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Realization of the axial next-nearest-neighbor Ising model in U3Al2Ge3

David M. Fobes,1 Shi-Zeng Lin,2 Nirmal J. Ghimire,1,3 Eric D. Bauer,1 Joe D. Thompson,1 Markus Bleuel,4,5

Lisa M. DeBeer-Schmitt,6 and Marc Janoschek1,*

1MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Argonne National Laboratory, Lemont, Illinois 60439, USA
4NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA

5Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA
6CEMD, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 30 May 2017; revised manuscript received 14 September 2017; published 9 November 2017)

Here we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U3Al2Ge3.
Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at TN = 63 K to
be second order and a first-order phase transition to ferromagnetic order at Tc = 48 K. Within the sinusoidally
modulated magnetic phase (Tc < T < TN), we uncover a dramatic change, by a factor of 3, in the ordering wave
vector as a function of temperature. These observations all indicate that U3Al2Ge3 is a close realization of the three-
dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to
incommensurate phase transitions in frustrated magnets.
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I. INTRODUCTION

The axial next-nearest-neighbor Ising (ANNNI) model
is a historical framework which has successfully described
frustrated magnetism in a variety of materials, in particular,
commensurate-to-incommensurate phase transitions [1,2].
The three-dimensional ANNNI model, describing the
competing nearest-neighbor (NN) interaction J1 and the
next-nearest-neighbor (NNN) interaction J2 between Ising
moments in one direction and simple ferromagnetic (FM)
interactions between Ising moments in the same plane, was
first proposed by Elliott in 1961 [3] and has been studied
extensively ever since. Subsequently, the ANNNI model was
generalized to lower dimensions and to XY or Heisenberg
spins [2,4,5]. This model and its variants have been shown
to be relevant to a broad class of systems, including alloys,
magnets, ferroelectrics, and adsorbates [1,2].

For the case of magnetic materials, compounds contain-
ing rare-earth or actinide ions with 4f and 5f electrons,
respectively, are expected to feature ANNNI physics due
to the presence of Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions, which can be approximated in many cases
by the competing NN and NNN exchange integrals [6].
The f -electron materials, where the Fermi-surface-topology-
determined RKKY interaction also competes with crystal-field
effects and spin-orbit coupling, contain rich phase diagrams
with a multitude of magnetically ordered states. For example,
in the presence of a quasinested Fermi surface, the RKKY
interaction becomes maximal at a nonzero wave vector Q,
resulting in a magnetic spiral ground state, with a period 2π/Q,
typically incommensurate with the underlying chemical lattice
[7–9]. With the addition of uniaxial magnetic anisotropy, the
magnetic spiral can become distorted, resulting in higher-
harmonic wave vectors and potential quasicontinuous changes
to the ordering wave vector Q as a function of temperature,
arising due to the competition between RKKY interactions

*Corresponding author: mjanoschek@lanl.gov

and thermal fluctuations [10]. Although the ANNNI model
provides a theoretical framework to describe this succession
of long-period incommensurate phases as a function of tem-
perature, it was found that close fulfillment of its predictions
for the temperature dependence of Q is rare. Maybe the
best-known realization of the ANNNI model in f -electron
materials is the semimetal CeSb [11–13], with the caveat
that additional farther-neighbor interactions were found to be
important [12,13].

