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Zhihua Dong,1,* Stephan Schönecker,1,† Dengfu Chen,2 Wei Li,1 Mujun Long,2 and Levente Vitos1,3,4

1Applied Materials Physics, Department of Materials Science and Engineering, KTH - Royal Institute of Technology,
SE-10044 Stockholm, Sweden

2College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
3Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

4Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary
(Received 23 June 2017; revised manuscript received 30 October 2017; published 13 November 2017)

We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic
(PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature
dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers
individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction
with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy
formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is
adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic
interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows
gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static
DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic
shear elastic constants c′ and c44 by ∼6 GPa in the temperature interval 300–1600 K, whereas the predominant
mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to
thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced
by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high
flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties
of PM multicomponent alloys.
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I. INTRODUCTION

First-principles calculations in the framework of density
functional theory (DFT) play an increasingly important role in
the understanding and design of properties of technologically
relevant materials, many of which are based on Fe, Co, or Ni.
When it comes to finite-temperature properties of these and
the other magnetic transition metals and their alloys, the lack
of a complete theory for itinerant electron magnetism remains
one of the biggest challenges in condensed matter physics
despite intensive efforts [1,2]. Since the finite-temperature
properties of such materials are typically strongly coupled
to their magnetic state, which in turn is intimately interrelated
to the electronic states, a proper account of magnetic exci-
tations, both transverse and longitudinal in nature, is thus of
fundamental interest.

The magnetization dynamics and finite-temperature behav-
ior of magnetic materials is often described by mapping the
quantum system onto a classical model Hamiltonian for the
spin system, and based on an adiabatic approximation [3,4].
The Heisenberg Hamiltonian is probably the most widespread
descriptor of the magnetic energy for the orientational degrees
of freedom of local-site moments, and has been explored for
the 3d-band magnets Fe, Co, and Ni to investigate, among
other things, low-temperature collective magnon excitations
[5,6] and the magnetic phase transition [7,8]. The validity of
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the Heisenberg Hamiltonian obviously relies on the robustness
of the local-moment variables with varying spin configuration
and temperature.

Magnetic thermodynamics in real metallic magnets is,
however, significantly more complicated and in addition
characterized by fluctuations of the longitudinal magnetic
component of the local moments, depending on the degree
of electron localization. In Fe, Co, and Ni, the exchange
splitting is of the same order as the electronic bandwidth,
making the energy scale of longitudinal spin fluctuations
(LSFs) already accessible at temperatures below the magnetic
phase transition [9–11]. To improve the predictions of the
localized (Heisenberg) limit, one may account for LSFs in such
phenomenological models, and extended model Hamiltonians
have indeed been proposed in recent years [7,8,12,13]. On
the other hand, parameters entering magnetic Hamiltonians,
e.g., the exchange coupling strength, are typically kept frozen
as a function of spin configuration and temperature, which
introduces a dependence on the reference state in which these
parameters were obtained. To overcome this drawback, several
updating procedures were suggested in the literature [3,14,15].

Any predictive first-principles electronic theory for the
magnetic phase transition in 3d metallic magnets must support
the important magnetic fluctuations. Considerable progress in
the first-principles formulation of the spin-fluctuation problem
was achieved in notable works of Győrffy et al. and Staunton
et al. by merging the disordered local moment (DLM) scheme
with spin DFT in a mean-field type theory [4,16,17]. Im-
plemented in multiple-scattering methods combined with the
coherent-potential approximation (CPA) [18,19] (formulated
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originally for the electronic structure problem of substitutional
disorder) the DLM picture provides a feasible tool to describe
from first principles the electronic structure in the presence of
orientational spin fluctuations. One of the earliest successful
predictions of this theory were wave-vector- and energy-
dependent “local exchange splittings” for paramagnetic (PM)
body-centered cubic (bcc) Fe [20], a feature that was qual-
itatively confirmed in spectroscopic measurements [21–23].
The neglect of dynamical effects of the spin fluctuations
is an obvious shortcoming of the DLM picture, whereas
the assumption on independently fluctuating local moments
(neglect of magnetic short range order correlations) can be, at
least in part, improved on by incorporating the effects of the
Onsager cavity field into the theory [24].

Paramagnetic austenitic stainless steels, extensively used in
various industrial and domestic applications, are a prominent
example of magnetic metallic materials, wherein magnetic
excitations at ambient temperature have been shown to produce
important effects on fundamental mechanical parameters, such
as the stacking fault energy and the elastic constants [25–27].
Although several other alloying elements might be deliberately
added, austenitic stainless steels are essentially disordered
multicomponent alloys composed of Fe and concentrated
amounts of approximately 13–25 at. % Cr and 8–24 at. %
Ni. In these steels, the PM state and the face-centered cubic
(fcc) structure of γ -Fe, which exists only at temperatures above
1189 K in pure Fe, can survive far below ambient temperature
due to the presence of Ni [28,29].

Applying the DLM picture to PM Fe-Cr-Ni alloy with
typical composition yields persistent local magnetic moment
only on Fe. In the early works [25–27], temperature-driven
variations of the longitudinal magnetic components in Fe-Cr-
Ni were induced by adding a mean-field magnetic entropy term
to a local magnetic moment dependent free-energy function
without considering their energetics and statistics. Therefore, a
more elaborate description of temperature-dependent mechan-
ical properties in consideration of LSFs for all alloy species
is highly desirable, not only for the here considered austenitic
stainless steels, but for multicomponent PM alloys in general.

We recently formulated an accurate and efficient compu-
tational scheme for LSFs in the DLM state of Fe adopting a
mean local magnetic moment approach to represent the energy
of the spin fluctuation state [30]. The purpose of the present
paper is to extend this scheme to more complicated cases,
while maintaining accuracy and efficiency of the approach. In
Sec. II, we formulate a methodological framework for LSFs
in PM multicomponent alloy systems from first-principles
spin DFT calculations. Our starting point is a model Hamilto-
nian for LSFs in the DLM state with parameters determined
from first-principles calculations. It describes the on-site LSF
energetics of individual fluctuating spins in a static PM
medium and assumes the Boltzmann distribution for the
longitudinal magnetic component. The energy of the spin
fluctuation state is represented by mean moments. Drawing
upon the single-site alloy theory formalism for chemical
and magnetic randomness, we introduce two approaches that
allow obtaining the LSF energetics for complex materials in
a computationally more feasible way than previous studies.
Following the computational details presented in Sec. III, the
accuracy of the approaches is scrutinized in Sec. IV, where we

apply our methodology to PM fcc Fe and austenitic stainless
steel Fe15Cr15Ni. This ternary alloy exhibits the magnetic
order-disorder transition at ∼26 K [29,31]. We investigate
the evolution of thermal spin fluctuations as a function of
temperature and derive the LSF contribution to the temperature
dependence of two elastic constants of this alloy steel.

