
PHYSICAL REVIEW B 96, 174409 (2017)

Chiral spin liquids at finite temperature in a three-dimensional Kitaev model
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Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by
unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate
network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic
limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are
unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition
to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case,
however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a
directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in
three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.
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I. INTRODUCTION

The quantum spin liquid (QSL) is a long-standing subject,
investigated for more than 40 years [1]. Recently, it attracted
renewed attention not merely within basic science [2,3] but
also due to its relevance to quantum computations [4,5]. The
chiral spin liquid (CSL), which is the subject of this paper,
belongs to a special subgroup of QSLs with spontaneous
breaking of time-reversal (T ) symmetry. It has been a key
concept in condensed matter physics, e.g., the fractional
quantum Hall effect [6], high-Tc superconductivity [7,8],
frustrated quantum Heisenberg models [8–12], and braiding
of anyonic elementary excitations in QSLs [13,14].

Recently, a new trend in the study of CSLs has been created
by exactly soluble models in the ground state [13–17]. This
trend was initiated by an intriguing suggestion by Kitaev
[13]: On a tricoordinate network with odd-site loops, one can
construct a model that realizes an exact CSL ground state.
Indeed, a quantum spin model on a decorated honeycomb
network, which has triangles in the lattice structure, was
exactly shown to have the CSL ground state [14]; the CSL can
be either topologically trivial or nontrivial depending on the
exchange couplings, accommodating Abelian or non-Abelian
anyonic excitations, respectively [14]. The nature of the
finite-temperature (T ) phase transitions to these topologically
different CSLs was also elucidated by using a quantum Monte
Carlo simulation [18].

Compared to these studies of CSLs in two dimensions (2D),
much less is known in three dimensions (3D). Nevertheless,
3D CSLs are intriguing because of exotic excitations specific
to 3D, such as anyonic loop excitations of emergent fluxes
[19] and Weyl semimetallic excitations of Majorana fermions
[20]. These possibilities make the study of 3D CSLs at
finite T even more interesting, including transitions breaking
parity (P) symmetry as well as T symmetry. While looplike
excitations in the 3D Kitaev models and other realizations
of 3D Z2 QSL are known to trigger a thermal second-order
phase transition [21–25], rather than a crossover in the case of
2D Z2 QSL [26], the transitions to 3D CSLs remain elusive
thus far.

In this paper, we present unbiased numerical results for
3D CSLs and thermal phase transitions to paramagnet. We
consider an extension of the Kitaev model [13] defined on
a three-dimensional tricoordinate network labeled by (9,3)a
in the classification of Wells [20,27], which we call the
hypernonagon lattice because the elementary loop consists
of nine bonds. We derive the low-energy effective models
for two distinct anisotropic limits, which are described by
interacting Z2 fluxes. We find that the effective model in one
limit has no frustration while that in the other limit is highly
frustrated. Using Monte Carlo (MC) simulations, we show
that both models undergo a first-order phase transition from
high-T paramagnet to a low-T CSL, where both T and P
symmetries are spontaneously broken. Interestingly, neither of
the two cases yields a uniform flux configuration in the low-T
CSL states unlike in the 2D case [14]. Of particular interest
is the frustrated case: The CSL has subextensive accidental
degeneracy in the flux configuration, while exhibiting a
directional order with breaking of C3 rotational symmetry in
addition to T and P symmetries.

This paper is organized as follows. In Sec. II, we introduce
the extended Kitaev model on the hypernonagon lattice and
derive the low-energy effective Hamiltonians in two distinct
anisotropic limits. We also describe the MC method for
investigating the thermodynamic behavior of the two low-
energy models. In Sec. III, we present the MC results of
thermodynamic behaviors of the two models as well as the
analysis of the ground state properties. Finally, Sec. IV is
devoted to the summary.