In this work, we demonstrate that the tetragonal f -electron
compound U3Al2Ge3 is a close realization of the three-
dimensional ANNNI model. Hallmarks of the ANNNI model
include (i) a magnetic phase which features a temperature-
dependent magnetic ordering wave vector, owing to a compe-
tition between the NN and NNN interactions and magnetic
fluctuations, in the vicinity of the phase transition to the
paramagnetic (PM) phase, between which lies a second-order
phase transition, and (ii) a FM phase at low temperature that
is entered via a first-order transition, at which the magnetic
ordering wave vector features a logarithmic singularity [2].
A previous neutron powder diffraction study suggests that
U3Al2Ge3 features several of these ingredients, including a
low-temperature FM phase below Tc = 48 K, an incommen-
surately sinusoidally modulated magnetic state (Tc < T < TN,
with TN = 63 K) with ordering wave vector Q = [0,0,δ], and
a second-order transition between said phase and a PM phase,
making this material a potential candidate for ANNNI real-
ization [14]. However, to confirm if U3Al2Ge3 is indeed well
characterized by the ANNNI model several key aspects need
to be clarified. (a) Although the incommensurate magnetic
phase was reported to be sinusoidally modulated, symmetry,
in principle, also allows for spiral magnetic order, which would
not agree with the ANNNI model. Notably, powder diffraction
can frequently not unambiguously distinguish between a
sinusoidal and spiral magnetic order. (b) Prior to our study, no
temperature dependence of the magnetic ordering wave vector
has been reported. (c) The nature of the transition between the
FM and incommensurate phases remains unknown.

2469-9950/2017/96(17)/174413(7) 174413-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.174413


DAVID M. FOBES et al. PHYSICAL REVIEW B 96, 174413 (2017)

Here, to address these issues, we carry out a detailed
neutron scattering study on a single crystal of U3Al2Ge3

in combination with theoretical modeling based on the
ANNNI model. Using small-angle neutron scattering (SANS),
a powerful technique for accurately studying long-wavelength
magnetic structures, we confirm that Q = [0,0,δ] indeed
shows a pronounced temperature dependence and determine
the nature of the magnetic phase transitions. Our results clearly
reveal a second-order phase transition from paramagnetic to
sinusoidally modulated Ising moments at TN = 63 K, followed
by a first-order phase transition at Tc = 48 K to a FM state.
Through theoretical modeling we are able to ascribe these
experimental observations to the ANNNI framework; both the
measured and calculated phase diagrams can be understood
in terms of the three-dimensional ANNNI lattice model, with
frustrated interactions in the direction of modulation, given by
the ratio J2/J1 = −0.2815, where J1 is the nearest-neighbor
ferromagnetic interaction, J2 is the next-nearest-neighbor
antiferromagnetic interaction [2], and the ratio J2/J1 is
given by the Q vector at TN, i.e., cos(δc/2π ) = −J1/4J2,
in which c is the c-axis lattice parameter. Furthermore,
at the incommensurate-to-FM phase transition we confirm
the presence of a logarithmic singularity in the temperature
dependence of Q, an essential feature of the three-dimensional
ANNNI model, as stated above. Therefore, we find that
U3Al2Ge3 is a close realization of the ANNNI model, offering
an important playground for investigating its rich physics.

This paper is organized in the following way: In Sec. II we
describe the theoretical model that motivated our experimental
study. In Secs. III and IV we report the sample synthesis and
characterization and our SANS results, respectively. Finally,
in Sec. V we discuss and summarize our combined theoretical
and experimental results.

II. MODEL

To motivate this experimental study we develop the fol-
lowing model accounting for the experimentally observed
magnetic phase diagram [14], making several experimental
predictions. The neutron powder diffraction results [14]
determined that in U3Al2Ge3 the magnetic moments lying on
the uranium 8c and 2a1 symmetry sites (but not the 2a2 sites),
with magnetic moments μU = 2.37μB and μU = 2.12μB ,
respectively, align parallel to the a axis due to strong easy-axis
anisotropy, modulate along the c axis, and order ferromagneti-
cally in the ab plane, allowing us to reduce the problem to one
dimension. Due to the small ordering wave vector, we expand
the magnetic free energy in terms of the magnetization density
M and ordering wave vector Q in the continuum limit,