II. METHODOLOGY

We begin by briefly outlining the general theoretical frame-
work using the example of a unary system on a Bravais lattice
(e.g., pure bcc Fe) in Sec. II A. The model is then generalized
to multicomponent alloy systems in Sec. II B. Two alternative
realizations of the model, i.e., the supercell representation
and alloy formalism in the single-site approximation, are
elucidated in Sec. II A. Next we introduce two approximations,
the one shot from static equilibrium approach (OSA) at the
end of Sec. II B and the fluctuating medium approximation
(FMA) in Sec. II C, to improve the computational feasibility.
In Sec. II D, we adopt the formulated framework to establish
the thermal LSF model for the Fe-Cr-Ni ternary alloys forming
the main building block of austenitic stainless steel.

We assess the aforementioned approximations in Sec.
IV A by comparing results derived from different approaches:
(i) supercell calculation with OSA (for variational magnetic
states on neighbor sites), (ii) single-site formalism with OSA,
and (iii) single-site formalism at OSA in combination with
FMA. Throughout the paper we assume that all magnetic
moments are in units of the Bohr magneton (μB) and omit
the units in the equations.

A. LSF theory for PM monoatomic systems

As magnetic variables of the PM electron system, we em-
ploy the magnetization density integrated within the Voronoi
polyhedron around a lattice site i and denoted by μi . We
consider fluctuations of the longitudinal magnetic component
μi of this local magnetic moment μi = μiei , ei being its
orientation and μ̄i its mean, and assume an adiabatic separation
of fast electron dynamics from the slow spin fluctuations
relevant here [4,32]. This site is embedded in a homogeneous
PM medium created by N − 1 other sites with randomly
oriented spins, whose local magnetic moment magnitudes are
fixed to their mean values {μ̄j }j �=i . This notation abbreviates
the set of mean moments, where j runs over all sites but
site i. A local magnetic moment μi interacts with all other
fluctuating spins via the PM medium. The energy of this state
can be represented by [33,34]

E =
N∑

i=1

Ehom({μ̄j }) +
N∑

i=1

ELSF(μi ; {μ̄j }j �=i), (1)

where Ehom is the energy of the homogeneous PM medium.
The on-site term ELSF denotes the LSF energy that measures
the energy of changing the local magnetic moment at site i

from μ̄i to μi . The direct interaction between two or more
fluctuating lattice site magnetic moments in the PM state, for
example through a bilinear form μiμj , are of higher order
and neglected in the present model. The statistical mechanics
of the LSFs is assumed to be governed by Boltzmann
statistics [7,33,35,36]. For all i, the mean value μ̄i should
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be consistent with that of the medium it fluctuates in. This
requires an iterative determination of {μ̄i}, which may be a
rather cumbersome procedure in practice.

For the purpose of clarification, we elucidate this model for
two different realizations: (i) a supercell representation and
(ii) the alloy formalism in the single-site approximation (or
CPA) [18,19]. In the supercell picture, the LSF distribution
is established for a site i fluctuating in the homogeneous PM
medium formed by the remaining N − 1 sites. Since for a
unary metal all sites of the Bravais lattice are equivalent,
the system is described by a single LSF distribution and a
single mean moment μ̄. ELSF may then be mapped out by
constrained spin-density functional calculations. In the present
implementation, we represent the PM medium in the supercell
picture by the DLM state like in the single-site approximation.
Alternatively, the supercell could also be used to realize a
random spin distribution (e.g., by adopting suitable special
quasirandom structures).

In the single-site alloy formalism, one obtains an effective
medium that possesses the symmetry properties of the underly-
ing lattice, and the effective medium for an ideal paramagnet of
totally random spins is represented by the DLM state [4,16,17],
which neglects mutual correlations of probability distributions
of the orientations of the local moments at different lattice
sites [37]. The DLM state is modeled by its alloy analogy: an
equiconcentration binary alloy with collinear local magnetic
moments (e.g., Fe↑

0.5Fe↓
0.5). Thus, a single site suffices to model

the homogeneous PM medium, and ELSF may be derived by
considering the energy of a spin impurity fluctuation (IF) [38]

ELSF(μ) = lim
δ→0

∂EIF(μδ′
; μ̄1−δ′

)

∂δ′

∣∣∣∣∣
δ

. (2)

The IF energy EIF defines the energy of changing the local
magnetic moment of the spin impurity δ from μ̄ to μ.
It is determined from a four-component DLM state, i.e.,
Fe↑

δ/2Fe↓
δ/2Fe↑

(1−δ)/2Fe↓
(1−δ)/2 in alloy notation, where the total

concentration of the IF with magnetic moment μδ is δ and
that of the DLM effective medium 1 − δ. Similarly to the
supercell representation, the system is again described by a
single mean moment μ̄. It should be noted that an alternative
but numerically virtually identical route (in the limit of small
δ) to obtain EIF is a three-component magnetic state [38]
(i.e., Feδ Fe↑

(1−δ)/2Fe↓
(1−δ)/2). Throughout this work we employ

the DLM state for both the IF and the medium, which will
be particularly important in formulating an approximation
introduced in Sec. II C.

It should be noted that the homogeneous PM medium is
constructed by isotropic probability distributions for the fluctu-
ations of local moment orientations, and this construction does
not involve a specific temperature [4,16,17]. Nevertheless, the
self-consistent determination of the mean moment of the DLM
effective medium allows us to associate a temperature with it,
namely, the one the LSF distribution was established with
through Boltzmann statistics.

It is clear that the supercell realization and the single-site
approximation of the magnetic model may lead to slightly
different LSFs and mean moments. Fortunately, the next level
approximations based on fluctuating medium and sublattices

FIG. 1. Schematic of the multicomponent alloy model. The
dashed lines illustrate the lattice planes and i = 1, . . . ,N is the site
index. Different filling patterns stand for different alloy components
A, B, C and any other alloy elements (illustrated by the empty
site). The corresponding areas sketch the on-site concentration of
different alloy species. The arrows sketch the spin-up and spin-down
orientations of each alloy component (DLM state), whereas their
lengths represent the local magnetic moment magnitudes, which may
vary with alloy species and site. It should be noted that the spin state
is only sketched for two sites but they actually may exist on all sites.
A single spin impurity of species A on site i is sketched.

partially resolve this difference. These approximations are
described in the following sections.

We primarily draw upon the single-site alloy theory
formalism in the further course. For the sake of clarification,
we make contact with the supercell representation at times. In
the following we proceed to multicomponent-alloy systems.