II. MODELS AND METHOD

A. Kitaev model on the hypernonagon lattice

We consider a straightforward extension of the Kitaev
model [13] on the hypernonagon lattice shown in Fig. 1(a).
The most noteworthy characteristics of this lattice distinct
from many other 3D tricoordinate lattices is that it has odd-site
loops. Such odd-site loops accommodate emergent Z2 fluxes
that are odd under both T and P operations, and hence, the

2469-9950/2017/96(17)/174409(7) 174409-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.174409


KATO, KAMIYA, NASU, AND MOTOME PHYSICAL REVIEW B 96, 174409 (2017)

FIG. 1. (a) Hypernonagon-lattice Kitaev model and (b) the
alternative visualization [20]. a1, a2, and a3 are the primitive vectors.
The spheres represent the S = 1/2 spins. The sublattice indices for
12 spins in a unit cell are shown. Schematic finite-T phase diagrams
in (c) the large Jz limit and (d) the large Jx limit.

ground state of the system can be a CSL [13]. The Hamiltonian
of the hypernonagon Kitaev model is given by

H =
∑

μ={x,y,z}
Hμ, Hμ = −Jμ

∑
〈i,j〉μ

σ
μ

i σ
μ

j , (1)

where σ
μ

i (μ = x,y,z) is a Pauli matrix (σ z
i = ±1) at site

i and the sum
∑

〈i,j〉μ runs over all the nearest neighbors
connected by μ bonds shown in Fig. 1(a) [see also Fig. 1(b)].
The number of elementary nine-site loops is eight per unit cell,
and the centers of these loops can be combined into a “cube,”
as shown in Fig. 2(a). Each loop center is shared by the two
different types of cubes, i.e., bluish (B) and redish (R) cubes
in Fig. 2(a). These corner-sharing cubes form a 3D version of
the checkerboard lattice as shown in Fig. 2(b).

For each nine-site loop, one can define the Z2 flux operator

Wp = −i
∏

〈i,j〉μ∈p

σ
μ

i σ
μ

j , (2)

where the product is taken for all the bonds in the loop p in
a clockwise manner viewed from the center of each B cube
[Fig. 2(a)]. Wp is a conserved quantity which is odd under
both T and P operations with the eigenvalues ±1 (called
±π/2 flux [20]). Similar to other 3D cases [20,22], there are
local constraints on Wp corresponding to the operator identities
for Pauli matrices: The product of eight Wp is always unity
in each B and R cube. Thus, the eigenstates of the model in
Eq. (1) are divided into the sectors with different configurations
of Wp, and hence, the ground state can be, in principle,
obtained by comparing the eigenenergies. According to the
variational calculation, however, the hypernonagon model has

FIG. 2. Relation between the hypernonagon lattice and the lattice
of bp in the effective models in Eqs. (3) and (4). (a) A distorted cubic
lattice where the spheres represent bp . Each bp is shared by the two
different types of cubes, i.e., bluish (B) and redish (R) cubes that
correspond to different types of closed volumes in the hypernonagon
lattice. (b) A 3D checkerboard lattice topologically equivalent to (a).
The green squares represent examples of the four-site loops of bp for
MC update. The interactions between bp for (c) the large Jz limit and
(d),(e) the large Jx limit.

complexity: Low-energy sectors are nearly degenerate when
Jx ∼ Jy ∼ Jz [20].

B. Low-energy effective Hamiltonians in two anisotropic limits

We derive low-energy effective Hamiltonians of Eq. (1) in
two different anisotropic limits: the large Jz limit (Jz � Jx,Jy)
and the large Jx limit (Jx � Jy,Jz) [28]. Following the
derivation of the toric code for the honeycomb Kitaev model
[13], we perform the perturbation expansion in terms of
H − Hμ for the unperturbed Hamiltonian Hμ. The effective
Hamiltonians can be written in terms of Z2 variables describing
the flux states for each loop. By the expansion up to the eighth
order, we obtain the following effective Hamiltonians, Hz

eff
and Hx

eff , for the large Jz and Jx limits, respectively:

Hz
eff = J

∑
〈p,p′〉

bpbp′ − J ′ ∑
(p,p′)

bpbp′ , (3)

Hx
eff = J4

∑
〈p1,p2,p3,p4〉

bp1bp2bp3bp4 − J2

∑
(p,p′)

bpbp′ , (4)

with

J = 33

2048

J 4
x J 4

y∣∣J 7
z

∣∣ , J ′ = 9

33
J, (5)

J2 = 9

2048

J 4
y J 4

z∣∣J 7
x

∣∣ , J4 = 63

512

J 6
y∣∣J 5
x

∣∣ . (6)

J , J ′, and J2 are obtained by the eighth-order perturbation,
while J4 is the sixth-order one [29]. See Appendix for details
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of the derivation. Here, bp is a Z2 variable defined as

bp = PμWpPμ = ±1, (7)

where Pμ is the projection to the ground state manifold of Hμ.
The models include no odd-order term in bp, precluded by T
and P symmetries. The sums

∑
〈p,p′〉 and

∑
(p,p′) run over the

specific bonds indicated by solid blue and dashed red lines, re-
spectively, in Figs. 2(c) and 2(e), while

∑
〈p1,p2,p3,p4〉 runs over

“clusters” comprising four bp as shown in Fig. 2(d). Similar to
Wp, bp obeys the local constraints, i.e., the product of eight bp

in each cube must be unity. In addition, there are two global
constraints, similar to the hyperhoneycomb case [22,30].