F(M) = α

2
M2 + β

4
M4 + δ

6
M6 − μ

2
(∂zM)2

+ η

2

(
∂2
z M

)2 + γ

2
M2(∂zM)2 − A2

2
M2

x , (1)

where A2 is the easy-axis anisotropy and μ, η, and γ are
associated with the stiffness of the magnetic modulation.
The competing interactions J1 and J2 along the c axis in
the ANNNI lattice model are captured by the μ > 0 and
η > 0 terms. Approaching the Néel temperature TN from
the paramagnetic phase, we can neglect the quartic and

higher-order terms of M. To take advantage of the anisotropy,
the system stabilizes a state with sinusoidal moment
modulation, Mx ∝ sin(Qr) and My = Mz = 0. We obtain the
optimal Q by minimizing F with respect to Q, which yields
Qo = √

μ/2η at TN. Here TN is determined by the condition
that the coefficient of the quadratic term in Mx vanishes,

α − A2 − μ2

4η
= 0, (2)

which is enhanced due to the presence of the easy-axis
anisotropy A2. To fulfill the condition for second-order phase
transition between incommensurate and paramagnetic phases
at TN, we assume β > 0.

Lowering the temperature results in an increase in the mag-
netic moment. Higher-order terms and easy-axis anisotropy
both tend to distort the simple sinusoidal modulation. The wave
is squared up as moments are forced to align along the easy
axis, creating harmonics in the wave vectors. To take the
advantage of the anisotropy, the moments lie in the easy-axis
direction. The magnetic state can be described by an elliptic
function,

Mx = 	 sn(z/ξ,k), My = Mz = 0, (3)

where sn(z) is the Jacobi elliptic function. The meanings of
ξ , k, and 	 become clear in the limit k → 0, sn(z,k = 0) =
sin(z): k describes the deviation from a perfect sinusoidal
modulation, thus reflecting the importance of harmonics for
the magnetic modulation; ξ is a length scale appearing in the
period of the magnetic modulation, and 	 is the amplitude
of the modulation. When the coefficients in Eq. (1) satisfy
a certain relation (shown below), the magnetic state can be
found exactly using Eq. (3). For generic parameters, we can
use variational calculations using Eq. (3) to determine ξ , k,
and 	.

Let us first construct the exact solution [15]. We note that
Mx in Eq. (3) solves the following equations:

ξ 2∂2
z Mx + (1 + k2)Mx − 2

k2

	2
M3

x = 0, (4)

ξ 2(∂zMx)2 + (1 + k2)M2
x − k2M4

x

	2
= 	2. (5)

Differentiating Eq. (4) with respect to z twice, we obtain

∂4
z Mx + (1 + k2)

ξ 2
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z Mx + 12k4

	4ξ 4
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	2ξ 4
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− 12
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[
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x ∂2
z Mx
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Multiplying Eq. (4) by M2
x and Eq. (5) by Mx and then adding

them together, we have

k2

	2ξ 2

[
M2

x ∂2
z Mx + Mx(∂zMx)2

] + 2k2(1 + k2)

	2ξ 4
M3

x

− 3k4

	4ξ 4
M5

x − k2

ξ 4
Mx = 0. (7)

We multiply Eq. (7) by a factor A and Eq. (4) by a factor B(1 +
k2)/ξ 4 and add them to Eq. (6). We then compare the resulting
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equation to Eq. (1), from which we obtain the equations for
coefficients

(12 − A)
k2

	2ξ 2
= γ

η
,

(B + 1)
(1 + k2)

ξ 2
= μ

η
,

(12 − 3A)k4

	4ξ 4
= δ

η
,

k2(1 + k2)(2A − 6 − 2B)

	2ξ 4
= β

η
,

(1 + k2)
2
B − Ak2

ξ 4
= α′

η
,

(8)

with α′ = α − A2. In principle we can determine A, B, k, 	,
and ξ from Eq. (8); however, the solutions are not guaranteed
to exist for arbitrarily coefficients of F , as can been seen
from the equations with γ and δ. This generally implies that
Eq. (3) is not an exact solution. We consider the case of a
particular set of coefficients, such that Eq. (3) is the exact
solution, to demonstrate explicitly the dependence of Mx on
temperature. In any case, Eq. (3) should be a good variation
ansatz to describe the spatial profile of Mx .