B. LSF theory for PM multicomponent alloys

Let AcA BcB · · · McM denote the chemical composition
of a multicomponent alloy consisting of components I =
A,B, . . . ,M with corresponding atomic concentrations cI =
cA,cB, . . . ,cM, which are normalized as

∑
I cI = 1. We

describe the configuration of the multicomponent alloy by
a supercell containing N sites; see the sketch in Fig. 1. For a
site i, we have the alloy occupation AcA

i
BcB

i
· · · McM

i
with the

concentrations satisfying
∑

I cI
i = 1. We notice that several of

these site concentrations can be zero.
Before discussing the LSFs in our model, we wish to

emphasize two aspects. First, ordered systems with multiple
sublattices occupied by specific types of atoms may straight-
forwardly be reached from our model in Fig. 1 by regularly
taking the concentration for a particular component to be 1,
e.g., a two-sublattice binary system for which cA

α = 1 and
cB
β = 1 for sublattices α and β, respectively. On the other

hand, disordered multicomponent alloys represented within
the single-site approximation are also part of this model.
For instance, the N = 1 case on a close-packed cubic lattice
models a multicomponent alloy on a single site. Hence, our
model naturally contains the usual supercell approach to
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alloys (e.g., the one corresponding to the special quasirandom
configuration) as well as the CPA. This is an important
feature since it allows one to treat, for instance, structural
defects in random alloys. We should notice that the ordered
case includes the monoatomic system described in Sec. II A
when represented with supercells, whereas the N = 1 case
can account for the monoatomic system represented in the
single-site approximation.

Because the magnetic moment may vary with site and alloy
component, they are distinguished by using the site and alloy
indexes, that is, μI

i and the corresponding mean μ̄I
i . The

multicomponent systems can be treated in a similar way to
a monoatomic system if we omit the direct LSF couplings
between different sites and alloy species, i.e., we neglect the
higher-order terms in the magnetic Hamilton formalism [33].
Accordingly, the multiple-LSF picture simplifies in our model
to individual spin impurities independently fluctuating in an
effective medium, where all sites and alloy species (except
the spin impurity) exhibit their mean magnetic moments.
The indirect LSF interactions are accounted for through the
individual mean moments.

In the following we establish the LSF energy for the
multicomponent alloy model analogously to the monoatomic
case Eq. (2). The effective medium for a spin IF μ

I,δ
i consists

of three parts. It is formed by the remaining fraction of

this component on the same site μ̄
I,cI

i −δ

i , the other chemical

components on the same site {μ̄J,cJ
j

j }J �=I

j=i , and all remaining

sites {μ̄J,cJ
j

j }j �=i . In addition to the alloy components (indices
I,J ), the inner upper index indicates the corresponding
concentration on the sites (indices i,j ). In order to simplify the
notation, this complex effective medium for μ

I,δ
i is succinctly

denoted by 〈μ̄〉I,δi . Following Eq. (2), ELSF can be evaluated
by taking the derivative of the IF energy with respect to the
spin-impurity concentration δ,

ELSF(μI
i ) = lim

δ→0

∂EIF
(
μ

I,δ′
i ; 〈μ̄〉I,δ′

i

)
∂δ′

∣∣∣∣∣
δ

. (3)

Knowing ELSF(μI
i ) allows determining the continuous LSF

density distribution xI
i for μI

i using Boltzmann statistics
[30,39], viz.,

xI
i (μI

i ) = Z−1
(
μI

i

)2
exp

[
−ELSF

(
μI

i

)
kBT

]
, (4)

with partition function

Z =
∫ (

μI
i

)2
exp

[
−ELSF

(
μI

i

)
kBT

]
dμI

i , (5)

where T is the temperature and kB the Boltzmann constant.
The LSF density distribution can be used to derive the mean
moment μ̄I

i .
The spin-impurity concentration dependent EIF is straight-

forwardly extracted from the total energy Etot between the
configuration including a finite concentration of IFs relative to
the spin-impurity-free effective medium,

EIF
(
μ

I,δ
i ; 〈μ̄〉I,δi

) = Etot
(
μ

I,δ
i ; 〈μ̄〉I,δi

) − Etot
({

μ̄J
j

})
. (6)

Substituting Eq. (6) into Eq. (3) and acknowledging that ELSF

is evaluated by a small but finite concentration change in
practice, we arrive at

ELSF
(
μI

i

)
�

Etot
(
μ

I,δ
i ; 〈μ̄〉I,δi

) − Etot
({

μ̄J
j

})
δ

. (7)

Although not necessary to formulate the theory, our alloy
model allows introducing the concept of sublattices. By
definition, all sites belonging to a sublattice α possess identical
chemical, structural, and LSF properties. In the context
of modeling LSF in a magnetically and chemically totally
disordered state by the DLM scheme in combination with
the CPA, the introduction of sublattices deserves, however, an
additional comment. Describing for example PM bcc Fe by
the primitive or conventional unit cell leads to identical results
only if LSFs simultaneously occur on all sites making up the
unit cell (as distinct magnetic states lower the symmetry).
Invariance with respect to the choice of the unit cell can be
achieved by organizing these sites in a single sublattice and
including IFs on all sites of this sublattice. All above equations
retain their form apart from replacing the site index by the
sublattice index, while also ensuring normalization of ELSF

to a single site. In Sec. IV A, we enlarge on the numerical
differences of deriving ELSF from the primitive unit cell and
from embedding a fluctuating site in a supercell.

Reaching the self-consistency requirement on {μ̄I
i } men-

tioned above becomes prohibitively cumbersome as the num-
ber of sites or alloy components grows. In practice, we thus
abandon the iterative determination of the mean moments and
introduce simplifications to make the inclusion of LSFs in the
calculation of materials properties feasible. The simplest rem-
edy may be referred to as the one shot from static equilibrium
approach (OSA) and considers thermal LSFs around the static
PM equilibrium; i.e., the LSF distribution for a component
I is established by fixing those local magnetic moments to
their static equilibrium values that form the effective medium.
The static equilibrium values are derived through a separate
unconstrained spin-density functional calculation neglecting
longitudinal magnetic excitations. Denoting the magnitude of
a static equilibrium local magnetic moment by μJ

j,0, and the

static medium for an IF μ
I,δ
i by 〈μ〉I,δi,0 , ELSF in the OSA is

approximated by

EOSA
LSF

(
μI

i

) ≈ Etot
(
μ

I,δ
i ; 〈μ〉I,δi,0

) − Etot
({

μJ
j,0

})
δ

. (8)

LSF distributions derived from this approach or the iterative
way are not expected to differ significantly in the case of a
weak coupling to the effective medium. In Sec. IV A we show
that this is indeed the case for the present alloy system.

C. Fluctuating medium approximation

The LSF energy ELSF(μI
i ) in the single-site approximation

and derived spin fluctuation properties are invariant under the
choice of the spin-impurity concentration, if the total energy
Etot on the right-hand side of Eq. (7) is linear in the spin-
impurity concentration for all μI

i . Motivated by the results
of our calculations for PM fcc Fe presented in Sec. IV A,
where we show that ELSF(μI

i ) weakly deviates from linearity
in δ for μI

i � 2.5 μB, we introduce the fluctuating medium
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approximation (FMA) to the on-site LSF energy,

EFMA
LSF

(
μI

i

) ≈ Etot
(
μ

I,cI
i

i ; 〈μ̄〉I,cI
i

i

) − Etot
({

μ̄J
j

})
cI
i

, (9)

by maximizing δ to the concentration of component I at site i,
i.e., cI

i . An increasing δ may be interpreted as an excitation of
increasingly more spins in the PM medium, whose longitudinal
components vary synchronously. Simultaneously, the fraction
of isospecies magnetic moments forming part of the effective

medium disappears (i.e., the term μ̄
I,cI

i −δ

i in the single-site
approximation). In the special case of a monoatomic system
on a Bravais lattice, the FMA uses the energy of the entire,
homogeneously fluctuating PM medium to establish the on-
site LSF distribution. An insignificant dependence of ELSF(μI

i )
on δ corresponds to the limit of weak indirect interactions and
results in LSF distributions that do not strongly depend on the
choice of δ in [0,cI

i ]. The FMA can be used in combination
with the OSA, Eq. (8); in fact, this combination was employed
in recent investigations of the impact of LSFs on the elastic
constants and the thermal expansion of PM fcc and bcc Fe
[30,40]. In Sec. IV A, we briefly investigate the numerical
differences of deriving ELSF through an IF Eq. (8) and through
the FMA.