C. Monte Carlo method

As both Hz
eff and Hx

eff are given in terms of the static
Z2 variables bp, their thermodynamic properties can be
investigated by classical MC simulations, similar to Ref. [23].
To satisfy the local and global constraints discussed above, a
pair of four-site loops of bp must be flipped simultaneously
in a single update in the MC simulation [30]. Examples of
the four-site loops are shown in Fig. 2(b). We adopt the
annealing technique unless otherwise noted. The observables
and statistical errors are evaluated from 24–384 independent
sets of 105−107 MC samples.

III. RESULTS

In this section, we present the results of analysis of the low-
energy effective Hamiltonians on their ground states and ther-
modynamic behaviors for both the large Jz and large Jx limits.

A. Large Jz limit

1. Ground state

Let us first discuss the effective model in the large Jz limit,
Hz

eff in Eq. (3). The model has no frustration in J and J ′, and
hence, the lowest-energy state is given by a staggered-type
order of bp in the [111] direction; see the inset of Fig. 3(b). This
coincides with the 0-flux state, for which Weyl semimetallic
excitations are expected when the system is gapless [20].

Since the effective model in Eq. (3) is unfrustrated, all the
bonds can optimize the interaction energies. Hence the ground
state energy per bp is simply computed as

εz
GS = −3J + 3J ′

2
= −21

11
J. (8)

2. Monte Carlo simulation at finite temperature

Figure 3 shows the MC results for the large Jz model.
We find that the system undergoes a phase transition at
Tc � 3J with a discontinuous jump in the energy density
εz ≡ 〈Hz

eff〉/Nbp
(Nbp

= 8L3 is the number of bp sites and
L is the linear dimension of the bp lattice in Fig. 2). Below
Tc, the staggered flux order parameter, defined as

√
〈B2〉/Nbp

whereB = ∑
p(−1)pbp, becomes nonzero with a jump from 0

to ≈1 in the thermodynamic limit. These observations indicate
that the system undergoes a strong first-order transition from
the paramagnetic phase to the CSL phase [Fig. 1(c)].

Regarding this discontinuous behavior, both the constraints
on bp and the peculiar symmetry of bp defined on odd-site

FIG. 3. Temperature dependence of (a) the energy density εz and
(b) the order parameter

√
〈B2〉/Nbp

for the large-Jz effective model
Hz

eff in Eq. (3). We set J = 1 (J ′ = 9/33). εz
GS indicates the ground

state energy in Eq. (8) for the bp configuration in the inset of (b);
the black (white) spheres represent bp = −1(+1) [or bp = +1(−1)],
and the numbers denote the sublattices.

loops must play a central role. Without the constraints, Hz
eff

is merely an unfrustrated Ising model, which undergoes a
continuous transition. Similarly, when the system is composed
of even-site loops, the leading term in perturbation theory is
linear in the flux variable, which can also be mapped onto an
unfrustrated Ising model by a duality transformation [23,25].

B. Large Jx limit

1. Ground state

Next we discuss the effective model in the large Jx limit,
Hx

eff in Eq. (4). In contrast to the large Jz modelHz
eff , the model

suffers from frustration, and the ground state manifold exhibits
substantial degeneracy for J4 � J2 (note that J4 is in the
lower-order perturbation than J2). First of all, the four-body
interactions in the J4 terms must be optimized: bp1bp2bp3bp4 =
−1 in every four-flux cluster 〈p1,p2,p3,p4〉 shown in Fig. 2(d).
Any of the resulting configurations corresponds to a π -flux
state, in contrast to the 0-flux state in the large Jz limit [20]. In
addition to this condition, the ground state manifold satisfies
the following three energetics (i)–(iii). First, (i) J2 favors six
configurations in each four-flux cluster shown in Fig. 4(a); here
we note that the π -flux states cannot optimize all the J2 terms
simultaneously. Also note that the local constraint associated
with a given B cube is fulfilled for any combination of the six
states for a pair of four-bp clusters per B cube. Meanwhile,
(ii) the six-site network of J2 within each R cube [Fig. 2(e)]
favors six bp on the buckled hexagon (h) to be either all +1
or all −1. Finally, the energetics (ii) also implies that (iii) the
two remaining bp on each R cube, i.e., not on the hexagon h,
[for example pa and pb in the inset of Fig. 6(a)] must take the
same value because of the local constraint on R cubes.

