
PHYSICAL REVIEW B 96, 174414 (2017)

Unifying static and dynamic properties in three-dimensional quantum antiferromagnets
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Quantum Monte Carlo simulations offer an unbiased means to study the static and dynamic properties
of quantum critical systems, while quantum field theory provides direct analytical results. We study three-
dimensional, critical quantum antiferromagnets by performing a combined analysis using both quantum field
theory calculations and quantum Monte Carlo data. Explicitly, we analyze the order parameter (staggered
magnetization), Néel temperature, quasiparticle gaps, and the susceptibilities in the scalar and vector channels.
We connect the two approaches by deriving descriptions of the quantum Monte Carlo observables in terms of
the quasiparticle excitations of the field theory. The remarkable agreement not only unifies the description of the
static and dynamic properties of the system but also constitutes a thorough test of perturbative O(3) quantum
field theory and opens new avenues for the analytical guidance of detailed numerical studies.
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I. INTRODUCTION

Quantum field theories (QFTs) are of fundamental impor-
tance to both high-energy and statistical physics. In particular,
the generic O(N )-symmetric, d-dimensional field theory
finds a remarkably broad application. For N = 0, this theory
describes the self-avoiding random-walk problem, while for
N = 1, 2, and 3 it describes magnetic models with,
respectively, Ising, XY , and Heisenberg interactions. In
nuclear physics, the N = 4 version in d = 4 dimensions is of
particular importance because it provides an effective theory
for π mesons. Taking N → ∞, one obtains the spherical
model [1].

In the vicinity of a classical or a quantum phase transition
(QPT), any characteristic length scale of a physical system
diverges [2]. If the system is described by a QFT, its properties
then depend solely on the dimensionality, d, and the internal
symmetries, which for O(N ) theories means the number of
components, N . These provide a unique determination of the
universality class and hence of the critical exponents of the
field theory at the QPT. The robust predictions of QFT in this
regard have inspired a multitude of experimental and numerical
studies and in fact constitutes an entire subfield of physics.

Quite generally, quantum systems in high dimensions have
sufficiently many degrees of freedom that their behavior is
“free,” governed by the same set of exponents that can be
derived at the mean-field level. Systems in low dimensions are
constrained and their exponents are “anomalous,” depending
in detail on d, N , and the form of the interaction terms.
A situation of special importance occurs for systems at
the upper critical dimension, dc = 4, which in the quantum
case is often expressed as 3 + 1 [for three spatial and
one temporal dimension(s)]. Here the critical exponents are
predicted to take mean-field values, which for O(N ) field
theories are independent of N , augmented by multiplicative
logarithmic corrections to the observables. Because an explicit
N dependence does appear in the multiplicative logarithmic
corrections, these represent a fundamental test of universality

[1,3,4] and their existence has profound consequences in both
high-energy and statistical physics.

Although there exists a wealth of analytical results detailing
the theory of logarithmic corrections [1,5–10], discerning
them in experimental measurements is a hugely demanding
task requiring datasets spanning many orders of magnitude
in parameter space near a QPT. Similarly, their numerical
determination in lattice simulations is a delicate and highly
computationally intensive proposition. Numerical tests of
logarithmic corrections have mostly been restricted to the
N = 1 theory [3,4,11,12], and only recently has a movement
beyond N = 1 been driven by a confluence of refined numeri-
cal methods, increasing computer power, and rising interest
from experiments in condensed matter [13]. Experimental
studies of QPTs were motivated initially by problems in
superconductivity, where the order parameter has U(1) or
equivalently O(2) symmetry, and have since broadened to
include quantum magnetism, where the order parameter in the
Heisenberg case has O(3) symmetry [14], and condensates of
ultracold atoms, in which different symmetries can be realized.
In all cases, the system dimensionality is d = 1, 2, or 3.

Here we specialize to the case of quantum antiferromagnets
(QAFs). Critical magnetic systems in the d = 2 + 1, N = 3
universality class have been the object of extensive numerical
[15–19] and analytical [20–24] investigation for over two
decades and have undergone a recent revival due to their
close parallels in ultracold atomic experiments. However, our
present focus is the d = 3 + 1, N = 3 QPT, which on the
theoretical side encompasses all the physics of the upper
critical dimension and on the experimental side is realized
in the compound TlCuCl3. TlCuCl3 is a S = 1/2 QAF with a
dimerized geometry and three-dimensional (3D) interdimer
coupling, which can be driven by an applied hydrostatic
pressure through a QPT between a magnetically ordered AF
phase and a “quantum disordered” dimerized phase. Elastic
and inelastic neutron scattering experiments on TlCuCl3
[25–27] have characterized clearly the hallmarks of the
magnetic QPT in both the static and dynamic properties.
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FIG. 1. (a) Dimerized lattice of S = 1/2 spins in the 3D double-
cubic geometry. Sites of the red and blue cubic lattices are connected
pairwise by dimer bonds. J ′ and J are antiferromagnetic Heisenberg
interactions respectively on and between the dimer units. Their ratio,
g = J ′/J , controls the QPT from a Néel ordered phase (left) to a
quantum disordered dimer-singlet phase (right). The QCP occurs at
the critical ratio gc. (b) Schematic quantum critical phase diagram
for the Heisenberg model on the double-cubic lattice. The staggered
magnetization, ms (or ϕc), Néel temperature, TN , and triplon gap, �t ,
all vanish at the QCP. Not shown is the Higgs gap, �H , which is
proportional to ϕc and hence also vanishes at the QCP.

From the viewpoint of QFT, the three-dimensional (3D)
dimerized QAF provides an excellent test case for the study
of critical properties around the QPT at dc. The weakness
of QFTs is that, as effective low-energy, long-wavelength
theories, their connection to real systems is only through
phenomenological parameters, and thus it is essential to bench-
mark them against numerical and experimental realizations.
Indeed, the effective O(3), d = 3 + 1 QFT has already been
used to provide an accurate analytical description of the critical
properties observed in TlCuCl3 [13,28–32]. Numerically,
the method of choice for computing the properties of the
unfrustrated QAF is quantum Monte Carlo (QMC), with
which recent large-scale simulations of the 3D dimerized QAF
across the quantum critical regime have been performed for
S = 1/2 spins with Heisenberg interactions on the double-
cubic geometry depicted in Fig. 1(a). First, a systematic study
of the static properties by some of us [33] demonstrated
to high precision the validity of the theoretical predictions
concerning multiplicative logarithmic corrections for this
universality class. Next, two parallel studies [34,35] used QMC
and analytic continuation methods to access the dynamical
properties of the system. The aim of the present work is, within

a one-loop perturbative renormalization-group (RG) treatment
of the O(3), d = 3 + 1 QFT, to analyze and unify the static
and dynamic observables obtained in these QMC simulations.

In the vicinity of the magnetic quantum critical point
(QCP), the observables accounting for the relevant (critical)
degrees of freedom are associated with the broken or unbroken
O(3) symmetry. In the symmetric (quantum-disordered) phase
there are three degenerate, gapped spin excitations, which
because of their triplet character are known as triplons;
their energy gap, denoted by � in Fig. 1(b), closes as
the QCP is approached. In the symmetry-broken phase, a
preferred direction is established and is associated with an
order parameter, which for a QAF is the staggered magne-
tization, ms . In three spatial dimensions, magnetic order is
present up to a finite Néel temperature, TN , at which it is
destroyed by thermal fluctuations. An illustration of the phase
diagram and the behavior of these observables is presented in
Fig. 1(b).

Directional oscillations of the order parameter are acoustic
(gapless) and are are known as Goldstone modes. Their linear
dispersion about the gapless point ensures that the dynamical
critical exponent is z = 1, and hence that the time axis counts
as one additional system dimension. By contrast, the amplitude
oscillation of the order parameter is a gapped mode, often
referred to as the “Higgs mode” by analogy with the amplitude
modes in a superconductor and in electroweak field theory,
although in the QAF it lacks the gauge character of these two
systems. In the O(3) case, there are two Goldstone modes and
one Higgs, such that the three modes of the phases on either
side of the QPT continuously evolve into each other at the
QCP. Because of its finite gap, or mass, it is possible in the
O(3) QFT for the Higgs mode to decay spontaneously into
Goldstone modes, and therefore it has not only an energy but
also an intrinsic line width.

QFT and QMC both provide direct access to the static
quantities of the system, namely the staggered magnetization
and Néel temperature, and to the dynamic ones, which are
the characteristic energy gaps of the triplon and Higgs modes,
as well as the Higgs decay width. In QMC, the static and
dynamic quantities are treated on a quite unequal footing,
requiring very different techniques to extract. By contrast,
they appear in a completely symmetric way in a QFT and
thus are treated on an equal footing, being equivalently and
uniquely determined by a set of (five) phenomenological QFT
parameters. However, where a QFT is an effective low-energy
theory, the applicability of QMC is by no means limited to the
low-energy sector, nor by any of the other approximations
inherent to QFT, and in this sense QMC is a completely
unbiased method.

The static [33] and dynamic [34,35] observables computed
by QMC on both sides of the QCP for the double-cubic
QAF have each been shown to fit the universal scaling forms
expected from the O(3) QFT with d = 3 + 1 [1], including
their logarithmic corrections. Nevertheless, important ques-
tions remain for both QMC and QFT. Specifically, spacetime
symmetry is largely lost in QMC, and with it any underlying
connection between static and dynamic variables. While QFT
is in principle perfectly suited for retrieving this connection,
it has yet to be determined whether all of the observables of
the system can be described quantitatively by an effective low-
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energy QFT with a single set of phenomenological parameters.
An alternative statement of our primary goal is to derive this
single set of parameters.