D. LSFs in austenitic stainless steel

The present PM austenitic stainless steel Fe-Cr-Ni is
modeled as a random solid solution in the fcc structure using
the primitive unit cell, i.e., N = 1 and I,J = Fe, Cr, or Ni.
cFe = 0.70, cCr = 0.15, and cNi = 0.15 denote the atomic
concentrations of Fe, Cr, and Ni, respectively, The site index
is dropped henceforth.

Adopting the FMA and the OSA, the LSF energy for Fe
reads

EFMA+OSA
LSF

(
μFe

) ≈ Etot
(
μFe; μCr

0 ,μNi
0

) − Etot
({

μJ
0

})
cFe

. (10)

In order to determine the LSF distribution, the total energy was

computed for a six-component DLM alloy, i.e., Fe↑μFe

cFe/2Fe↓μFe

cFe/2 ·
Cr

↑μCr
0

cCr/2Cr
↓μCr

0

cCr/2 · Ni
↑μNi

0

cNi/2Ni
↓μNi

0

cNi/2, with variable magnetic moment

μFe for Fe, and constrained magnetic moments μCr
0 and μNi

0 for
Cr and Ni atoms, respectively. Similar expressions to Eq. (10)
and calculational schemes apply to LSFs on Cr and Ni.

In the numerical calculation, the local magnetic moment
range for Fe was chosen from 0 to 3.0 μB in intervals of
0.5 μB, whereas the ranges were 0 to 2.5 μB and 0 to 2.0 μB for
Cr and Ni, respectively, with identical intervals. To obtain the
continuous LSF distributions, we fitted an eighth-order Landau
expression ELSF − ELSF(μ = 0) = aμ2 + bμ4 + cμ6 + dμ8

to the energies calculated on each discrete mesh. Accordingly,
the LSF distributions of Fe, Cr, and Ni are established based
on a series of constrained spin-density functional calculations.
To ease the comparison between different species, in Sec. IV
we plot ELSF with respect to ELSF(μ = 0).

In the following we elaborate on how to consider LSFs
and their distributions xI in the calculation of the elastic
properties of the present ternary alloy. Upon binning each
probability density distribution xI for μI into probabilities xI

1 ,

xI
2 , . . ., xI

n ,
∑

k xI
k = 1, for discrete local magnetic moments

μI
1, μI

2, . . ., μ
I
n, the PM state of the austenitic stainless steel in

the presence of LSFs may be modeled by the multicomponent
DLM picture, viz.,(

Fe↑μ1

xFe
1 /2

Fe↓μ1

xFe
1 /2

. . . Fe↑μn

xFe
n /2Fe↓μn

xFe
n /2

)
cFe ·(

Cr↑μ1

xCr
1 /2

Cr↓μ1

xCr
1 /2

. . . Cr↑μn

xCr
n /2Cr↓μn

xCr
n /2

)
cCr ·(

Ni↑μ1

xNi
1 /2

Ni↓μ1

xNi
1 /2

. . . Ni↑μn

xNi
n /2Ni↓μn

xNi
n /2

)
cNi , (11)

where each probability xI
i can be directly related to an atomic

fraction, which has to be normalized by the corresponding
chemical concentration in the present ternary random alloy.
In general, distinct numbers of bins n and local magnetic
moment intervals may be chosen for the alloy components.

Aiming to reduce the computational load of modeling
the multicomponent DLM picture Eq. (11), we proposed an
alternative approach [30] to represent the continuous LSF
distributions by a single, mean magnetic moment for each
species denoted by mI

sf . Accordingly, mI
sf was defined by

mI
sf =

√∫
μ2 xI (μ)dμ. (12)

This mean moment was shown to accurately represent the
energy of the LSF state in the description of thermomechanical
properties such as the elastic constants in PM Fe [30], and
we investigate its performance for the Fe-Cr-Ni system in
Sec. IV C. In the present investigation, the upper limit of the
integral in Eq. (12) was limited to 3.5, 3.0, and 2.5 μB for Fe,
Cr, and Ni, respectively; i.e., for all components we used the
Landau expression to extrapolate by 0.5 μB beyond the upper
limit of the chosen discrete magnetic moment mesh. In place
of the multicomponent DLM picture, in this work we employ
mI

sf to model the impact of LSFs on the elastic constants in the
PM Fe-Cr-Ni system, and Eq. (11) simplifies to the following
six-component alloy,

Fe
↑mFe

sf

cFe/2Fe
↓mFe

sf

cFe/2 · Cr
↑mCr

sf

cCr/2Cr
↓mCr

sf

cCr/2 · Ni
↑mNi

sf

cNi/2Ni
↓mNi

sf

cNi/2. (13)

III. TOTAL ENERGY SCHEME, LATTICE EXPANSION,
AND ELASTIC PROPERTIES

The ab initio calculations were performed in the framework
of density functional theory (DFT) [41]. The scalar-relativistic
one-electron Kohn-Sham equations in combination with the
local-density approximation (LDA) [42] were solved with
the exact muffin-tin orbitals method [43–46] adopting the
soft-core scheme. The magnetic and chemical disorders in
PM Fe-Cr-Ni were described by the DLM picture [4,16,17]
in combination with the CPA [18,19]. The total energy
was calculated applying the full charge-density technique
[47] based on the quasi-nonuniform gradient-level exchange-
correlation approximation (QNA) [48–50]. The QNA has been
shown to predict highly accurate equations of state for bcc and
fcc Fe [30].

Being a mean-field theory, magnetic and chemical short-
range order effects are not accounted for in our calculations.
Considering the relatively low magnetic transition temperature
(∼26 K) for the present fcc alloy [29,31], the magnetic
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short-range order is expected to be weak at the temperatures
considered here (300–1600 K). Based on the parametrization
carried out within the ordered magnetic background, the chem-
ical short-range order in Fe-Cr-Ni alloys was demonstrated to
be non-negligible [51]. Nevertheless, as shown in the above
work, the short-range order in the fcc Fe-Cr-Ni alloys is weaker
than in the bcc alloys, which have very high order-disorder
transition temperature and exhibit short-range order even
at temperatures close to melting temperature [51]. In addition,
taking the disordered magnetism in the PM state into consid-
eration, a weak short-range order has been reported for PM fcc
Fe21Cr23Ni [52], in reasonable agreement with the existing
experimental data. Thus the proper account of magnetism at
finite temperature was pointed out to be crucial for the theoreti-
cal description of the austenitic stainless steels. Concerning the
impact of the chemical short-range order on the mechanical
properties, to our best knowledge no theoretical study has
been reported so far for Fe-based alloys. It was, however,
demonstrated that chemical short-range order gives a negligi-
ble contribution to the elastic properties of nonmagnetic binary
alloys [53]. Since here we concentrate on the thermal LSFs in
PM fcc multicomponent alloys and its impacts on the elastic
property, the chemical short-range order effects are omitted.