On the basis of the consideration above, we obtain the
ground state energy of the effective model in Eq. (4) as follows.
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FIG. 4. (a) Six configurations in a four-flux cluster minimizing its
intracluster interaction energy (J4 and J2 interaction). (b) An example
of the bp configurations in the ground state manifold on a (111)
hexagon-triangular plane in the large Jx limit. The rhombic region
indicated by the green solid line is the unit cell.

The largest contribution to the ground state energy is −J4 per
4 bp, i.e., −J4/4 per bp, from the J4 terms. To count the energy
contribution from the J2 term, let us consider an example of
the bp configurations which satisfy the energetics (i)–(iii). For
this purpose, it is convenient to view the 3D checkerboard
lattice from the [111] direction, and to extract a layer of bp

connected by the J2 bonds; the system can be regarded as a
stacking of “hexagon-triangular” layers, as shown in Fig. 4(b).
The black and white circles in Fig. 4(b) exemplifies a ground
state configuration in a (111) hexagon-triangular plane, whose
unit cell is relatively small (including 24 bp and 36 J2 bonds,
as shown by the green rhombus). The two-body interactions
in the J2 term are satisfied on the 30 bonds, while unsatisfied
on the 6 bonds. Thus, the energy contribution from the J2 term
is (6 − 30)J2 = −24J2 per unit cell, i.e., −J2 per bp. The
ground state bp configurations must satisfy also the energetics
(iii) arising from the local constraint. This is readily satisfied
by stacking the optimized bp configurations like in Fig. 4 in a
proper manner. Thus, we find the ground state energy per bp

in the large Jx limit as

εx
GS = −J2 − J4

4
. (9)

2. Monte Carlo simulation at finite temperature

Figure 5 shows the MC results for Hx
eff , where we set

J2/J4 = 0.02 considering that J2 is higher order in pertur-
bation theory than J4. While decreasing T , there are two
successive drops in εx = 〈Hx

eff〉/Nbp
at T ∗ ∼ J4 and Tc ∼ J2.

Correspondingly, the specific heat cx = ∂εx/∂T exhibits a
broad peak at T ∗ and a sharp peak at Tc. T ∗ is a crossover
temperature, below which configurations with bp1bp2bp3bp4 =
1 is exponentially suppressed in every four-flux cluster
〈p1,p2,p3,p4〉 shown in Fig. 2(d). Upon further decreasing
T , the three local energetics (i)–(iii) discussed above emerge.

In fact, the singularity at Tc signals a transition to a CSL
state in which the above (i)–(iii) are all satisfied in the T = 0
limit. As evidenced by the hystereses in εx and cx in Fig. 5,
this transition is also of first order.

As discussed in Sec. III B 1, the energetics (i)–(iii) cannot
select out an ordered configuration of bp, and leave subex-

FIG. 5. Temperature dependence of (a) the energy density εx and
(b) the specific heat cx for the large-Jx effective model Hx

eff in Eq. (4).
We set J2 = 1 and J4 = 50. εx

GS indicates the ground state energy in
Eq. (9). The inset of (a) shows an enlarged view of the main panel.
The data of cooling and heating processes are for demonstrating the
hysteresis (the heating process is shown only for L = 12).

tensive degeneracy. In the MC simulation below Tc, we also
find the subextensive degeneracy in the bp configurations,
along with spontaneous breaking of a point-group symmetry
below Tc. To explain this, we show a MC snapshot on a (111)
hexagon-triangular plane in Fig. 6(a). Here, the hexagons are
the J2 networks in each R cube, in most of which Bh ≡∑

p∈h bp/6 = ±1 below Tc because of the energetics (ii). In
a given hexagon-triangular layer, three buckled hexagons, say
h1, h2, and h3 forming a triangle, are interconnected by a
four-flux J4 cluster in a B cube [see the inset of Fig. 6(a)].
Because of the frustrated energetics (i), the ground state has
Bh1Bh2Bh3 = −1 for any triangle, resembling the situation
in the triangular-lattice Ising model [31]. However, unlike
this classic problem, the flux configurations generated by
MC simulation appear to break C3 rotational symmetry; an
example is shown in Fig. 6(a). We confirm the C3 breaking by
measuring the bond order parameter with respect to Bh defined
as follows. At first, we consider a direction specific correlator
of Bh as

rν ≡ 1

Nh

∑
h

BhBh+dν
, (10)

where dν (ν = 1,2,3) are the inplane vectors shown in
Fig. 6(a), the sum

∑
h runs over all the hexagons h in every

second (111) layers (hexagon-triangular layers) connected by
the effective interaction, and Nh is the number of the hexagons.
Then, we define the bond order parameter as