Further, the Higgs linewidth is an important additional
observable but its determination lies at the limits of current
numerical capabilities. The vector and scalar response func-
tions used to compute the Higgs decay rate in the recent QMC
studies [34,35] are described naturally by QFT in terms of
the Green’s functions, or generalized response functions, of
the magnetic excitations (the Goldstone and Higgs modes).
Thus, one may perform a detailed analysis of the vector
and scalar response functions to obtain analytical guidance
for interpreting the existing QMC linewidth data and for
structuring future numerical studies.

This paper is organized as follows. In Sec. II, we present
the lattice Hamiltonian we study, summarize the QMC
methods we have applied and the nature of their output,
formulate the QFT description at the mean-field level, and
detail the process for computing one-loop RG corrections.
In Sec. III, we apply the analytical QFT formulas to fit
the static and dynamic QMC data of Refs. [33,34] and
extract the phenomenological QFT parameters. Section IV
provides a detailed analysis of the vector and scalar response
functions, with which we analyze the Higgs linewidth for
comparison with QMC [34]. For completeness, in Sec. V
we relate the optimal QFT parameters to the analogous
quantities derived from a microscopic description, for which
we use a bond-operator framework. In Sec. VI, we discuss
the context of our results and their value for future research
directions.

II. MODEL AND METHODS

The double-cubic geometry, shown in Fig. 1(a), is perhaps
the most representative and spatially symmetric 3D dimerized
lattice. This system consists of two interpenetrating simple
cubic lattices with the same antiferromagnetic interaction
strength, J , connected pairwise by another antiferromagnetic
interaction, J ′; there is no frustration in this situation. The
ground state for low coupling ratios, g = J ′/J , is a Néel-
ordered phase of finite staggered magnetization and for high
g it is dimer-singlet phase with no order, as illustrated in
Fig. 1(b). The critical coupling ratio for the QPT is denoted by
gc. The Hamiltonian is

H = J
∑

<i,j>

{
Si

l · Sj

l + Si
r · Sj

r

} + J ′ ∑
i

Si
l · Si

r , (1)

where the subscripts l and r denote the two spins on a single
dimer bond.

Supplemented by an appropriate treatment of the tempera-
ture, Eq. (1) contains all of the information about the static and
dynamic observables of the system, whose qualitative behavior
is depicted in Fig. 1(b). We summarize the two parallel
techniques we employ here to extract those observables,
namely direct numerical QMC simulation augmented by
stochastic analytic continuation (SAC) and the analysis of the
effective low-energy QFT derived from Eq. (1). Both QMC
and QFT techniques allow for the efficient inclusion of finite
temperatures in the quantum system, albeit in very different
ways that we outline below.

A. Quantum Monte Carlo

We have performed QMC simulations using the stochastic
series expansion (SSE) technique [36–38]. In this method,
spin configurations are constructed in the Sz basis, evolved
over an imaginary time τ , and sampled systematically. The
(squared) order parameter is evaluated straightforwardly from
the spatial and temporal average of Slz

i (τ ) − Srz
i (τ ) and dynam-

ical correlation functions are obtained from operator strings
connecting states Slz

i (τ1) − Srz
i (τ1) and Slz

j (τ2) − Srz
j (τ2). To

avoid the repetition of published material, we refer the
reader to Ref. [33]. To evaluate the static quantities, we
have performed simulations on cubic systems of 2L3 sites
for values of L up to and including 48, and at temperatures
down to 1/2L. By detailed finite-size scaling, we extrapolate
to the thermodynamic limit to obtain unbiased results with
well-controlled statistical errors. We comment that the errors
on ms in the ordered phase, which extrapolates to a finite
zero-temperature quantity for all g < gc, are significantly
smaller than the errors on TN , which are determined from
the vanishing of ms at finite temperatures.

In order to obtain the dynamical response of the system,
we first measure the imaginary-time structure factor and then
employ SAC [39–43] to obtain the real-frequency spectral
function. This process can be performed using both the spin
operator, Slz

i (τ ) − Srz
i (τ ), and the dimer operator, Bi(τ ) =

Sl
i(τ ) · Sr

i (τ ) − 〈Sl
i(τ ) · Sr

i (τ )〉. The spin spectral function is
referred to as the vector response function or the S = 1
channel and the dimer spectral function as the scalar response
function or S = 0 channel. Again we refer the reader to
previously published material [34]. Because the extraction of
dynamical quantities is considerably more computationally
intensive, our maximum L is limited to 24 and the errors in
extrapolated quantities are correspondingly larger but still well
characterized. In these simulations, the excitation gaps, �t for
the triplons at g > gc and �H for the Higgs mode at g < gc,
are obtained with significantly greater accuracy than the Higgs
linewidth, �H , obtained from either channel. We note that the
present study does not involve any new simulations, but that
we have reanalyzed some of our existing data [33,34] in the
light of the comparison with QFT.

At zero temperature and in the quantum critical regime,
the observables ms , �t , and �H have the generic form of
a power-law dependence on the separation from the QCP,
δg = (g − gc)/gc, multiplied by a logarithmic correction
[1,29,33–35]. We express them in the form

ms(g) = a1|g − gc|ν1 ln

[ |g − gc|
b1

]β1

, (2)

�t (g) = a2|g − gc|ν2 ln

[ |g − gc|
b2

]β2

, (3)

�H (g) = a3|g − gc|ν3 ln

[ |g − gc|
b3

]β3

. (4)

At finite temperatures, the Néel temperature can be expressed
in the same manner [29,33], as

TN (g) = a4|g − gc|ν4 ln

[ |g − gc|
b4

]β4

. (5)

174414-3



SCAMMELL, KHARKOV, QIN, MENG, NORMAND, AND SUSHKOV PHYSICAL REVIEW B 96, 174414 (2017)

The quantum critical behavior is then gathered in the exponents
νi for the power-law dependence and βi for the multiplicative
logarithmic correction. The exponents {νi,βi} have received
a great deal of attention and have been discussed by scaling
hypotheses and general QFT arguments for many different
universality classes. At the upper critical dimension, νi = 1/2;
i.e., all observables follow a predominantly mean-field form,
independent of N . For an O(N ) system at dc, the static observ-
ables have β1 = β4 = 3/(N + 8) at one-loop order and the
dynamic observables have β2 = β3 = −(N + 2)/2(N + 8)
[1]. Although these critical exponents have been verified to
high precision by the recent QMC analyses [33–35], the
relationships among the coefficients {ai,bi} remain unknown
and can be determined by appealing to QFT.

B. Quantum field theory: Mean-field treatment

To capture the ordered and disordered phases, the QPT
between them, and the low-energy magnetic degrees of
freedom, we adopt the effective description of the Hamiltonian
(1) provided by the Lagrangian field theory [2]

L = 1
2∂μ �ϕ ∂μ �ϕ − 1

2m2 �ϕ 2 − 1
4α[ �ϕ 2]2. (6)

Here �ϕ is a vector field describing the staggered magnetization,
m is a mass term for free field fluctuations, α is a stiffness
term governing the interactions of �ϕ fluctuations, and the
index μ enumerates one time and three space coordinates,
with ∂μ = (∂t ,c∇), where the constant of proportionality, c,
is the velocity of the Goldstone modes in the ordered phase.
For later quantitative purposes (Secs. II C and III A), we note
that m is defined to have units of energy (and α of an energy
cubed).

Qualitatively, the QPT is controlled in Eq. (6) through the
mass term, which we express at linear order as m2(δg) =
γ 2(g − gc)/gc, where γ 2 > 0 is another constant of propor-
tionality. For g > gc, m2 > 0 and the classical expectation
value of the field is ϕ2

c = 0, which describes the magnetically
disordered phase. The system has a global rotational sym-
metry and its excitations (the triplons) are gapped and triply
degenerate. For g < gc, m2 < 0 and the (staggered) field takes
a nonzero classical expectation value, ϕ2

c = |m2|/α, which
describes the ordered antiferromagnetic phase. Changing m2

from positive to negative causes a spontaneous breaking of
the O(3) spin symmetry and the excitations of the symmetry-
broken phase are two gapless, transverse excitations (spin
waves, the Goldstone modes) and one gapped, longitudinal
excitation (the amplitude or Higgs mode). It is straightforward
using the bare (unrenormalized) parameters to note that the
triplon gap (at g > gc) is �t (δg) = m(δg) and the Higgs gap
(at g < gc) is �H (δg) = √

2|m(δg)|, and hence to recover the
relation �H/�t = √

2.
This mean-field analysis accounts for neither quantum nor

thermal fluctuations. These we include in the present analysis
at one-loop order, meaning that we consider contributions from
the vertex and self-energy diagrams shown in Fig. 2. To provide
a self-contained treatment, in Sec. II C we demonstrate the
procedure for the RG resummation, by which we obtain the
one-loop quantum and thermal corrections that are central to
the analysis of Secs. III and IV.