The equilibrium Wigner-Seitz radius (w) of the PM
Fe15Cr15Ni austenitic stainless steel was determined from
an exponential Morse-type function [54] fitted to ab initio
total energies. The theoretical Wigner-Seitz radii at finite
temperatures were determined by rescaling the equilibrium
radius using the experimental linear thermal expansion co-
efficient 20.77 × 10−6 K−1, which was in fact determined
by dilatometry for the commercial austenitic stainless steel
Fe18Cr8Ni at elevated temperatures [55]. The small deviation
in the alloy composition is, however, expected to yield a
small effect on the thermal lattice expansion coefficient of
Fe15Cr15Ni. According to the calculations, the theoretical
static equilibrium Wigner-Seitz radius of PM fcc Fe15Cr15Ni
amounts to 2.6119 bohrs, and at 300 K the lattice expands
to 2.6282 bohrs. This latter result is comparable to the
experimental observation for Fe15Cr15Ni at 300 K wExpt. =
2.6479 bohrs [56] with a deviation of approximately −0.74%,
showing relatively high accuracy.

Volume-conserving orthorhombic and monoclinic defor-
mations were adopted in the calculation of the two cubic
shear elastic constants c′ and c44 [43]. In addition to the
LSF calculations, elastic constants were also calculated using
the conventional floating-spin (FS) scheme for comparison,
where longitudinal magnetic excitations were neglected. The
Brillouin zone sampling was done using uniformly distributed
k points with density that ensures the necessary numerical
accuracy for the elastic-constant calculations.

IV. RESULTS AND DISCUSSION

A. LSF interactions among different atomic sites
and alloy species

The purpose of this section is to look into the various
approaches to obtain ELSF introduced in Sec. II and to learn
about indirect local magnetic moment interactions in the
single-site alloy theory formalism. We focus on pure PM fcc

Fe first and investigate LSFs set up for two choices of the unit
cell, i.e., the primitive unit cell and a supercell with a single
embedded fluctuating site. Second, for Fe15Cr15Ni and using
the FMA, we scrutinize how LSFs on each alloy component
are affected by the magnetic state of the medium defined by
the moments of the other two alloy components. The main
quantity of interest is the mean moment defined in Eq. (12) and
its stability is used as a qualitative measure of the interaction
strength with the medium.

1. PM fcc Fe

As mentioned above, LSFs for PM fcc Fe are investigated
for two choices of the unit cell. On the one hand, a supercell
representation was chosen to describe the situation of a single
fluctuating site embedded in a PM medium. To this end,
calculations were performed for a 2 × 2 × 2 supercell in terms
of the conventional fcc unit cell, where all 32 sites were
modeled by the DLM state. ELSF was mapped out by changing
the local magnetic moment magnitude of the fluctuating site
from 0 to 2.5 μB with an interval of 0.5 μB, whereas the
moments μNB of the remaining 31 sites were fixed (NB
stands for neighbors). In order to estimate the interaction
strength between the fluctuating site with its surrounding
medium and the impact on ELSF, we compare μNB = 0 μB

with μNB = 1.84 μB ≡ μFe
0, 1400 K. The former value for μNB

corresponds to the nonmagnetic state and the latter value
is the static DLM moment of fcc Fe at the Wigner-Seitz
radius wFe

1400 K = 2.6951 bohrs, which was previously derived
by means of the experimental thermal expansion coefficient of
PM fcc Fe in combination with the QNA equilibrium volume
[30]. On the other hand, we drew upon the primitive fcc unit
cell and compare the IF formalism combined with the OSA
[Eq. (8)] to the FMA [Eq. (9)]. In all cases, the results were
obtained at T = 1400 K and corresponding wFe

1400 K.
Figure 2 shows the results for ELSF for the above four cases.

First, we compare the results from the supercell calculations.
In response to an increase of μNB from 0 to 1.84 μB, small
differences in the LSF energies are obtained (the largest
difference occurs at 2.5 μB), and the derived mean magnetic
moment increases slightly from 2.07 to 2.08 μB. The stabilities
of the LSF energy and mean magnetic moment indicate that
the magnetic states of the fluctuating site and the surrounding
medium interact weakly. Deriving ELSF from the IF formalism
combined with the OSA for the static magnetic moment
μFe

0, 1400 K yields an energy curve virtually identical to the one
from the supercell representation with μNB = 1.84 μB; see
Fig. 2. The corresponding mean magnetic moment 2.09 μB

from the IF formalism is very close as well. Thus, assuming
the same magnitude of the local magnetic moments in the
effective medium, the embedded single fluctuating site and
the IF formalism give consistent results, indicating that the
two pictures align. It should be noted in Fig. 2 that the
supercell curve for μNB = 1.84 μB and the FMA curve are
not identical at μ = 1.84 μB since the reference energies at
μ = 0 μB differ.

The LSF energy through the FMA has a similar shape to the
three other functions, but possesses a slightly deeper energy
minimum and raises more rapidly beyond the minimum; see
Fig. 2. This leads to a somewhat smaller mean magnetic
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FIG. 2. On-site LSF energy ELSF of PM fcc Fe as a function
of the spin impurity magnetic moment μ evaluated with alternative
approaches: a single fluctuating spin embedded in a supercell with
two distinct magnetic moments on neighboring sites (i.e., μNB =
0 or 1.84 μB), the IF formalism combined with the OSA (static local
magnetic moment 1.84 μB), and the FMA. All calculations were
performed at the Wigner-Seitz radius w1400 K = 2.6951 bohrs.

moment 2.01 μB. All in all, the four mean magnetic moment
values are consistent and spread apart by less than 5%, which
provides support for the the consistency of these four ap-
proaches and the accuracy of the FMA in the case of PM fcc Fe.

2. PM fcc FeCrNi

In the following part, we investigate more closely how LSFs
in Fe15Cr15Ni depend on the magnetic state of the effective
medium adopting the FMA. All results were obtained for T =
1600 K at the Wigner-Seitz radius w1600 K = 2.6987 bohrs.

Figure 3 shows elaborately how the mean magnetic moment
of either Fe, Cr, or Ni atoms vary with the magnetic state of the
effective medium defined by the local magnetic moments of
the other two alloy components. Before focusing on the details,
it is worth noting an essential general trait of the coupling. The
functional dependencies msf(μ) are quadratic in μ unless μ be-
comes large, and a change in μ on the order of 1–2 μB induces
a relatively small change in msf on the order of 0.1 μB. This is
an obvious signature of the weak coupling in this system.