At TN corresponding to α′ = μ2/4η, the modulation of Mx

should be a sinusoidal wave. We have 	 = 0 and k = 0,
while 	k = 	/k = const, in the limit k → 0. We obtain
B = 1, ξ 2 = 2η/μ, 	k = −3β/2δ. As in the usual Ginzburg-
Landau theory, we assume that the temperature dependence
can be modeled in α′ by introducing τ = α′/(μ2

η
), and other

coefficients do not depend on T . Here τ is the reduced
temperature. Upon a change in temperature, k and B change
continuously, but both A and 	kξ are independent of T . We
have

B(τ,k) = −
−1 + 2τ +

√
1−4

[
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12+ 3βγ
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k2(1+k2)−2]

τ

2τ
,
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μ
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√
−3βη

δ(B + 1)(1 + k2)
.

The corresponding free-energy density

F
F0

= −k4[10I2 − (k2 + 1)(11 + B)I4 + 14k2I6]

[(k2 + 1)(B + 1)]3 , (9)

where
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2δη
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5k4
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with E(k) and K(k) being the complete elliptic integrals of
the second and first kinds, respectively. We have used the
convention E(k) ≡ ∫ π/2

0

√
1 − k2 sin2 θdθ . To determine the

optimal k, we numerically minimize the free-energy density

FIG. 1. Temperature dependence of (a) free energy F and
(b) wave vector Q for the model in Eq. (1). Near the commensurate-
incommensurate transition, Q follows Eq. (13). The magnetic order
sets in at τ = 1/4. We have used βγ/δμ = −10/3 in the calculations.

F , given by Eq. (9), with respect to k, and then obtain other
parameters from k. We then obtain ξ .

The period of the sinusoidal wave is given by the expression

λI = 4ξK(k). (13)

Here λI diverges when k → 1, corresponding to the FM state.
Near the phase transition between the sinusoidal wave and FM
at τ2, we can expand K(k) near k = 1,

λI = ξ (τ2)[8 ln 2 − 2 ln(1 − k2)]. (14)

Close to τ2 from above, we expand 1 − k2 = α2(τ − τ2)β2 and
then obtain the logarithmic temperature dependence of the
ordering wave vector

Q = 2π/λI ∝ −1/ ln(τ − τ2) (15)

near the commensurate-incommensurate (sinusoidal-
modulation-FM) transition [1,2].

The free energy F and Q as a function of temperature τ are
presented in Fig. 1. Upon lowering the temperature from TN,
the system first becomes an Ising density wave with Q varying
continuously with T , becoming FM at low temperature, with
the free-energy density

FFM

F0
= − 1

18

[
(1 + √

1 − 6τ )

(
1

3
− 2τ

)
− τ

]
. (16)

The transition from the paramagnetic phase into the sinu-
soidally modulated phase is of second order by construction,
following the experiments shown below and Ref. [14], and the
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FIG. 2. Magnetic susceptibility χ of a single crystal of U3Al2Ge3

taken with H = 10 Oe. Vertical lines indicate second- and first-
order transitions at TN = 63K and Tc = 48K, respectively. Inset:
Zoomed region of magnetic susceptibility χ showing the second-
order transition at TN = 63K. Different symbols represent separate
runs on the same sample.

transition from the sinusoidally modulated phase to the FM is
shown to be first order, which can be seen from the slope of F
in Fig. 1(a). As we will show, these results agree qualitatively
with results of the experimental analysis of the SANS data [see
Fig. 4(b) below].