FIG. 2. Diagrammatic expansions for (a) the four-point vertex,
�(4), and (b) the response function, χϕϕ , shown for the quantum
disordered phase (g > gc). Solid lines denote the free propagation,
governed by the first two terms of Eq. (6), of the field ϕ, which here
corresponds to triplon propagation. The vertex marked by the solid
circle represents the bare interaction, the third term of Eq. (6), whose
coefficient, α, is the perturbative parameter. The one-loop corrections
to �(4) and χϕϕ are equivalent to retaining next-to-leading-order terms
in α. For the expansion of �(4), this implies α2 terms, which are
contained in the three distinct loop diagrams (the Mandelstam s, t , and
u channels) in panel (a). For the expansion of χϕϕ , this is the order-α
loop diagram in panel (b), to which we refer as the self-energy, �.
The perturbative RG treatment of �(4) and χϕϕ (Sec. II C) determines
the running coupling constant (8) and the running mass (12) of the
QFT description.

C. Quantum field theory: One-loop corrections

The purpose of the present study is to obtain explicit
expressions for the order parameter, excitation gaps, and Néel
temperature, and hence all of their critical exponents, within
the one-loop RG treatment of the QFT. To derive an analytic
expression for the Néel temperature on the same footing as the
zero-temperature quantities, it is necessary also to extend the
analysis to finite temperatures. We take J = 1 as the unit of
energy and set the fundamental constants h̄ = 1 and kB = 1.
In the QFT, ωk = √

c2k2 + m2 is the energy of a magnetic
excitation at momentum (wave vector) k, which is
measured from the antiferromagnetic ordering wave
vector, Q = (π,π,π ). This matches the low-energy form of
gapped or gapless spin excitations in the starting Hamiltonian
(1), while details of the higher lying band excitations are not
relevant to QFT.

1. Renormalization and running coupling

We generalize the (3+1)-D QFT to an O(N ) theory and
demonstrate the renormalization of the coupling constant, α,
of the Lagrangian (6) by considering the quantum disordered
phase (g > gc). The requirements of energetic scale invariance
give rise to the RG treatment of the QFT. We illustrate the RG
process by evaluating the one-loop correction to the four-point
vertex shown in Fig. 2,

�(4) = 6α + 6(N + 8) α2
∫ �c

�

d4k

(2π )4c3

i

(k2 − m2)2

= 6α − 6(N + 8) α2

8π2c3
ln

[
�c

�

]
(7)
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if � � m. Here k2 = ω2 − c2k2 is the square of the four-
momentum, the factor of 1/c3 arises from rescaling the
integration measure, and m serves as the lower bound of the
infrared cutoff, �. The first term in Eq. (7) corresponds to
the first diagram in the perturbative series for �(4) represented
in Fig. 2(a) and the second to the three O(α2) diagrams. A
detailed discussion of the four-point vertex may be found in
Ref. [10]; the common factor of 6 is absorbed in constants of
proportionality and the universal factor of (N + 8) accounts for
the number of inequivalent diagrams contributing at this order.

The primary purpose of renormalization is to control the
ultraviolet divergence, which is expressed in Eq. (7) by �c; in a
lattice problem such as the double-cubic model, the ultraviolet
momentum cutoff is the inverse lattice spacing. The β function
of the RG flow is obtained from the Callan-Symanzik equation,

[
d

d ln(�c/�)
+ β(α)

d

dα

]
�(4) = 0,

where

β(α) = (N + 8)α2

8π2c3
,

dα

d ln(�0/�)
= − (N + 8)α2

8π2c3
,

α(�) ≡ α� = α0

1 + (N+8)
8π2c3 α0 ln(�0/�)

. (8)

This demonstrates explicitly how the RG procedure removes
the dependence on �c by introducing a normalization point,
�0, which is a parameter that can be fixed by optimizing the
fit to the starting model. The RG equations nevertheless retain
a dependence on the infrared energy scale, �, which is the
actual energy scale of the QFT and is set by the physical energy
scale of the system. Because this is either the mass (gap) of
the field ϕ or the ordering temperature, both of which may
vanish within the range of parameters covered by the QFT, �

is known as the “running” energy scale. In the renormalization
process, this running is absorbed into the coupling constant,
α → α�, giving it the dependence on � specified in Eq. (8);
i.e., the running coupling constant, α�, is defined in terms of
the constant α0 ≡ α(�0).

The running of α� as a logarithmic function of the infrared
energy scale is an important and generic property of this
type of QFT at the upper critical dimension, d = 3 + 1. As
will become clear below, the static and dynamic observables
derived from the QFT all depend explicitly on α�, and hence
also depend logarithmically on the energy scale �. It is
precisely this logarithmic dependence in the QFT that produces
the scaling forms of Eqs. (2)–(5), which were observed in the
QMC simulations, and we will demonstrate this explicitly in
Eqs. (22)–(25). A further essential property of Eq. (8) that
α� → 0 as � → 0, which is a statement that at the QCP,
where all energy scales vanish (hence � → 0), the running
coupling vanishes. Thus one expects a weak-coupling theory in
the vicinity of the QCP, a result important both for its inherent
physical content and because it justifies the use of a one-loop
perturbative treatment.

2. Self-energy in the disordered phase

We now consider the renormalization of the triplon gap
in the disordered phase. The first perturbative correction to
the gap energy is given by the one-loop self-energy shown in
Fig. 2(b), which we separate into its zero-point and thermal
contributions

�(�,T ) = (N + 2) α�

∑
k

1

ωk

[
1

2
+ 1

eωk/T − 1

]

= (N + 2) α�

∫
d3k

(2π )3

1

2ωk

+ (N + 2) α�

∫
d3k

(2π )3

1

ωk

1

(eωk/T − 1)
. (9)

Because corrections to the response function are multiplicative
with the four-point vertices, the relevant coupling constant is
the running coupling, α�. The notation is chosen to clarify
that the triplon gap and the self-energy are determined self-
consistently,

�2(δg,T ) = m2(δg) + �(�,T ). (10)

To analyze the renormalization of the bare mass, we consider
the case of zero temperature, where only the first term of
Eq. (9) contributes. The leading contributions to the response
function of Fig. 2(b), which are responsible for the logarithmic
corrections, are obtained by summing the Dyson series, and
hence the inverse response function can be expressed in the
closed form

χ−1
ϕϕ (p) = p2 − m2 − �(m,T = 0)

= p2 − m2 − (N + 2)α�

∫ �c

0

d3k

(2π )3

1

2
√

c2k2 + m2

= p2 − m2 + (N + 2)α�

8π2c3
m2 ln

(
�c

m

)
, (11)

where p is the external four-momentum and p2 = ω2 − p2.
We apply the Callan-Symanzik procedure to obtain the β

function for the mass, for which we again substitute � in
place of m as the lower energy cutoff in the logarithm (11).
From

0 =
[

d

d ln(�c/�)
+ βm(�)

d

dm2

]
χϕϕ(p = 0),

βm(�) = (N + 2)α�m2

8π2c3
,

dm2

d ln(�0/�)
= − (N + 2)α�m2

8π2c3
,

d ln(m2)

d ln(�0/�)
= −

(
N + 2

N + 8

) N+8
8π2c3 α0

1 + (N+8)
8π2c3 α0 ln(�0/�)

,

we obtain

m2
� = m2

0

(
α�

α0

) N+2
N+8

, (12)
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and thus the triplon gap at zero temperature is given by �t ≡
m�, which specifies its critical exponent [Eq. (3)] as

β2 = N + 2

2(N + 8)
. (13)

We defer the explicit rearrangement of Eq. (12) in the form of
Eq. (3) to Sec. II D.

The corrections at finite temperatures may be computed
from the second term of Eq. (9), the thermal contribution
to the one-loop self-energy. Without presenting an explicit
evaluation, we state that this does not change the form of the
running coupling (8) and hence does not change the form
of the running mass (12), but it does present a possible
change to the infrared cutoff, from � = �t (δg) to � =
Max{�t (δg,T ),T }. We collect the scale dependence contained
in Eq. (12) into a gap expression of the form

�2
t (δg,T ,�) = γ 2δg

[
α�

α0

] N+2
N+8

+ (N + 2) α�

×
∑

k

1

ωk

1

eωk/T − 1
. (14)

3. Self-energy in the ordered phase

We conclude our overview of one-loop corrections by
considering renormalization in the ordered phase, which is
induced by the spontaneous breaking of the O(N ) symmetry
when g < gc. Calculating perturbative corrections to the Higgs
gap, and hence obtaining the correct critical exponents, is a
delicate task in the ordered phase because the results must
preserve the Goldstone theorem at each order in α. The
Goldstone theorem is a direct result of the remaining O(N − 1)
symmetry and dictates that the Goldstone modes must remain
massless even after perturbative corrections. To outline the
appropriate procedure for computing corrections to the order
parameter and the Higgs gap, we consider the general case of
finite temperature, which is required to obtain TN .