In more detail, for the mean magnetic moment of iron
mFe

sf shown in Fig. 3(a), small changes are observed when
the magnetic moments of Cr μCr and Ni μNi are varied.
Specifically, increasing μCr from 0 to 1.5 μB with μNi = 0 μB

fixed results in an almost stable mFe
sf at ∼2.05 μB with very

small positive slope versus μCr. There is little change in the
trend of mFe

sf except a shift by −0.02 μB when μNi is increased
from 0 to 1.0 μB. As indicated by the green arrow, this drop of
mFe

sf for μCr = 0 μB can also be obtained from the curve labeled
μNi (at μCr = 0 μB) (red solid bullets). On the other hand,
increasing μNi from 0 to 1.0 μB with μCr = 0 μB fixed slightly
declines mFe

sf by ∼0.02 μB, a trend that is insignificantly altered
by increasing μCr to 1.5 μB.

Similarly weak LSF interactions are found in the determi-
nation of mCr

sf and mNi
sf . As indicated by the red solid bullets

FIG. 3. Mean magnetic moment mI
sf of alloy component I in PM

Fe15Cr15Ni as a function of the local magnetic moments of the other
two alloy species in the effective medium, where I is Fe, Cr, and Ni for
panels (a), (b), and (c), respectively. While the magnetic moment of
one species in the medium is constrained to the value in parentheses,
the magnetic moment of the other one is varied. The shaded horizontal
and vertical bars indicate the self-consistent solution, the black arrows
indicate the static magnetic moment and the OSA mean magnetic
moment for Fe, whereas the green arrows are explained in the text.
All calculations were performed for 1600 K at the Wigner-Seitz radius
w1600 K = 2.6987 bohrs.
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TABLE I. Static DLM local magnetic moments μ0, 1600 K, self-
consistent mean magnetic moments m̄sf (uncertainty ±0.005 μB),
and OSA mean magnetic moments msf (relative error with respect to
the former in parentheses) for Fe, Cr, and Ni in Fe15Cr15Ni random
alloy evaluated at T = 1600 K and the Wigner-Seitz radius w1600 K =
2.6987 bohrs. All moments are in units of μB.

Site

Moment Fe Cr Ni

μ0, 1600 K 1.840 0.000 0.000
m̄sf 2.038 1.519 0.746
msf 2.045 (0.3%) 1.505 (−0.9%) 0.757 (1.5%)

in Fig. 3(b), mCr
sf exhibits little variation with increasing μNi

from 0 to 1.0 μB at μFe = 0 μB. This is also the case for mNi
sf

shown in Fig. 3(c); i.e., a small variation of mNi
sf is observed

by increasing μCr from 0 to 1.5 μB. As indicated by the green
arrows in Figs. 3(b) and 3(c), the mCr

sf and mNi
sf curves are nearly

rigidly shifted by 0.09 μB and − 0.03 μB, respectively, when
μFe in the medium increases from 0 to 2.0 μB. Furthermore,
as indicated by the negligible differences between the blue
solid square data and blue open square data in Figs. 3(b) and
3(c), the effect of μFe on mCr

sf and mNi
sf is rather insensitive to a

variation of μNi and μCr, respectively.
In order to evaluate the performance of the OSA, we

investigate the proximity of the OSA mean moments to the
self-consistent mean magnetic moments m̄sf . The data shown
in Fig. 3 allow determining the latter within an uncertainty
of ±0.005 μB, which is sufficient for the present purpose.
Self-consistency is achieved when the three mean magnetic
moments (ordinates) are consistent with the values of the
medium they fluctuate in (i.e., for each alloy component, the
moment of the second element along the abscissa combined
with the two curves for the third element). The self-consistent
graphical solution is highlighted in Figs. 3(a)–3(c) by the
shaded horizontal and vertical bars, where the width of the
horizontal bars (0.01 μB) indicates the error bar for m̄sf .

The self-consistent mean magnetic moments, the OSA
mean magnetic moments (msf), and the static DLM local mag-
netic moments (μ0, 1600 K), from which the OSA moments were
derived, are compared in Table I. The m̄sf differ significantly
from the static DLM local magnetic moments, whereas all
three OSA mean magnetic moments are surprisingly close
to their self-consistent value. The largest deviation (1.5%) is
observed for Ni. It should be noted that the somewhat larger
magnitude of the errors for Cr and Ni can be explained by their
lower chemical concentrations.

In summary, the calculations adopting the FMA showed
that the OSA yields accurate mean magnetic moments due to
a weak coupling between the LSFs and the effective medium
they fluctuate in. Thus, the use of the OSA is justified for the
following investigations for Fe15Cr15Ni.

B. Evolution of magnetism of PM austenitic stainless
steel with temperature

We present the detailed analysis of the LSF energies and
derived density distributions for PM Fe15Cr15Ni at 1600 K

FIG. 4. On-site LSF energies EI
LSF as a function of the local

magnetic moment μ for LSFs on Fe, Cr, or Ni sites (lower panel) and
the corresponding LSF density distributions at 1600 K (upper panel)
in PM Fe15Cr15Ni. EI

LSF was calculated for each alloy component
I adopting the FMA. All calculations were performed at the same
Wigner-Seitz radius w1600 K = 2.6987 bohrs. The solid lines in the
lower panel are the fitted polynomial Landau expansions to the data
(points) and were used to establish the continuous LSF distributions
as sketched by the transparent areas.

in Fig. 4. These results were obtained with the methodology
elaborated in Sec. II D and include the thermal lattice expan-
sion; i.e., all calculations were performed at the Wigner-Seitz
radius w1600 K = 2.6987 bohrs. The corresponding static local
magnetic moments are given in Table I.

As shown in Fig. 4, the LSF energy for Fe exhibits a shallow
minimum at the static local magnetic moment 1.84 μB,
whereas EI

LSF monotonically increases for Cr and Ni consistent
with their vanishing static local magnetic moments. The high
temperature induces fluctuations of the longitudinal magnetic
component resulting in LSF distributions with different widths
and centers of gravity. The density distributions for both
Cr and Ni are rather symmetric and peak at significantly
large local magnetic moment magnitudes, but the particularly
shallow LSF energy curve of Cr makes more intense magnetic
excitations possible and leads to a larger mean value. xFe has a
clear negative skew and concentrates around the spontaneous
magnetic moment μFe

0, 1600 K.
In order to characterize the density distributions at 1600 K

and for temperatures below, the mean magnetic moment
according to Eq. (12) is shown as a function of temperature
in Fig. 5 for each alloy component in PM Fe15Cr15Ni. The
means were evaluated for LSF distributions taking into account
the thermal expansion. For comparison, the static magnetic
moments μI

0 derived from the FS calculations are also shown,
where the temperature dependence merely arises from the
magneto-volume coupling.