III. SYNTHESIS AND CHARACTERIZATION

To confirm the accuracy and predictions of our model,
a single crystal of U3Al2Ge3 [tetragonal structure I4 (No.
79 in the International Tables for Crystallography [16]),
a = 7.769 Å, c = 11.036 Å, derivative of ordered antitype
Cr5B3; see Fig. 3(a) below] was prepared using the Czochralski
technique in a tri-arc furnace with a continuously purified
argon atmosphere (<10−12 ppm O2). The sample was char-
acterized using x-ray Laue backscattering and via magnetic
susceptibility measurements performed in a Quantum Design
Magnetic Property Measurement System (MPMS). As shown
in Fig. 2, magnetic susceptibility data, taken on warming
after zero-field cooling, with no changes between runs, reveal
typical ferromagnetic behavior with Tc = 48 K, with a fully
saturated susceptibility below 30 K. The susceptibility also
exhibits an additional anomaly at 63 K corresponding to the
onset temperature of the incommensurate magnetic state [14].
For the small-angle neutron scattering (SANS) measurements,
a 1-g piece of the single crystal was orientated such that
[100] was along the beam and [001] was in the scattering
plane, allowing us to access the magnetic ordering wave
vector Q = [0,0,δ]. SANS measurements were performed at
the NG7-SANS beamline at the NIST Center for Neutron
Research and the GP-SANS beamline at the High Flux Isotope
Reactor (HFIR) at Oak Ridge National Laboratory. SANS data
were collected by rocking the sample ±10◦ about the vertical
axis, with an incident neutron wavelength of λ = 6 Å.

IV. EXPERIMENTAL RESULTS

In this section we present the results of the SANS
measurements. All SANS data shown were obtained by angle

integrating monitor-normalized SANS detector intensities.
In order to obtain the magnetic intensity as a function of
momentum transfer q, the magnetic scattering was azimuthally
averaged in the FM phase, whereas in the incommensurate
phase radial cuts through the two magnetic satellite positions
at Q = [0,0,δ] were performed.

Starting in the low-temperature FM phase, T < 48 K, we
observe only strong scattering near the direct beam and no
characteristic magnetic ordering wave vectors, confirming the
FM state. Furthermore, scattering near the direct beam approx-
imately follows Porod’s law I ∝ Sq−4 [17,18], as shown in
Fig. 3(b), which indicates the presence of large ferromagnetic
domains with specific surface area S = 0.251(7) nm2, from
least-squares fitting.

Increasing temperature above 48 K, we observe the emer-
gence of strong magnetic scattering at Q = [0,0,δ], indicating
the entrance of the incommensurate phase. Although the
original neutron powder diffraction study indicated this phase
is a sinusoidally modulated magnetic phase, from repre-
sentational analysis of the crystallographic lattice structure
determined in Ref. [14], as shown in Fig. 3(a), and the magnetic
ordering wave vector Q = [0,0,δ], both helical and sinusoidal
magnetic orderings are allowed by symmetry. To confirm the
magnetic structure, we therefore performed spin-polarized
SANS measurements at the NG7-SANS instrument at T =
56 K, with the polarization pointed along the [001] direction
and the detector positioned 4 m from the sample. In the case
where the incident polarization is aligned along q, i.e., P0 ‖ q,
the magnetic cross section is given by

σ± = |M⊥|2 ± P0C. (17)

Here M⊥ is the magnetic interaction vector defined as M⊥ =
Q̂ × [ρ(Q) × Q̂], where ρ(Q) = −2μB

∫
ρ(r) exp(iQ · r)dr

is the Fourier transform of the magnetization density ρ(r) of
the investigated sample and Q̂ is a unit vector parallel to the
scattering vector Q. The associated coordinate frame is defined
to have x parallel to Q, z perpendicular to the scattering plane,
and y completing the right-handed set. We note that the term
C = 2Im(M∗

⊥y · M⊥z) is only nonzero for magnetic structures
that display chirality, such as magnetic spirals, and is therefore
denoted as the chiral term [19]. Because (σ+ − σ−)/P0 = 2C,
we would expect that for a single peak the difference between
the cross sections obtained with incident neutrons polarized
parallel (σ+) and antiparallel (σ−) with respect to q would
give rise to a nonzero chiral term C only if the magnetic
structure had spiral order. This is contrary to our observation,
where such a subtraction results in no residual intensity within
the error bars [see Fig. 3(c)], confirming that the magnetic
structure is sinusoidal, as surmised originally in Ref. [14].