We write the field in the Lagrangian (6) as �ϕ = (ϕc + σ,�π ),
where the minimum of the potential (expectation value of the
finite static field) is ϕc and the field oscillations about this
shifted minimum are the N − 1 Goldstone modes, �π , and the
gapped Higgs mode, σ . The effective potential, V , due to the
nonderivative terms in Eq. (6), when expanded about ϕc, are

V = − 1
2 |m2|(ϕc + σ,�π )2 + 1

4α[(ϕc + σ,�π )2]2. (15)

The two conditions

dV
d �ϕ

∣∣∣∣
ϕc

= 0 and
d2V
d �π2

∣∣∣∣
ϕc

= 0 (16)

must hold simultaneously to ensure that ϕc is indeed the
minimum of the potential and that, to any order in α,
the perturbations respect the O(N − 1) symmetry and so
preserve the Goldstone theorem. Because we have already
obtained the universal scale dependence of α�, and hence
of m�, there is no need to repeat the Callan-Symanzik RG

procedure, but it remains to treat the thermal contributions
more explicitly. By satisfying Eq. (16) at one-loop order, we
obtain

dV
d �ϕ

∣∣∣∣
ϕc

= α�ϕ2
c − ∣∣m2

�

∣∣ + (N − 1)α�

∑
k

1/(ck)

eck/T − 1

+ 3α�

∑
k

1/ωk

eωk/T − 1
= 0, (17)

where

ϕ2
c =

∣∣m2
�

∣∣
α�

− (N − 1)
∑

k

1/(ck)

eck/T − 1
− 3

∑
k

1/ωk

eωk/T − 1
.

(18)

Here we have separated the thermal contributions to the
self-energy into two summations, the first with a (massless)
Goldstone propagator in the loop and the second with a
Higgs propagator whose mass is contained in ω2

k = c2k2 +
�H (δg,T )2. This separation is discussed in greater detail in
Sec. IV, where it is represented explicitly in Fig. 4. The Higgs
gap is given at one-loop order by

�2
H = 3α�ϕ2

c − ∣∣m2
�

∣∣ + (N − 1)α�

∑
k

1/(ck)

eck/T − 1

+ 3α�

∑
k

1/ωk

eωk/T − 1

= 2|m�|2 − 2(N − 1)α�

∑
k

1/(ck)

eck/T − 1

− 6α�

∑
k

1/ωk

eωk/T − 1
(19)

= 2α�ϕ2
c + O(α2), (20)

where we have made use of Eq. (18) at both steps. It is evident
from Eq. (18), where the latter two terms have no explicit
dependence on a running quantity, that the critical exponent of
the order parameter is β1 = β2 − 1/2 = 3/(N + 8) and from
Eq. (20) that for the Higgs gap it is β3 = β2.

Finally, the Néel temperature can be calculated by ap-
proaching the QCP from the ordered phase and solving Eq. (19)
with �H (δg,TN ) = 0 to obtain

T 2
N (δg) = 12γ 2|δg|c3

(N + 2)α0

[
α0

α�

] 6
N+8

. (21)

Approaching from the disordered phase and solving Eq. (14)
with �t (δg,TN ) = 0 gives an identical result. It is clear that
the critical exponent β4 = β1.

D. QFT observables

For comparison with the QMC observables in Eqs. (2)–(5),
we gather the four quantities derived from the one-loop RG
calculations of Sec. II C in the form

ϕ2
c (δg) = γ 2|δg|

α0

[
α0

α�

] 6
N+8

= γ 2

α0gc

[
16π2c3

(N + 8)α0

] −6
N+8

|g − gc|
∣∣∣∣ln

( |g − gc|
b̃1

)∣∣∣∣
6

N+8

, (22)
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�2
t (δg) = γ 2|δg|

[
α�

α0

] N+2
N+8

= γ 2

gc

[
16π2c3

(N + 8)α0

] N+2
N+8

|g − gc|
∣∣∣∣ln

( |g − gc|
b̃2

)∣∣∣∣
− N+2

N+8

, (23)

�2
H (δg) = 2γ 2|δg|

[
α�

α0

] N+2
N+8

= 2
γ 2

gc

[
16π2c3

(N + 8)α0

] N+2
N+8

|g − gc|
∣∣∣∣ln

( |g − gc|
b̃3

)∣∣∣∣
− N+2

N+8

, (24)

TN (δg)2 = 12γ 2|δg|c3

(N + 2)α0

[
α0

αTN

] 6
N+8

= 12γ 2c3

(N + 2)α0gc

[
16π2c3

(N + 8)α0

] −6
N+8

|g − gc|
∣∣∣∣ln

( |g − gc|
b̃4

)∣∣∣∣
6

N+8

. (25)

Here gc and c are constants of the double-cubic system
and N = 3. The logarithmic dependence of the right-hand
side on |δg| enters due to the logarithmic-scale dependence
of the running coupling constant given in Eq. (8), from
which the quantities α� and αTN

are obtained by setting
� = max{�t,�H /

√
2,T } to the largest energy scale in the

system. Here we take the running scale to be �H/
√

2 = |�t |
for the three quantities ms(δg), �t (δg), and �H (δg).

Explicitly, the dependence of α� on the separation, δg, from
the QCP is given by

α�(δg) = 16π2c3

(N + 8)

∣∣∣∣ ln

( |g − gc|
b̃i

)∣∣∣∣
− N+2

N+8

, (26)

where

b̃1 = b̃2 = b̃3 = gc�
2
0

γ 2
e

16π2

(N+8)α0 ,

b̃4 = (N + 2)α0gc�
2
0

12c3γ 2
e

16π2

(N+8)α0 . (27)

Thus the three zero-temperature coefficients b̃1,2,3 are equal,
but different from b̃4 determined on the Néel-temperature
curve. We note that an exact derivation of coefficients ap-
pearing within the logarithms is beyond the scope of one-loop
RG and would require higher loop corrections.

It is important to stress that the running coupling is a
function of the energy-scale ratio �0/� that is determined
uniquely by Eq. (8). However, when parameterized in terms
of δg [Eq. (26)], it is necessary to include the constants b̃i to
account for the different possible dependences of �0/� on
|g − gc|. Equation (26) serves three purposes in the present
context. First, it allows for a simple conversion between
the running coupling constant of QFT and the logarithmic
scaling forms used widely in condensed matter [1]. Second, it
demonstrates how QFT specifies the closely related functional
forms of all four observables. Third, it shows explicitly how
the five fundamental parameters of the QFT give a unique and
quantitative determination of these observables; alternatively
stated, the parameters {ai,bi} and exponents {νi,βi} required to
fit the numerical data using Eqs. (2)–(5) are obtained directly.

III. STATIC AND DYNAMIC OBSERVABLES

A. Fitting parameters

Here we present the results obtained by fitting the QMC
data for the staggered magnetization, the triplon and Higgs
excitation gaps, and the Néel temperature [33,34] using the
QFT expressions of Eqs. (22)–(25) and extract the numerical

values of the remaining free parameters. The constants gc =
4.83704 and c = 2.365 for the dimerized QAF on the double-
cubic lattice are taken directly from QMC. Because the QFT
framework presents a means of connecting sets of observables
that are determined independently by QMC, we perform a
complete fit to all data sets simultaneously. However, to do
this in a reliable manner, the influence of different QMC points
and of different datasets should be weighted according to their
statistical reliability. Following the discussion in Sec. II A, we
weight the QMC datasets in the order ms > �t > �H > TN .
As explained in more detail in Sec. III B, we give equal weight
to all QMC data points in each set with |δg| � 0.2 and none
to those at higher |δg|. The results are shown in Fig. 3.

These fits contain two adjustable parameters, which can
be expressed as the mass proportionality factor γ and the
ratio α0/(8πc3). It is important to note that the choice of
the normalization point, �0, is arbitrary, and affects directly
the value of α0; because α0 ≡ α�0 , any other choice of the
normalization point, �′

0 
= �0, simply redefines α�′
0
≡ α′

0.
Here we make the explicit choice �0 = 0.915J , based on the
criterion �t (�0) = �0, which proves to be convenient for the
comparison with a bond-operator description (Sec. V). With
this choice, the adjustable parameters are found to be

α0/(8πc3) = 0.175, γ = 3.95J, (28)

and hence

b̃1,2,3 = 6.78, b̃4 = 12.43. (29)

Finally, an explicit relationship between the QFT order
parameter, ϕc, and ms determined directly from QMC lies
beyond the reach of QFT. We assume the relation

ϕc = ϒms, (30)

and obtain ϒ = 0.65 for the constant of proportionality. In
Sec. V, we justify the assumption of linearity and provide
an analytic expression for ϒ based on the bond-operator
technique.

Figures 3(a), 3(b), and 3(c) show respectively our fits to ms

(22), �t (23) and �H (24), and TN (25), which were made
using the parameters of Eqs. (28) and (29). The logarithmic
axes are chosen to highlight the multiplicative corrections
as departures from the straight-line form of the mean-field
exponents. Our major conclusion is the remarkable agreement
between QMC and QFT, which demonstrates clearly that
QFT, with a single set of parameters, is capable of providing
a quantitative description, and hence a unification, of static
and dynamic observables. This procedure also demonstrates
once again, to high precision, the validity of the theoretical
predictions of the O(3) QFT.
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FIG. 3. Static and dynamic observables shown as a function of the separation, |δg|, from the QCP. Discrete points are extrapolated QMC
data and lines are drawn from QFT fitting. (a) Staggered magnetization, ms , in the ordered phase (g < gc); QFT fit from Eq. (22) with
ms = ϒ−1ϕc. (b) Triplon gap, �t , in the disordered phase (g > gc) and Higgs gap, �H , in the ordered phase; QFT fits from Eqs. (23) and (24).
(c) Néel temperature, TN , in the ordered phase; QFT fit from Eq. (25). (d) TN compared to ms , with δg as the implicit parameter.