1

2

(
3rmax −

3∑
ν=1

〈rν〉
)

, (11)

where rmax = 〈max[r1,r2,r3]〉. As plotted in Fig. 6(b), the
bond order parameter becomes finite below Tc, which is
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FIG. 6. (a) MC snapshot of the bp configurations below Tc on a hexagon-triangular layer corresponding to a (111) slice of the 3D
checkerboard lattice in Fig. 2. The black (white) circles represent bp = −1(+1). The inset illustrates an example of a favored configuration
for a pair of four-bp J4 clusters on the second adjacent (111) hexagon-triangular layers at low T . (b) Temperature dependence of the bond
order parameter with respect to Bh defined in Eq. (11). (c) Structure factor for bp on the plane of qx + qy + qz = 0 (see the inset). The data are
obtained below Tc by averaging over ∼300 MC samples for L = 18.

an indication of the directional order selecting one of three
directions dν shown in Fig. 6(a). Likewise, in the structure
factor

S(q) ≡ 1

Nbp

〈bqb−q〉, (12)

with bq = ∑
p bpe−iq·rp (rp is the position vector for the

site p), we find diffusive lines in S(q) consistent with the
directional order.

This “locking transition” is suggested to be induced by the
interlayer coupling, similar to the Ising model on the stacked
triangular layers [32–38]. Coming back to the consideration
of the energetics (iii), the two bp in a R cube not included
in a buckled hexagon [bpa

and bpb
in the inset of Fig. 6(a)]

also belong to four-flux J4 clusters that are on second adjacent
layers. As each of them combines three buckled hexagons (say,
h1−h3 and h′

1−h′
3) on each (111) honeycomb-triangular layer,

the energetics (iii) implies an effective interlayer coupling
favoring (Bh1 + Bh2 + Bh3 )(Bh′

1
+ Bh′

2
+ Bh′

3
) = +1. This is

expected to play an important role in the locking transition; in
fact, S(q = 0) is divergent below Tc. This is also an indication
of breaking of T and P symmetries in the low-T CSL.

Thus, in the large Jx limit, the system exhibits a first-order
transition similar to the large Jz limit, but the low-T CSL
state is not completely ordered while it has the directional
order with the uniform component of bp [Fig. 1(d)]. The
CSL phase is highly unusual—it is not ordered in the double
meaning: The original spins σi in Eq. (1) are disordered, and
in addition, the emergent Z2 fluxes bp are not completely
ordered. However, it is characterized by a directional order
with broken C3 rotational symmetry. The peculiar nature may
yield more exotic elementary excitations than ever studied in
3D CSLs.

IV. SUMMARY

In summary, we discovered two distinct 3D CSLs, both
of which allow unbiased simulations for the thermodynamics.
We showed that one of them suffers from severe frustration in
interacting Z2 fluxes. By unbiased Monte Carlo simulations,
we found that both CSLs undergo a first-order phase transi-
tion to paramagnet. Remarkably, the frustrated CSL retains

degeneracy while showing a directional order. Our discovery
of two interesting cases will stimulate further studies of 3D
CSLs. Nature of elementary excitations will be an intriguing
future issue, especially for the exotic directionally-ordered
CSL.
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APPENDIX: DERIVATION OF THE LOW-ENERGY
EFFECTIVE HAMILTONIAN