As is evident from Fig. 5, LSFs are responsible for the
persisting finite mean local magnetic moments for Cr and
Ni in the entire considered temperature interval, as μCr

0 and
μNi

0 are identically zero throughout. Cr exhibits a larger mI
sf

due to energetically more preferable excitations rooted in the
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FIG. 5. Temperature dependence of the mean local magnetic
moment mI

sf and the static local magnetic moment μI
0 for Fe, Cr,

or Ni in PM Fe15Cr15Ni taking into account thermal expansion.

flatter energy curve (Fig. 4). With increasing the temperature
from 300 to 1600 K, the mean magnetic moments of Cr and
Ni gradually increase from 0.64 and 0.37 to 1.50 μB and
0.76 μB, respectively. As regards Fe, increasing local magnetic
moments are obtained in the FS calculations. Taking LSFs into
account, the magnetic moment of Fe is elevated by ∼0.2 μB

with little change in its temperature dependence. When the
temperature increases from 300 to 1600 K, mFe

sf gradually
increases from 1.47 to 2.04 μB.

C. Temperature-dependent elastic constants of PM
austenitic stainless steel

The temperature-dependent elastic properties of PM
Fe15Cr15Ni and the impact of LSFs are quantitatively
estimated in the following. Before presenting the results
below, we verified the flexibility of the mean magnetic
moment Eq. (12) to represent the LSF distributions in the
elastic-constant calculations for PM austenitic stainless steel,
which was previously done only for pure PM Fe [30]. To
this end, we compare the two elastic constants (c′ and c44)
calculated through the multicomponent DLM picture for the
LSF distributions with the results from the mean magnetic
moment approach. In the former case, the thermal LSFs of the
ternary alloy were modeled as a 30-component alloy [Eq. (11)]
by using the determined LSF density distributions of each
alloy species, whereas the magnetic state was modeled as
a 6-component alloy adopting the mean magnetic moments
derived from the same LSF density distributions [Eq. (13)].
All the calculations were carried out at the fixed Wigner-Seitz
radius of 2.6499 bohrs with varying the temperature from
300 to 1600 K. With respect to the results derived from the
LSF distributions, c′ and c44 of PM Fe15Cr15Ni through the
mean magnetic moment scheme are slightly overestimated and
underestimated by less than 2.9% and 1.4%, respectively, in the
whole temperature range. Thus, the mean magnetic moment
scheme yields accurate elastic constants for Fe15Cr15Ni and
was applied in the following elastic-property calculations.

We recall that the effect of temperature enters by means of
the magneto-volume coupling due to the thermal expansion

FIG. 6. Temperature dependence of the single-crystal elastic
constants c′ and c44 of PM Fe15Cr15Ni calculated with different
schemes. In addition to the LSF results, elastic constants adopting the
FS and c-FS schemes along with available experimental data from
(a) Ref. [56] and (b) Ref. [57] are presented for comparison. It should
be noted that the error bars indicated for two experimental points in
each case apply to all data from (b) Ref. [57].

and the evolution of the LSFs with temperature represented by
the mean magnetic moments shown in Fig. 5. The calculated
elastic constants c′ and c44 of PM Fe15Cr15Ni in consideration
of LSFs are shown in Fig. 6 along with the available
experimental data for comparison. We can see that the elastic
constants of PM austenitic stainless steel predicted by the
proposed formalism exhibit relatively high accuracy with
respect to the measurements. Particularly, at room temperature,
the predicted c′ and c44 are close to the measurements for
Fe15Cr15Ni and Fe18Cr12Ni from Ref. [56]. The average
deviations between theoretical and experimental results are
∼3.5 GPa (8.8%) and ∼12 GPa (8.2%) for c′ and c44,
respectively. Compared to the commercial austenitic stainless
steel 316L [57], similar thermal softenings of c′ and c44

are predicted. The temperature coefficients are presented
in Table II and are discussed below. The calculated c′ of
PM Fe15Cr15Ni is relatively close to that of 316L with a
small positive deviation of approximately 4 GPa, whereas the
calculated c44 is clearly larger compared to the 316L steel.
However, it should be noted that the c44 reported in Ref. [57]
lies approximately 10 GPa below the observed values from
Ref. [56].

For comparison, both elastic constants of PM Fe15Cr15Ni
were calculated employing two alternative schemes. In ad-
dition to the LSF results calculated from mI

sf , we performed
conventional FS and constrained FS (c-FS) calculations. In
the c-FS calculations, the magnetic moments of Fe, Cr, and
Ni were fixed to the static values μI

0 (shown in Fig. 5)
without allowing for relaxation of their magnitudes upon
lattice distortion employed to determine the particular elastic
constant. The difference between the FS and c-FS results
can help us to estimate the size of the error associated with
constraining the magnitudes of the mean magnetic moments
in the elastic-constant calculations. As shown in Fig. 6, c-FS
consistently yields larger elastic constants than FS, and the
deviations between FS and c-FS schemes are less than ∼6 GPa
for both c′ and c44. Using this information, one can define
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TABLE II. Temperature coefficients of the elastic constants for PM Fe15Cr15Ni. The temperature-coefficient intervals derived from the LSF
(CLSF) and c-FS (Cc-FS) calculations are given at the considered lower (300 K) and upper (1600 K) temperature limits. Available experimental
data from Refs. [56,57] and previous theoretical predictions from Ref. [27] are collected in Cref for comparison, where the reference temperature
is specified in parentheses. All temperature coefficients are given in units of 10−2 GPa K−1.

CLSF Cc-FS Cref

c′ −2.5 ∼ −0.7 −2.1 ∼ −1.2 −1.9 (300 K, Calc.) [27]
−2.1 (300 K, Expt.) [56]

a−2.2 ∼ −1.9 (323–873 K, Expt.) [57]

c44 −4.6 ∼ −2.2 −4.8 ∼ −3.0 −4.0 (300 K, Calc.) [27]
−4.9 (300 K, Expt.) [56]

a−5.8 ∼ −5.1 (323–873 K, Expt.) [57]

aThe temperature coefficients were derived for commercial austenitic stainless steel 316L.

a correction (of similar magnitude and negative sign) to the
LSF results in order to eliminate the shift of the elastic
constants towards higher values arising from the constrained
mean moments.

The effect of LSFs on both elastic constants can be directly
quantified from the difference between the c-FS and LSF
results. Taking spin fluctuations into account, the predicted
c′ lowers by ∼6 GPa in the whole temperature range, whereas
c44 declines by ∼5 GPa at the lowest considered temperature,
but the effect of LSFs gradually diminishes towards higher
temperatures. Overall, the consideration of LSFs yields a
better agreement with the available experiments. The different
contributions from LSFs to c′ and c44 can be understood by
different magnetoelastic couplings in Fe and Fe-based alloys
as discussed in Refs. [27,30].

To quantify the temperature dependencies of the elastic
constants in consideration of LSFs, we fitted parabolas to the
predicted results shown in Fig. 6. The best fits were obtained
with the following expressions:

c′(T ) = 6.82 × 10−6T 2 − 2.87 × 10−2T + 48.42, (14)

c44(T ) = 9.12 × 10−6T 2 − 5.17 × 10−2T + 160.30, (15)

where the elastic constants are in GPa and the temperature
in K.