We comment that our fits in Fig. 3 are not identical to
those of Ref. [33]. In the QMC study, the fits were found
to be very insensitive to the values of the parameters b̃i ,
which were set to gc. In the QFT analysis, we gain both
deeper insight into these parameters and a means of fixing
them through constants to which the fits are more sensitive
[Eq. (27)]. The b̃i values we obtain account for the minor
quantitative differences between the fits, although we also
did not implement an error-bar weighting as in Ref. [33].
The QFT analysis also affords extra insight into the linearity
of TN and ms , which is shown in Fig. 3(d). First observed
numerically in Ref. [44], the almost exact linearity of the two
parameters was studied in detail in Ref. [33], where it was
found that the two have the same logarithmic corrections; a
scaling argument was formulated in support of this result,
which has recently been observed again in a similar context
[45]. From QFT it is clear immediately that ms (22) and TN

(25) have multiplicative logarithmic corrections with the same
exponent, illustrating again the unifying nature of the analysis.
However, the arguments of the logarithms are not identical,
due to the different cutoff energy scales, which are reflected in
the different constants b̃1 and b̃4, and this is why the QFT

fit in Fig. 3(d) is not in fact a completely straight line at
large |δg|.

B. Quantum critical regime

A key question in the theory of quantum critical systems
is to understand the width of the quantum critical regime
[Fig. 1(b)], by which is meant the region of the phase
diagram where the predicted quantum critical scaling forms
[Eqs. (22)–(25)] remain applicable. The standard arguments
of perturbative one-loop RG contain no such information and
cannot guarantee that the quantum critical regime is more than
an asymptotic concept reached only when |δg| → 0. Thus the
width of this regime was referred to in Ref. [33] as one of the
nonuniversal constants of the system and it may be regarded as
something of a surprise that quantum critical scaling was found
in the QMC data over the rather broad range |δg| � 0.2. This
estimate was obtained using the scaling forms of Eqs. (2) and
(5), which make no explicit reference to the running coupling
constant, α�. Hence, one may ask whether this aspect of the
QFT description provides additional insight into the width of
the quantum critical regime.
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Within the one-loop RG treatment, the QFT results remain
accurate while the running coupling remains small, i.e.,
α�/(8πc3) � 1. This criterion is independent of the numerical
analysis leading to |δg| � 0.2 and applies to all four of
the observables we consider, which again demonstrates the
unifying aspects of the QFT description. An explicit evaluation
of Eq. (26) shows that α�/(8πc3) = 1, the absolute upper
bound on the applicability of one-loop RG as applied here,
corresponds to |δg| ≈ 0.8. Although one may debate the
meaning of “small” relative to unity, it appears that the QMC
estimate |δg| � 0.2 lies comfortably within the regime of
validity of the QFT results.

One may, however, ask whether it is possible that quantum
critical scaling could be obeyed for |δg| � 1. The agreement
between the QFT form and the QMC data for both the
staggered magnetization and the triplon gap [Figs. 3(a)
and 3(b)] suggests that this may be the case. Here we comment
again that such a level of agreement was not obtained in the
initial analysis of the QMC data [33], where the constant
b1 was imposed rather than deduced. Although the QFT fits
shown in Fig. 3 were performed by using only the QMC data
in the range |δg| � 0.2 (Sec. III A), this level of agreement
demonstrates that the process we apply does not dictate the
answer we obtain. This said, here we believe that the excellent
agreement at the upper limit of the data range, |δg| = 0.8, is
probably accidental. There are no theoretical grounds on which
to expect quantum critical scaling over such a broad parameter
regime. The QFT analysis states that the description is not
reliable by the time α�/(8πc3) = 1. Further, the rather abrupt
disagreement between QFT and QMC for TN (|δg|), which sets
in beyond |δg| ≈ 0.1 [Fig. 3(c)], suggests that the agreement
is not global; this degree of mismatch cannot be ascribed to
the lower accuracy of the QMC TN data compared to that
of the ms data (Sec. II A). Thus QFT tends to reinforce the
QMC estimate that the width of the quantum critical regime is
around |δg| � 0.2. Nevertheless, to the extent that the region
beyond this limit is a crossover regime, detailed QMC and
QFT studies of the double-cubic lattice would be an excellent
means of probing crossover physics.

IV. RESULTS: HIGGS DECAY WIDTH

The stability of the amplitude mode is a topic of crucial
importance from the standard model to condensed matter and
ultracold atoms. The broken symmetry of the ordered state,
which establishes the massive Higgs mode, also ensures that
Goldstone modes are ubiquitous, and with them a Higgs decay
channel. Here we restrict our considerations to the linewidth
arising due to Higgs decay processes in the 3D dimerized QAF.
In the neutron scattering experiments on TlCuCl3 [26,27], the
amplitude mode was found, in contrast to the triplon modes,
to have an intrinsic line width, which varied with temperature
and proximity to the QCP.

Theoretically, the linewidth is extracted from a response
function. For a system represented by a vector field, one may
consider the response to vector or a scalar probe. In this sense,
neutron scattering is a vector probe and the vector response
function it provides is the dynamical spin-spin correlation
function. The very recent dynamical QMC studies [34,35]
applied advanced SAC methods to the imaginary-time Green’s

functions obtained from SSE QMC to provide numerical
data for both the vector and scalar response functions of
the double-cubic QAF. Perhaps self-evidently, this analysis
is restricted to the ordered phase, where spontaneous decay of
the gapped triplet mode is possible; in the disordered phase,
the spontaneous decay of triplons is forbidden by a lack of
available phase space [31].

To discuss the decay of the Higgs mode at the upper critical
dimension by QFT, we continue the analysis of the ordered
phase begun in Sec. II C 3. When the vector field is reexpressed
with an explicit separation of the amplitude component, i.e.,
�ϕ = (ϕc + σ,�π ), the α �ϕ4 interaction term in Eq. (15) takes the
form

VInt = 1
4α(σ 4 + �π4 + 2σ 2 �π2 + 4ϕcσ

3 + 4ϕcσ �π2). (31)

The final term, αϕcσ �π2 contains the leading-order coupling of
the Higgs and Goldstone modes, which enables the decay of the
former. We analyze this process by calculating the vector and
scalar response functions within the one-loop QFT framework
of Sec. II C, using the parameters derived in Sec. III.

A. Vector response function

The vector response function is defined as χϕϕ(p) =
〈�ϕ(p) �ϕ(0)〉. In terms of the Higgs and Goldstone components,

χϕϕ(p) = 〈σ (p)σ (0)〉 + (N − 1)〈π (p)π (0)〉
= χσσ (p) + (N − 1)χππ (p). (32)

In this form, the vector response is summed over all compo-
nents and corresponds to an unpolarized probe. In this sense,
Eq. (39) is equivalent to the quantity calculated in the QMC
simulations, which are performed on finite-size lattices with
unbroken spin-rotation symmetry. We note that there are no
cross components of the Higgs field and the order parameter,
i.e., χσϕc

= 0.
We compute the response function at first order in α. The

Goldstone contribution, χππ (p), has no one-loop corrections,
which is a direct consequence of the Goldstone theorem
demonstrated explicitly in Sec. II C, and hence

χππ (p) = 1

p2 + i0
, (33)

where i0 in the denominator denotes the limiting imaginary
part. The one-loop corrections to the Higgs component,
represented in Fig. 4, are finite, and their real part was treated
explicitly in Eq. (19). In all of the equations to follow, the Higgs
gap, �H , represents the one-loop renormalized value given in
Eq. (24) and it remains to evaluate the imaginary part of the
one-loop corrections to the Higgs part of the response function.
The first two loop diagrams on the right-hand side of Fig. 4
have purely real contributions, which are thus contained in the
renormalized �H , and only the two terms on the lower line give
imaginary contributions. These we label �H (p) and �G(p) to
denote polarization loops with, respectively, with two Higgs
and two Goldstone internal lines. Again their real parts have
already been included in Eq. (19) and their imaginary parts,

174414-9



SCAMMELL, KHARKOV, QIN, MENG, NORMAND, AND SUSHKOV PHYSICAL REVIEW B 96, 174414 (2017)

FIG. 4. Diagrammatic expansion for the response function χσσ .
The expansion is terminated at one-loop order, which corresponds to
first order in α. The double and dashed lines represent respectively the
free propagation of the Higgs (σ ) and Goldstone (�π) fields, obtained
by setting �ϕ = (ϕc + σ,�π) in Eq. (6) and retaining terms to quadratic
order in σ and �π . Diagrams in the top line correspond to the quartic
vertex terms, ασ 4 and ασ 2 �π 2 in (31), and are clearly first order in
α. Diagrams in the bottom line correspond to the cubic vertex terms
αϕcσ

3 and αϕcσ �π 2. Although each diagram is a product of two α

vertices, the fact that the coefficient α2ϕ2
c = 1

2 α�2
H , as shown in

Eq. (20) of Sec. II C, means that these terms remain first order in α.
The evaluation of these diagrams is given by Eq. (34).