In this Appendix, we show how to derive the low-energy
effective Hamiltonians in Eqs. (3) and (4). We derive the
effective Hamiltonians from the Kitaev model on the hyper-
nonagon lattice in Eq. (1) for the large Jz and large Jx limits,
by following the way to derive the toric code in the anisotropic
limit of the original Kitaev model on a honeycomb lattice [13].
In the large Jμ limit (μ = z or x), we regard H0 = Hμ and
the rest H1 = H − H0 as an unperturbed Hamiltonian and a
perturbation, respectively. The unperturbed states for H0 are
composed of the independent dimers on the μ bonds. Each
dimer is described by a new spin 1/2 degree of freedom τ ,
and the ground state for H0 is given by a direct product of
the states |τ z

ij = ±1〉 = |σμ

i = sgn(Jμ)σμ

j = ±1〉 for all the
μ bonds (〈i,j 〉μ). When we define τ at the center of each
μ bond, the lattice structure for the τ degree of freedom
looks like Figs. 7(c) and 7(d) for the large Jz and Jx limits,
respectively: The blue z (red x) bonds in Figs. 7(a) and 7(b)
are replaced by the blue (red) sites. The former is regarded as
a layered Lieb lattice, while the latter a layered honeycomb
lattice.

When we introduce H1 as the perturbation, the nth-
order contribution to the low-energy effective Hamiltonian is
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Jxσx
i σx

j

Jyσy
i σy

j

FIG. 7. (a),(b) The hypernonagon lattice reproduced from
Figs. 1(a) and 1(b). The blue and red plaquettes represent a
neighboring pair of the nine-site loops (p1 and p2), on which the
local conserved quantities Wp are defined. (c) A layered Lieb lattice
[(d) a layered honeycomb lattice] obtained by contracting all the z

bonds (x bonds) for the large Jz (Jx) limit. The blue and red plaquettes
represent bp1 and bp2 , respectively. The reddish and bluish spheres
represent the sites where the τ degree of freedom in the low-energy
effective models is defined.

given by

H(n)
μ = Pμ[(H1S)n−1H1]P†

μ, (A1)

wherePμ is the projection to the low-energy subspace spanned
by the direct product of the states |τ z

ij = ±1〉;

S ≡ 1 − P†
μPμ

E0 − H0
, (A2)

where E0 is the ground state energy of H0. The effective
Hamiltonians in Eqs. (3) and (4) are obtained by using Eq. (A1)

up to the eighth-order perturbation. We note that Eq. (A1)
is not generic but valid for sufficiently low orders of the
expansion. For example, the generic form for the fourth-order
contributions is obtained as [39]

Pμ[(H1S)3H1]P†
μ − 1

2 [PμH1S2H1P†
μPμH1SH1P†

μ

+PμH1SH1P†
μPμH1S2H1P†

μ]. (A3)

The second term in Eq. (A3) is omitted in Eq. (A1). Since the
nth-order perturbation lower than or equal to the eighth order
in the large Jz case (the sixth order in the large Jx case) leads to
only constants, we neglect the contributions from the second
term in Eq. (A3) in the following calculations.

The derivation of the effective models in Eqs. (3) and (4) is
lengthy but straightforward. For instance, let us consider the
two-body J term in Eq. (3). It is derived from the eight-site
loop �1-�2- · · · -�8 in Fig. 7(c). The eight-site loop is made of
two neighboring six-site elementary loops p1 (blue plaquette
�8-�7-�0-�3-�2-�1) and p2 (red plaquette �4-�3-�0-�7-�6-�5), as
shown in Fig. 7(c). By the perturbation on this eight-site loop
[eighth-order perturbation in H1 by using Eq. (A1)], we obtain

−Jτ
y

�1
τ z
�2

τ x
�3

τ
y

�4
τ

y

�5
τ z
�6

τ x
�7

τ
y

�8
. (A4)

The blue and red plaquettes are originally derived from those
in Figs. 7(a) and 7(b), on which the Z2 conserved quantities
Wp are defined. Hence, we can rewrite Eq. (A4) by using
the Z2 variables bp which are defined as the projection
of Wp [Eq. (7)]. For the blue and red plaquettes, bp are
given as

bp1 = τ
y

�8
τ

y

�7
τ z
�0

τ z
�3

τ z
�2

τ
y

�1
, (A5)

bp2 = −τ
y

�4
τ

y

�3
τ z
�0

τ z
�7

τ z
�6

τ
y

�5
. (A6)

Thus, the eighth-order perturbation term in Eq. (A4) is
rewritten into the two-body interaction Jbp1bp2 . The other
interaction terms in Eqs. (3) and (4) can be derived in a similar
manner. We note that the combination of bp1 and bp2 in the large
Jx limit corresponds to a ten-site loop as shown in Fig. 7(d),
and thus there is no interaction between p1 and p2 in Eq. (4)
within the eighth-order perturbation.
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