A further increase in temperature reveals a pronounced
change, by a factor of 3, in the magnetic ordering wave vector,
as illustrated by the select SANS data for 49 K � T � 67 K
shown in Fig. 3(d), which have been scaled and shifted
to illustrate the drastic change in the magnetic ordering
wave vector as a function of temperature. In Fig. 4 we
display the results of the analysis of the angle-integrated
SANS data for each temperature, taken at the GP-SANS
instrument. For the temperature-dependent analysis we use
data measured in two configurations: (1) with the detector at
7 m from the sample, which provides a momentum range
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(a)

(b)

(c)

(d)

FIG. 3. (a) U3Al2Ge3 tetragonal crystal structure and the mag-
netic configuration in the ferromagnetic phase, with the three U site
symmetries individually labeled (8c, 2a1, 2a2). (b) Low-q scattering
in the ferromagnetic phase (T = 40 K), fitted to Porod’s law I ∝ q−4,
illustrating the expected behavior for FM domains. (c) Polarized
SANS cross sections with the incident beam polarized parallel (σ+)
and antiparallel (σ−) to the momentum transfer q and their difference,
taken at NG7-SANS. As explained in the text, the difference should
be nonzero only in the case of a spiral magnetic structure. (d) Radial
cuts of SANS data showing the evolution of the ordering wave vector
as a function of temperature taken at GP-SANS. Data in (b) and
(c) are normalized to monitor counts, and data in (d) are scaled and
vertically shifted for clarity.

of 0.1 nm−1 � q � 0.8 nm−1, and (2) with the detector
17 m from the sample, which provides a momentum range
of 0.025 nm−1 � q � 0.3 nm−1. In the 7-m configuration,
we can clearly see that the propagation vector Q changes
abruptly as a function of temperature at Tc ∼ 48 K, while at
63 K Q saturates, as shown by the circles in Fig. 4(b). The
17-m detector configuration, due to its lower momentum range,
which allows us to observe scattering that would have been lost
in the direct beam signal in the 7-m configuration, reveals that

FIG. 4. Results of analysis of the SANS data: (a) the integrated
intensity and (b) wave vector of the Bragg peaks, obtained by fitting
Gaussian functions to radial cuts along the momentum transfer q,
like those shown in Fig. 3(d). Different symbols represent unique
configurations: blue circles were obtained using a 7-m detector
distance, and the orange triangles were obtained using a 17-m detector
distance. Error bars represent the errors obtained from least-squares
fitting. The red dashed line in (b) represents a fit to the logarithmic
singularity expression, Q ∝ −1/ ln(T − Tc).

there is indeed a quasidiscontinuous change in the wave vector
at Tc. It is noteworthy that the intensity continues to increase
slightly above the transition. This situation may arise in the
case where the data were taken upon warming, as we have done
here; since the transition from the FM to the modulated phase is
first order, we may expect some hysteresis; that is, it is possible
for “droplets” of the FM phase to persist above Tc [20]. This
would therefore result in the appearance of the satellite peaks
associated with the modulated phase immediately above Tc, but
with reduced integrated intensities. As the FM droplets shrink,
the intensity of the satellite peaks will gradually increase,
reaching a maximum at the temperature where the entire
system is within the modulated phase, here T ∼ 50 K. It
should also be noted here that in the 17-m configuration,
the ordering wave vector of the sinusoidal phase lies at the
limits of the detector range, resulting in substantial error in
the intensity, as illustrated by the error bars in Fig. 4(b).
Furthermore, we find that the wave vector is well described
by the logarithmic function −1/ ln(T − Tc) [see Eq. (15)],
as illustrated by the dashed line in Fig. 4(b). This function
directly originates from the ANNNI models, as we discussed
in Sec. II. This quasidiscontinuity in Q indicates a first-order
transition between the sinusoidal and FM phases, supporting
the assertion of a first-order transition predicted by our model.

