highest experimentally observed energies (around ω ≈ 4|J |)
to get the value of J . Comparing the results for two different
temperatures, e.g., T = 0.0425 and T = 0.425, see Fig. 11,
one can estimate temperature effects which influence the
determination of J .

V. SUMMARY

To summarize, we have presented a systematic study of
finite-temperature static and dynamic properties of the spin-S
pyrochlore Heisenberg ferromagnet for arbitrary S � 1/2. In
particular, we focus on the excitation spectra, the susceptibility,
the magnetization, the specific heat, as well as the static
and dynamic structure factors. The reported results were
obtained within the frames of two universal approaches,
the rotation-invariant Green’s function method and the

high-temperature expansion. The findings of our comprehen-
sive and thorough study can be useful for further experiments
on pyrochlore ferromagnets and may provide guiding informa-
tion for other theoretical approaches. To demonstrate the effect
of geometric frustration on the finite-temperature properties
of the pyrochlore ferromagnet, we compare the pyrochlore
and the simple-cubic ferromagnets. Overall, the difference
between thermodynamics of the pyrochlore ferromagnet and
the simple-cubic ferromagnet is noticeable, although it is not
tremendous.

Our results may be used for understanding experimental
data for Heisenberg pyrochlore ferromagnets at finite tempera-
tures, see Refs. [28–30,63–67]. Concerning ferromagnetic py-
rochlore compounds, we have mentioned already in Sec. I that
for the S = 1/2 Heisenberg ferromagnet on the pyrochlore lat-
tice Lu2V2O7 [28–30] the critical temperature is Tc ≈ 0.73|J |.
For another compound, Yb2Ti2O7, with a much lower critical
temperature of about 0.24 K [63], one finds Tc ≈ 0.68|J |. The
ratio Tc/|J | ≈ 0.7 agrees well with our theoretical findings.
Note, however, that the low symmetry of the pyrochlore
lattice allows for a (typically weak) Dzyaloshinskii-Moriya
interaction. Furthermore, inelastic neutron scattering data for
ω of the order of J reveal excitations of the spin system.
Comparing experimental data and theoretical predictions
allows one to determine the model parameters. In contrast to
linear-spin-wave-theory calculations of the excitation energy
dispersion, the RGM findings for the dynamic structure factor
are not limited to the low-temperature limit.
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APPENDIX A: RGM RESULTS FOR THE S = 1/2 SIMPLE-CUBIC HEISENBERG MODEL

In this Appendix, we present an analog of Eqs. (4), (5), and (6) for the S = 1/2 simple-cubic Heisenberg model (see also
Refs. [48,49]). For this case we have:

(ω2 − Fq)χ+−
q (ω) = −Mq, (A1)

where

Mq

J
= −12c100(1 − γq) (A2)

and

Fq

J 2
= 3(1 − γq)(1 + 10α̃100 + 8α̃110 + 2α̃200 − 12α̃100(1 + γq)) (A3)

with

γq = 1
3 (cos qx + cos qy + cos qz). (A4)
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Equation (A1) immediately yields χ+−
q (ω) = −Mq/(ω2 − ω2

q) with ω2
q = Fq [cf. Eq. (11)]. Further calculations go parallel with

the corresponding ones for the pyrochlore case.

APPENDIX B: COMMON EIGENVECTORS |γ q〉 OF THE MOMENTUM AND FREQUENCY MATRICES

In this appendix, we present the common eigenvectors |γ q〉 of the momentum matrix Mq (5) and the frequency matrix Fq (6).
They are as follows:

|1q〉 =

⎛
⎜⎜⎜⎜⎝

− sin qx−qz
4

sin
qx+qy

4

− sin
qy+qz

4

sin
qx+qy

4

0
1

⎞
⎟⎟⎟⎟⎠, (B1)

|2q〉 =

⎛
⎜⎜⎜⎜⎜⎝

− sin
qy−qz

4

sin
qx+qy

4

− sin qx+qz
4

sin
qx+qy

4

1

0

⎞
⎟⎟⎟⎟⎟⎠, (B2)

|3q〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2Dq sin
qy+qz

4 +sin
2qx+qy−qz

4 +sin
2qx−qy+qz

4

sin
qx−qy

2 +sin qx−qz
2 −sin

qy+qz

2

− 2(Dq sin qx−qz
4 +sin

qy

2 cos qx+qz
4 )

sin
qx−qy

2 +sin qx−qz
2 −sin

qy+qz

2

− 2
(
Dq sin

qx−qy

4 +sin qz
2 cos

qx+qy

4

)
sin

qx−qy

2 +sin qx−qz
2 −sin

qy+qz

2

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B3)

|4q〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2Dq sin
qy+qz

4 +sin
2qx+qy−qz

4 +sin
2qx−qy+qz

4

sin
qx−qy

2 +sin qx−qz
2 −sin

qy+qz

2

4 cos qz
2 cos

qx−qy

4

(
Dq+cos

qx+qy

2 +3
)
+4 cos

qx+qy

4 (3Dq+cos qx
2 cos

qy

2 +3)
cos qx

2

(
4(Dq+3) cos

qy−qz

4 +2 cos
3qy+qz

4 +cos
qy+3qz

4

)
+4 cos

qy+qz

4 (3Dq+cos
qy

2 cos qz
2 +3)−sin qx

2 sin
qy+3qz

4 +cos
2qx−qy−3qz

4

2
(
Dq sin

qx−qy

4 −sin qz
2 cos

qx+qy

4

)
sin

qx−qy

2 +sin qx−qz
2 −sin

qy+qz

2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

where Dq is given in Eq. (8). Note that these eigenvectors are not normalized [in contrast to the eigenvectors at q = 0 in Eq. (10)].
The corresponding eigenvalues are given in Eqs. (7) and (9). In the limit q → 0, Eq. (B4) transforms into |40〉 in Eq. (10) whereas
Eqs. (B1)–(B3) yield a linear combination of |10〉, |20〉, |30〉 given in Eq. (10) depending on the chosen path along which the
limit q → 0 was taken.
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