The temperature coefficients C are then directly related to
the first derivative of the fitting functions. Table II shows the
temperature coefficients of c′ and c44 for PM Fe15Cr15Ni
calculated from the LSF (CLSF) and c-FS (Cc-FS) schemes.
Obviously, the derivatives are temperature dependent and thus
in Table II we give the intervals for the coefficients correspond-
ing to 300–1600 K. Available data from experiments and other
theoretical predictions along with the coefficients derived from
fitting the experimental temperature dependencies [56,57] are
also listed under Cref for comparison. Our computed temper-
ature coefficients CLSF and Cc-FS are in close agreement with
the measurements [56,57] and the previous calculation [27].
c44 shows a pronounced softening with temperature and the
magnitude of its temperature coefficient clearly exceeds that
of c′. Compared to the c-FS results, which solely account for
the magneto-volume coupling due to thermal lattice expansion,
the absolute values of the temperature coefficients for c44 and
c′ (T > 700 K) slightly reduce by considering LSFs. In other
words, the softening of both elastic constants with temperature
is mainly determined by lattice expansion and only in parts

balanced by the contribution due to LSFs, which is similar to
the result of Dong et al.’s study for PM Fe [30].

From the disclosed effects of LSFs on the elastic constants
(approximately 6 GPa) and their temperature coefficients (at
most 0.8 × 10−2 GPa K−1) mentioned above, one may reason
that the sizable local magnetic moments of Cr and Ni induced
by LSFs exert only a minor influence on the elastic properties
of PM Fe15Cr15Ni. In order to investigate this, additional
elastic-constant calculations were carried out adopting varying
local magnetic moments for Cr and Ni. Specifically, c′ and
c44 of PM Fe15Cr15Ni were determined as a function of
the local magnetic moment of Cr or Ni with the moment of
the other component constrained to zero. These calculations
were performed at 700 K for the Wigner-Seitz radius w700 K =
2.6499 bohrs, and the local magnetic moment of Fe was fixed
to the mean magnetic moment mFe

sf = 1.717 μB.
We can infer from the results in Fig. 7 that the elastic

properties of PM Fe15Cr15Ni are weakly dependent on the
local magnetic moment of Cr or Ni. Compared to the results
calculated with vanishing Ni magnetic moment, i.e., μNi =
0 μB, an increase to 1.0 μB is accompanied by a ∼2.2 GPa
decrease of c′ and a ∼1.4 GPa increase of c44. When μCr

is increased from 0 to 1.5 μB, c′ and c44 slightly increase by
∼0.5 and ∼2.7 GPa, respectively. That is, the sizable magnetic

FIG. 7. c′, c44, and the SED for PM Fe15Cr15Ni as a function of
the local magnetic moment μCr or μNi with the moment of the other
component constrained to zero. The local magnetic moment of Fe is
fixed to mFe

sf = 1.717 μB in all cases. The calculations were performed
at 700 K for the Wigner-Seitz radius w700 K = 2.6499 bohrs.
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moments of Cr and Ni induced by LSFs indeed exert only
a small influence on the elastic properties of the presently
investigated austenitic stainless steel.

Finally, we briefly discuss the connection between the
trends of the elastic constants and the structural energy
difference as previously introduced in several works [58,59].
In particular, the tetragonal shear elastic constant c′ has been
demonstrated to scale with the structural energy difference
(SED) between bcc and fcc structures, i.e., SED = Ebcc −
Efcc, for both nonmagnetic transition metals [58] and PM
Fe-based alloys [59]. Namely, elements or alloys for which
band-filling arguments dictate large SED have large c′ as well.
In the present study, the SED was calculated as a function of
the local magnetic moment of Cr or Ni for PM Fe15Cr15Ni. As
shown in Fig. 7, the dependencies of the SED on the magnetic
moments of Cr or Ni correlate closely with the evolution of c′.
That is, similar scaling arguments hold for the variation of the
local magnetic moment in PM austenitic stainless steels.

V. CONCLUSIONS

We have presented a general framework for DFT calcula-
tions of paramagnetic multicomponent alloy systems including
longitudinal spin fluctuations (LSFs) and investigated the
impact of these fluctuations on the elastic properties of
Fe15Cr15Ni austenitic stainless steel at finite temperature.
The underlying model for LSFs considers the on-site ener-
getics ELSF of an individual fluctuating moment in a static
paramagnetic medium and assumes a classical probability
distribution for the longitudinal magnetic component. The
complete information for the system may be obtained by
establishing ELSF for each distinct site, e.g., by constrained
spin-density functional calculations. To ensure that the mean
value of each fluctuating site is consistent with that of the
paramagnetic medium it fluctuates in, an iterative procedure is
in principle required. Drawing upon the single-site alloy theory
formalism for both chemical and magnetic randomness, we
have proposed and scrutinized two simplifications to obtain
ELSF: (1) the one shot from static equilibrium approach
(OSA) with the aim to overcome the cumbersome iterative
determination of fluctuating moments and medium, and (2) the
fluctuating medium approximation (FMA) proposed to extract
ELSF from the energetics of the paramagnetic medium rather
than an impurity fluctuation. LSF distributions in the present
calculations have been considered through the mean magnetic
moment approach scrutinized previously.

The presented methodology has been employed to shed
light on the strength of indirect local magnetic moment
interactions in paramagnetic fcc Fe and Fe15Cr15Ni by

means of the exact muffin-tin orbitals total-energy method in
combination with the coherent-potential approximation and
disordered local moment picture. The simulations for Fe
have yielded consistent ELSF and mean magnetic moments
for four alternative approaches (a single fluctuating spin
embedded in a supercell with two distinct magnetic moments
on neighboring sites, an impurity fluctuation through the OSA,
and the FMA). The calculations for Fe15Cr15Ni adopting
the FMA have revealed that the OSA yields mean magnetic
moments in close agreement to the self-consistent values.
This is an important finding as it demonstrates that the
demanding iterative determination of fluctuating moments and
medium can be avoided. Both sets of results signal a generally
weak coupling strength between the LSFs and the effective
medium defined by the rest of the alloy species in the present
fcc-Fe-based materials.

The influence of LSFs on the temperature dependence of the
single-crystal elastic constants c′ and c44 of PM Fe15Cr15Ni
have been quantified at finite temperature. Although sizable
local magnetic moments for Cr and Ni are thermally induced
by LSFs, these fluctuations result in comparatively small
effects on the temperature dependence of elastic properties of
PM austenitic stainless steel. Taking LSFs into consideration,
both c′ and c44 lower by ∼6 GPa in the whole studied
temperature range. The softening of both elastic constants
with temperature is, however, mainly determined by lattice
expansion (magneto-volume coupling) and only partially
balanced by the contribution due to LSFs.

We consider the present work an important step towards
the routine and efficient inclusion of LSFs in the DFT de-
scription of thermomechanical and thermodynamic properties
of complex materials. Future studies are in progress, which
focus on the role of LSFs in the finite-temperature energetics
of structural defects.
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