In contrast, above TN = 63 K we observe no discrete peaks
on the detector but instead see a broad ring of scattering which
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gradually decreases in intensity up to ∼67 K, above which it
disappears below the background completely. This behavior,
along with the magnetization data in Fig. 2, strongly supports a
second-order transition between the PM and sinusoidal phases.

V. DISCUSSION AND SUMMARY

It was found that the lattice constants change in the
sinusoidally modulated phase, indicating the existence of
magnetoelastic coupling [14]. Therefore, the measured change
of Q by neutron scattering has two contributions, with one
being from the lattice expansion/shrinkage and the other
being from the magnetic competing interaction. The former
contribution is negligible compared to the latter one according
to the experiments [14].

One key feature of the ANNNI framework on a lattice
model is the appearance of the devil’s staircase, where Q varies
quasicontinuously with temperature. In a certain temperature
window, Q is fixed. Outside the temperature window, Q then
jumps to another Q through the proliferation of magnetic
solitons [21]. This behavior is not captured by the model in the
continuum limit in Eq. (1). For Q = 0.76 nm−1, the Q steps
are extremely narrow. In experiments with finite resolution,
Q varies nearly continuously with temperature, as depicted in
Fig. 4.

True realizations of the ANNNI model in magnets are rare,
particularly in metals. In fact many of the potential examples
of ANNNI-like materials require notable modification to the
ANNNI model to explain observed behavior. The best-known
example is semimetallic CeSb [11], the magnetization of
which features the famous “devil’s staircase,” discrete sharp
steps in the magnetization within the incommensurate phase
[1]. However, the ANNNI model notably does not capture
additional experimentally observed Bragg reflections in CeSb,
requiring a modification of the ANNNI model [12,13]. A later
study of CeBi also required modification of the ANNNI model,
i.e., an additional competing exchange coupling [22]. More
recently, the phase diagram of metallic TmB4, which features
a fractional plateau in magnetization, was described in terms of
the ANNNI model, but again, two additional exchange terms
were required as a modification of the model [23].

Several other modern examples of potential ANNNI
compounds do exist, however. In U(Ru1−xRhx)2Si2, powder
neutron diffraction observed multiple Q states as a function
of temperature, suggested by the authors to perhaps be
related to the ANNNI model [24]. A recent study reported

a semimetallic compound closely related to CeSb, CeSbSe,
which was found to feature discrete steps in magnetization
and resistivity, which were suggested to arise due to under-
lying ANNNI-type magnetic interactions and the associated
existence of a devil’s staircase [25]. The heavy-fermion metal
CeRhIn5, which exhibits incommensurate helical and elliptical
magnetic orderings that transition to a commensurate order
with magnetic field [26], has been suggested as a candidate
[8,27].

In summary, we have studied the magnetic order in the f -
electron compound U3Al2Ge3, finding it to be well described
by the three-dimensional axial next-nearest-neighbor Ising
model. Our experimental results determine the transition
between the paramagnetic and sinusoidal phases to be second
order and the lower transition between the sinusoidal and
ferromagnetic phases to be first order, which arises naturally
from our model. Furthermore, we have confirmed the logarith-
mic singularity in the sinusoidal ordering wave vector at the
boundary to the FM phase, an essential feature of the ANNNI
model. These results demonstrate that U3Al2Ge3 represents a
prototypical material for investigating ANNNI physics.
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