�′′
H (p) and �′′

G(p), give the result

χσσ (p) = 1

p2 − �2
H − 1

2 iα��2
H [9�′′

H (p) + �′′
G(p)]

(34)

to this order. The polarization diagrams are given by standard
loop-integral calculations [20,30] as

�G(p) = N − 1

8π2c3

[
1 + ln

(
�2

0

p2

)
− iπθ (p2)

]
, (35)

�H (p) = 1

8π2c3

⎡
⎣1 + ln

(
�2

0

�2
H

)
(36)

− iπ

√
p2 − 4�2

H√
p2

θ
(
p2 − 4�2

H

)⎤⎦, (37)

where again p2 = ω2 − p2 and θ is the Heaviside θ function.
The spectral function for spin excitations is given by

the imaginary part of the response function. To analyze the
linewidth of the Higgs mode at its energy minimum, which
occurs at spatial momentum p = 0 (relative to the ordering
wave vector, Q), we show in Fig. 5 the quantity −χ ′′

σσ (ω,0).
The spectral function has a Lorentzian shape, whose full width
at half-maximum height gives a decay width

�v
H (|δg|) = α�

8πc3
�H (|δg|)

= α0�H (|δg|)
8πc3

[
1 + (N+8)

8π2c3 α0 ln(
√

2�0/�H )
] . (38)

The first equality corresponds exactly to the width deduced
from the Fermi golden rule in Ref. [28] and the second uses
the form of the running coupling constant deduced in Eq. (8);
we stress that �H contains further intrinsic dependence on
α�. Physically, the dominant peak in Fig. 5 corresponds to the
process where a Higgs mode decays spontaneously into two
Goldstone modes, given by �′′

G(ω,0), while process of decay

into two Higgs modes, �′′
H (ω,0), has a threshold at ω = 2�H

and does not to contribute to the line width, �v
H .

Clearly the Higgs decay width in the vector channel is
determined completely by the fundamental parameters of the
QFT. We use the best-fit parameters [(28) and (29)] for the
double-cubic model to predict the Higgs line width (38) as
a function of |δg| and show the results as the solid line in
Fig. 6. For the width-to-gap ratio, we find a function with ap-
proximately linear dependence in the range 0.04 < |δg| < 0.2,
but which falls sharply to zero once |δg| < 0.02. This latter
behavior is dictated by the logarithmic terms in the running
coupling constant and is in accord with the asymptotic freedom
of the QFT at the QCP.

In Fig. 6, we show also the width-to-gap data deduced from
the QMC simulations of Ref. [34]. It is apparent immediately
that the statistical errors in the numerical results are large on the
scale of the changes in this quantity. Because data obtained for
different system sizes, L, showed a spread significantly greater
than the spread resulting from the different |δg| values, the
data were analyzed by averaging over |δg| and extrapolating
the results to large L. The resulting estimate of a constant
ratio, �v

H/�H = 0.15 (dashed line in Fig. 6), is equivalent to
neglecting the logarithmic terms in Eq. (38) and is consistent
with experimental observations on TlCuCl3 [26,27]. The
quantitative analysis made possible by QFT demonstrates that
observing the dominant logarithmic corrections to the width-
to-gap ratio requires values of |δg| not currently accessible to
numerics or experiment.

However, beyond the inaccessible regime |δg| < 0.02, it
is possible to perform an alternative analysis of the QMC
data informed by the QFT results. The data points with
error bars in Fig. 6 are obtained by considering the six δg

values individually. Instead of extrapolating in L, which would
present very large errors, we retain only the two largest L

values (L = 14 and 16) and show their error-weighted average.
Despite the limitations of the numerical data, the matching
trends of QFT and QMC illustrated in Fig. 6 suggest that future
QMC studies with only factor-2 improvements in the error bars
in |δg| could indeed demonstrate the logarithmic form of the
Higgs decay width obtained from the vector response function.

B. Scalar response function

Turning now to the scalar response function, χϕ2ϕ2 (p) =
〈�ϕ2(p) �ϕ2(0)〉, we use again the substitution �ϕ = (ϕc + σ,�π ) to
effect a decomposition into Higgs and Goldstone components,

χϕ2ϕ2 (p) = 4ϕ2
c χσσ (p) + 4ϕc[χσπ2 (p) + χσσ 2 (p)]

+χσ 2σ 2 (p) + 2χσ 2π2 (p) + χπ2π2 (p). (39)

Assisted by our results for the vector response (Sec. IV A), we
consider only the Higgs contributions to χϕ2ϕ2 at order α; an
alternative derivation may be found in Refs. [20,30]. We note
first that

χπ2π2 (p) = 〈π2(p)π2(0)〉 = �G(p),

χσ 2σ 2 (p) = 〈σ 2(p)σ 2(0)〉 = �H (p),

are simply the Goldstone and Higgs polarization loops rep-
resented graphically on the bottom line of Fig. 4, which are
given respectively by Eqs. (35) and (36).
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FIG. 5. Imaginary part of the vector response function, given by
−χ ′′

σσ (ω), shown as a function of ω/�H at p = 0 and normalized to
its maximum value. The curves correspond to different values, |δg|,
of the coupling ratio relative to the QCP.

For a first-order expansion of the other terms in χϕ2ϕ2 , it
is necessary to consider the form of coupling terms between
the different fields allowed by the interaction, as specified in
Eq. (31). In the case of the second term in Eq. (39), we obtain

4ϕc(χσπ2 + χσσ 2 ) = 4ϕc(〈σπ2〉 + 〈σσ 2〉 + 〈σ [αϕcσπ2]π2〉
+ 〈σ [αϕcσσ 2]σ 2〉)

= 4αϕ2
c (〈σσ 〉〈π2π2〉 + 3〈σσ 〉〈σ 2σ 2〉)

= 4αϕ2
c χσσ (�G + 3�H ). (40)

Here the terms 〈σπ2〉 = 〈σσ 2〉 = 0 because there is no zeroth-
order coupling of these fields. For the two terms in the second
line, the insertions [αϕcσπ2] and [αϕcσσ 2] show the only
terms in Eq. (31) coupling the fields at first order in the
perturbative expansion. By the same reasoning,

χσ 2σ 2 = 〈σ 2σ 2〉 + (αϕc)2〈σ 2[σ 2σσσ 2]σ 2〉
= �H + 9(αϕc)2�Hχσσ�H , (41)

χπ2π2 = 〈π2π2〉 + (αϕc)2〈π2[π2σσπ2]π2〉
= �G + (αϕc)2�Gχσσ�G, (42)

2χσ 2π2 = 2(αϕc)2〈σ 2[σ 2σσπ2]π2〉
= 3(αϕc)2�Hχσσ�G, (43)

and hence by summing all contributions in Eq. (39) we obtain

χϕ2ϕ2 = 4αϕ2
c χσσ

[
1 + α(�G + 3�H )

+ 1
4α2

(
�2

G + 9�2
H + 6�G�H

)] + �G + �H .

(44)

It is clear from the perturbative procedure that the divergent
part of the scalar response function is linearly proportional to
the vector response, χσσ [Eq. (34) and Fig. 4], and hence will
share its pole structure. We note again that the terms �G and
�H appearing in Eq. (44) have both real and imaginary parts,
the first of which are responsible for the renormalization of the
quantities ϕc and �H , leading to the logarithmic corrections
discussed in Sec. II C. Again we absorb these real parts into ϕc

FIG. 6. Ratio �v
H /�H of the Higgs line width, as determined

from the vector response function, to its gap, shown as a function
of |δg|. The solid line is the QFT result obtained from Eq. (38).
The dashed line is the ratio extracted from QMC data by averaging
over |δg| and extrapolating in system size (L → ∞) [34]. The
points are obtained from the QMC data for systems of sizes L = 14
and 16 at the different values of |δg| for which simulations were
performed.

and �H , showing only the imaginary parts, �′′
G and �′′

H , which
do not influence the renormalization. The final expression for
the scalar response function is then

χϕ2ϕ2 (p) = 2�2
H

α�

{
1 + 1

2α�[�′′
G(p) + 3�′′

H (p)]
}2

p2 − �2
H − i

2α��2
H [�′′

G(p) + 9�′′
H (p)]

+�′′
G(p) + �′′

H (p), (45)

and the imaginary part of this quantity, which is the zone-center
dimer-dimer spectral function of the double-cubic model, is
shown as a function of the frequency ω at relative spatial wave
vector p = 0.

Several comments are in order concerning this result. First,
the pole structure of the scalar response function is indeed
identical to the vector response. The only difference to the
spectral function is a prefactor arising from the imaginary part
of the first term of Eq. (45). Second, there are nonresonant pole
contributions to χϕ2ϕ2 (ω), which are contained in the lower line
of Eq. (45). In the limit of large four-momentum, p2  �2

H ,
these terms are dominant and the background scattering they
contribute can be shown from Eqs. (35) and (36) to have the
asymptotic form

�′′
G(p) + �′′

H

(
p2  �2

H

) −→ 3

8π
. (46)

Setting p = (ω,0) in Eq. (46) accounts for the spectral weight
of the high-ω tail in Fig. 7.

Third, the phase of the prefactor and nonresonant pole
terms contribute to a destructive interference in the emission
channel of two low-energy Goldstone modes. This interference
suppresses the imaginary part of the scalar response, resulting
in the power-law form χϕ2ϕ2 (p) ∝ p4 as p → 0 in the present
(3+1)-D problem, which is a statement of the Adler theorem.
To show this explicitly, we reexpress the imaginary part of
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FIG. 7. Imaginary part of the scalar response function,
−χ ′′

ϕ2ϕ2 (ω), shown as a function of ω/�H at p = 0 and normalized
to its maximum value. The curves are evaluated from Eq. (45) and
correspond to different values, |δg|, of the coupling ratio relative to
the QCP. Dashed lines show the results obtained from Eq. (45) but
neglecting the two-Higgs contribution [Eq. (36)].

Eq. (45) in the form, valid for p2 < 4�2
H ,

χ ′′
ϕ2ϕ2 = −p4�′′

G(p)(
p2 − �2

H

)2 + [
1
2α��2

H�′′
G(p)

]2 . (47)

Here we have neglected the �H (p) term, which makes no
contribution to the imaginary part for p2 < 4�2

H . The line
shape of the scalar response function at p = 0, shown in Fig. 7,
is that of a Fano resonance, but with additional interference
contributions that result in an ω4 form of the infrared tail [20].
This asymmetric shape compares well with recent QMC results
[34,35]. However, our inclusion of the logarithmic corrections
prevents any collapse of either the scalar or the vector response
curves to a single “universal” form, as suggested by some of
the QMC data.

Finally, we comment on the Higgs decay width extracted
from the scalar response function of Eq. (45). While the
asymmetric, non-Lorenzian shape of the dimer-dimer spectral
function (Fig. 7) prevents us from obtaining a direct analytic
expression, to a good approximation the line width is still
the value determined directly from the imaginary part of the
denominator in Eq. (45), which is identical to the result for
the vector response (34). Thus we obtain (38) �s

H ≈ �v
H =

α��H/8πc3.
In Fig. 8, we plot the ratio �s

H/�H , which for QFT is
identical to the curve in Fig. 6, for comparison with the
results obtained from the QMC simulations of Ref. [34].
Following the same procedure of averaging over |δg| and
extrapolating to large L led to an anticipated constant ratio
�s

H/�H = 0.43, as shown by the dashed line. We show again
the alternative analysis of retaining the individual |δg| data
and considering only the largest accessible values of L. In this
case, the QFT and QMC results differ very significantly, not
only in magnitude but also in apparent functional form. Such
a discrepancy cannot be ascribed solely to statistical errors in
the QMC data and make clear that some systematic factors are
also at work; one may speculate for example that the error bars

FIG. 8. Ratio �s
H /�H of the Higgs line width, as determined from

the scalar response function, to its gap, shown as a function of |δg|.
The solid line is the QFT result obtained from Eqs. (45) and (38). The
dashed line is the ratio extracted from QMC data by averaging over
|δg| and extrapolating in system size (L → ∞) [34]. The points are
obtained from the QMC data for systems of sizes L = 14 and 16 at
the different values of |δg| for which simulations were performed.

on the imaginary-time QMC data have a particularly strong
broadening effect in the SAC procedure for the scalar response
function, in a way that does not affect the vector response.
Further QMC and analytic continuation studies, including with
simulated data obeying different error criteria, may be used to
test such a hypothesis for different spectral functions.

In summary, the extraction of the Higgs line width lies
at the limits of current QMC data. Their accuracy is not yet
sufficient to discern logarithmic corrections in this quantity
from the vector response function (Fig. 6), while only the
qualitative nature of the scalar response function is accessible
(Fig. 7). There has to date been no theoretical expectation
with which to compare these results, and thus the present
QFT analysis provides an essential quantitative benchmark. It
is certainly desirable for future numerical studies to focus
on the logarithmic dependence of the Higgs line width,
which ultimately is expected because the theory becomes
asymptotically free at the QCP.

V. MICROSCOPIC DERIVATION OF QFT PARAMETERS

The Lagrangian field theory (6) is a low-energy approxi-
mation to the full physics of the Hamiltonian (1). Although
we have shown that Eq. (6) delivers an excellent description
of the unbiased numerical data obtained by QMC simulations,
the parameters we have used in making this comparison are
fitted, and hence rank as phenomenological, i.e., an explicit
connection to the “fundamental” parameters, J and J ′ of
the underlying spin model (1) is lost. Here we employ a
microscopic description, the bond-operator framework, to
demonstrate the bridging of this gap between QFT and the
spin Hamiltonian. Specifically, we will derive expressions for
γ , c, and gc directly in terms of J and J ′ and provide an analytic
justification for the linear relationship between ϕc of QFT and
ms of the spin Hamiltonian. However, this analytic treatment
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does not provide results for the arbitrary normalization points
α0 and �0 of the QFT.

A. Triplon gap, velocity, and the QCP

The bond-operator representation [46] is an identity for
spin-1/2 operators that is particularly well adapted to the
analysis of dimerized quantum magnets [47]. When all the
spins of the system reside on one dominant bond, as in Eq. (1)
when g  gc, it is logical to express the spin degrees of
freedom as

Sl,r
i = 1

2 (±s
†
i ti,α ± t

†
i,αsi − iεα,β,γ t

†
i,β ti,γ ) (48)

where s
†
i is an operator creating the singlet state of the two

spins on bond i and t
†
i,α creates one of the three triplet states.

These singlet and triplet states have bosonic commutation
relations, but from the nature of the underlying spin degrees
of freedom are nevertheless mutually exclusive (i.e., they are
hard-core bosons [46]). When a system is strongly dimerized,
its ground state may be treated as a condensate of bond singlets
whose coherence is mediated by the hopping of (well gapped)
triplet excitations, and hence it is an excellent approximation to
replace the operators s

†
i and si by their condensate expectation

value, 〈s〉 = s̄.
By applying the transformation of Eq. (48) to the QAF on

the double-cubic lattice (1) and performing standard Fourier
and Bogoliubov transformations, we derive two mean-field
equations whose self-consistent solution provides a quanti-
tative description of the system for any coupling ratio, g.
Full details of this procedure are provided in the Appendix.
Although the two mean-field bond-operator parameters are in
principle a function of g, we obtain a singlet condensation
s̄ = 0.97 for all values of g in a broad region around the
QCP. This includes the ordered phase, considered in the bond-
operator formulation in Refs. [48] and [26], where the physical
understanding of the magnetic state is a small degree of
antiferromagnetic order superposed on strongly fluctuating
singlet correlations. For the present purposes, we focus on the
bond-operator expression for the gap to triplon excitations in
the quantum disordered phase, �BO = ( 1

4J ′ − μ)[1 − 3d]1/2

[Eq. (A9)], which we distinguish from �t [Eq. (23)] obtained
in QFT. Here μ is the other mean-field parameter, which
corresponds to a triplon chemical potential, while d is an
average quantity depending linearly on J and s̄2 as shown
in the Appendix.

Having found two expressions for the triplon gap, one of
which is given directly in terms of the fundamental parameters
J and J ′, we can estimate the coefficient γ in the QFT gap
[Eq. (23)]. We equate the two gaps at the normalization point,
�0, to obtain the approximation

γ 2 = �2
BO(�0)

|δg(�0)| . (49)

Having chosen the normalization point �0 = 0.915J on the
basis of the criterion �t (�0) = �0, we find that |δg(�0)| ≈
0.056 and thus obtain the estimate γ = 3.88J . This compares
rather well with the value γ = 3.95J obtained in Eq. (28),
demonstrating that the phenomenological parameters required
to fit the QMC data do indeed have a direct microscopic basis.

The QCP in the bond-operator approach can be found by
setting �BO = 0, which yields the value gc = 4.96, in good
agreement with the numerically exact result, gc = 4.83704
[33]. We also estimate the spin-wave velocity at the QCP from

c = lim
q→ Q

�q(gc)

|q − Q| = 2.28, (50)

where �q(g) is the bond-operator triplon spectrum derived
in the Appendix and Q, the antiferromagnetic point in the
Brillouin zone, is where the gap closes at gc. Again we
obtain good agreement with the QMC result, c = 2.365,
demonstrating the quantitative accuracy of the bond-operator
description.

B. Relationship of ms and ϕc

As noted in Sec. III A, QFT cannot specify the staggered
magnetization, ms , directly, providing instead the order param-
eter, ϕc. To derive the relation between ms and ϕc, we consider
the triplon bond operator, which we express as the vector �t , to
find the constant of proportionality, Z, in the equation

�ϕ = 1
2Z−1(�t † + �t) (51)

relating it to the vector field �ϕ. Working in real space,

ϕ(x) =
∑

k

1√
2�k

[βke
ikx + β

†
ke

−ikx], (52)

t(x) =
∑

k

[ukβk − v−kβ
†
−k]eikx, (53)

≈
∑

k

√
Ak

2�k
[βke

ikx + β
†
ke

−ikx], (54)

where βk are the Bogoliubov operators diagonalizing the
triplon Hamiltonian, uk and vk are the corresponding coef-
ficients, defined in Eq. (A4), and Ak (A5) are the diagonal
components of the triplon matrix. In the vicinity of the
QCP, the dominant contributions to the wave-vector sums are
from low-energy excitations with k of order Q, allowing the
approximation

Z = 1√
AQ

. (55)

The staggered magnetization of the QAF is

mz
s = 1

N
〈Slz − Srz〉, (56)

where Szl,zr = ∑N ′
i S

zl,zr
i with N ′ = N/2 the number of sites

on each sublattice, whence

mz
s = 1

2N

〈
N ′∑
i∈A

(s†i ti,z + t
†
i,zsi) +

N ′∑
i∈B

(s†i ti,z + t
†
i,zsi)

〉

= 1

2
s̄〈tz + t†z 〉 = s̄Z〈ϕz〉 (57)

and thus, because 〈ϕz〉 = ϕc,

ϒ = ϕc

mz
s

=
√

1

s̄2AQ
= 0.62. (58)
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Once again we obtain a good microscopic account of the value
ϒ = 0.65 deduced in Fig. 3(b) by applying the QFT fitting
framework to the QMC data.

VI. DISCUSSION

In summary, we have considered the critical properties
of 3D quantum antiferromagnets as an example of a phys-
ical system at the upper critical dimension. The ability to
obtain unbiased numerical data from QMC, of a precision
high enough to verify multiplicative logarithmic corrections
around the QCP in both static and dynamic observables,
is an achievement at the frontier of current computational
capabilities. By interpreting these data within the framework
of an effective QFT, we obtain (i) unified physical insight into
the connection between the static and dynamical properties of
critical systems, (ii) a thorough test of perturbative O(3) QFT,
and (iii) a valuable guide for the understanding of numerical
and experimental studies probing quantum critical phenomena
in a range of physical systems.

At a pragmatic level, the present work offers a means
for direct comparison between QMC and QFT. QMC data
are obtained directly from the spin (J–J ′) Hamiltonian (1),
whereas QFT results are derived in terms of the quasiparticles
of a low-energy effective Lagrangian for long-wavelength
fields (6). The excellent overall agreement demonstrates
clearly the ability of the low-energy theory to capture all of the
relevant physics in the vicinity of the QCP, and a quantitative
description of the observables of the system allows the number
of unknown parameters in the QFT to be reduced significantly.
Once these fitting parameters are obtained, the QFT becomes
predictive, which we demonstrate by calculating the vector
and scalar response functions with an accuracy not currently
achievable by QMC.

It is well known from general QFT that the dimensionality
and symmetry properties of a system determine the critical
indices of its observables uniquely in the regime around the
QCP. Previous numerical and experimental tests of universality
have therefore focused on individual critical indices. In
the present QFT analysis, we go beyond the asymptotic
scaling behavior to provide a quantitative description of the
observables and thus to investigate how they are connected.
The crucial physical insight underlying unification of the
thermodynamic and dynamic quantities is that the logarithmic
corrections to their scaling specified in Eqs. (2)–(5) may all
be understood in terms of the running coupling constant (8)
between the quasiparticles of the QFT.

Here we have focused primarily on the zero-temperature
behavior of the system, as contained in the order parameter,
gaps, and decay widths. Finite temperatures introduce thermal
as well as quantum fluctuations and produce many exotic
phenomena not present at zero temperature [2,49–51]. In par-
ticular, thermal fluctuations are responsible for the crossover
into regions of the phase diagram marked as “quantum critical”
in Fig. 1(a), where they interfere qualitatively with quantum
effects, and are dominant in the region marked as “classical
critical.” In these regimes, the observables of the system
show different types of characteristic scaling behavior, to the
point where the results of classical statistical mechanics are
recovered. In this context, it is crucial to remark that the finite-

temperature behavior of the physical observables in QFT is
completely determined by the results we present here (Sec. II C
and Ref. [29]); i.e., an analysis of finite-temperature properties
would require no new fitting parameters. Because QMC is
actually easier at finite temperatures, where no extrapolation is
required in the corresponding system dimension, a quantitative
investigation of static and dynamical properties across the
full phase diagram by combining QFT and QMC is definitely
feasible.

Qualitatively, finite temperatures also generate additional
scattering channels for quasiparticles, which are sometimes
modeled as a heat bath. Among the physical implications of
heat-bath scattering is the possibility that triplons in the disor-
dered phase, which have infinite lifetimes at zero temperature,
can acquire a substantial decay width. This situation has been
investigated experimentally in TlCuCl3 [27] and discussed
analytically in Refs. [31,32] for the quantum antiferromagnet
and Ref. [52] for the Bose gas. A corresponding numerical
(QMC) study of triplon decay at finite temperatures has yet to
be performed.

A key additional direction for the extension of the present
analysis is to include the effects of an applied magnetic field,
which provides an explicit breaking of the spin symmetry.
Early theoretical [53] and experimental [54] studies of the
quantum antiferromagnet in the presence of a magnetic field
investigated the phenomenology of magnon Bose-Einstein
condensation, and suitably modified QFT descriptions have
been used to discuss the associated critical scaling behavior
[49,55,56]. Early QMC studies were also made of the magnon
Bose-Einstein condensation scenario in 3D [57–59], while
some exotic theoretical predictions for quasi-1D systems [60]
remain to be tested numerically. Once again, a QFT description
of the critical observables can be obtained from the present
work without the need for additional fitting parameters. Indeed,
in a recent study of the 3D case, some of us [56] predicted
that two new critical indices emerge in the presence of an
applied magnetic field and that logarithmic corrections are
an important feature of the scaling behavior. To date there
exists no related QMC analysis of a precision suitable for a
comparative test.

Finally, we anticipate that our results and techniques will
serve as a helpful guide for future experimental and numerical
studies of quantum critical phenomena. The reality of the
situation is that research of the frontier of what is currently
possible is always struggling for adequate data, by which is
meant both enough data and sufficiently accurate data. The
consequences of our results for numerical analysis include
improved interpretation and understanding of critical regimes,
the ability to relate datasets to reduce statistical errors, and
qualitative guidance in previously unexplored but feasible
directions. The additional consequences for experiment in-
clude the fact that all measurements in condensed matter and
ultracold atomic condensates are made at finite temperature,
and thus a systematic means of understanding the quantum
limit is indispensible.
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APPENDIX: BOND-OPERATOR REPRESENTATION

Here we provide details of the bond-operator technique
and its application to the spin Hamiltonian of the 3D dimerized
QAF (1). As stated in Sec. V, the bond-operator representation
of spins Sl,r

i [Eq. (48)] is particularly appropriate for a dimer-
ized QAF. The most important point about the identity (48) is
that it must satisfy the SU(2) spin algebra,[

Sm
α ,Sm

β

] = iεαβγ Sm
γ ,

[
Sl

α,Sr
β

] = 0,

which in fact sets two conditions on the bond operators s
†
i and

t
†
i,α . One is that they must have bosonic commutation relations

and the other is that the space of physical states on any dimer
bond constrains their total number to satisfy s

†
i si + t

†
i,αti,α = 1.

However, satisfying this constraint on every dimer bond, i,
leads to a problem that cannot be treated analytically and
is extremely demanding numerically, but it has been shown
[26,27,48] for the 3D QAF that satisfying the constraint only
on average leads to quantitatively accurate results. This we
effect using a Lagrange multiplier, μ, that is the same on all
sites [46].

By applying the transformation of Eq. (48), the dimer-bond
part of Hamiltonian (1) becomes

H0 = J ′ ∑
i

−3

4
s
†
i si + 1

4 t
†
i,αti,α − μ(s†i si + t

†
i,αti,α − 1).

(A1)

The interdimer part contributes terms of higher order in the
operators si and ti,α and, by retaining only those at quadratic
order in ti,α , i.e., by neglecting triplon interactions, we obtain

H2 = 1

2
J

∑
<i,j>

s
†
i s

†
j ti,αtj,α + s

†
i sj ti,αt

†
j,α + H.c. (A2)

This we treat in the approximation of complete Bose con-
densation of singlets; i.e., we neglect singlet fluctuations and
replace s

†
i and si by the constant s̄.

The quadratic Hamiltonian H0 + H2 is expressed in recip-
rocal space using t

†
i,α = 1√

N ′
∑

k tk,αe−ik·Ri , where N ′ = N/2
is the number of dimers, and diagonalized by a Bogoliubov
transformations. The dynamical terms in the resulting Hamil-
tonian are

H̄2 =
∑

k

Akt
†
k,αtk,α + 1

2
Bk[t†k,αt

†
−k,α + H.c.]

=
∑

k

�kβ
†
k,αβk,α, (A3)

where

t
†
k,α = ukβ

†
k,α − vkβ−k,α, �k =

√
A2

k − B2
k,

u2
k,v

2
k = ±1

2
+ Ak

2�k
, ukvk = Bk

2�k
. (A4)

The coefficients Ak and Bk depend on the lattice geometry and
for the double-cubic model are

Ak = 1
4J ′ − μ + J s̄2 [cos kx + cos ky + cos kz],

Bk = J s̄2 [cos kx + cos ky + cos kz]. (A5)

To obtain an expression for the triplon spectrum and hence
the gap, it is necessary to deduce the mean-field parameters μ

and s̄, which are obtained from the saddle-point conditions〈
∂HMF

∂μ

〉
= 0,

〈
∂HMF

∂s̄

〉
= 0, (A6)

in which HMF = H̄0 + H̄2 denotes both the constant and
dynamical parts of the quadratic mean-field Hamiltonian. It
is convenient [47] to introduce the dimensionless parameter

d = 2J s̄2

1
4J ′ − μ

, (A7)

in terms of which the self-consistent mean-field equations are

s̄2 = 5

2
− 3

2N ′
∑

k

1 + dγk√
1 + 2dγk

,

(A8)

μ = −3J ′

4
+ 3J

N ′
∑

k

γk√
1 + 2dγk

,

with

d = J

J ′

(
5 − 3

N ′
∑

k

1√
1 + 2dγk

)
,

γk = 1

2
[cos kx + cos ky + cos kz].

The triplon spectrum may now be expressed as

�k =
(

1

4
J ′ − μ

)
[1 + 2dγk]1/2

and the gap as

�BO =
(

1

4
J ′ − μ

)
[1 − 3d]1/2. (A9)

This expression for �BO was used to evaluate γ in Eq. (49)
and to derive the bond-operator value of the QCP, J ′/J =
gc = 4.96; at values of g around gc, we obtain the result s̄ =
0.97, which was used in Eq. (58) to evaluate ϒ .
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