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Ising model in planar lacunary and fractal lattices: A path counting approach
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The method of counting loops for calculating the partition function of the Ising model on the two dimensional
square lattice is extended to lacunary planar lattices, especially scale invariant fractal lattices, the Sierpiński carpets
with different values of the scale invariance ratio and of the number of deleted sites. The critical temperatures Tc

are exactly calculated for finite iteration steps k up to k = 8, for a range of the scale invariance ratio n from 3 to
1000 and of the number of deleted sites from (n − 2)2 to (n − 10)2. The critical parameters vc = tanh(1/Tc) satisfy
power laws of exponent -k, allowing the asymptotic extrapolation to the fractal limit k → ∞. The extrapolated
values of the critical temperature fit quite reliably power laws versus the fractal dimension. Results are compared
to previous estimations obtained by numerical methods. Thermodynamical functions are also calculated and the
fractal spectra of the Ising partition functions on several examples of Sierpiński carpets are illustrated.
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I. INTRODUCTION

The question of phase transitions on structures of non-
integer dimension has a long history since the early work
of Mandelbrot introducing fractals in physics. Among the
many applications of fractals in most fields of physics,
they have been used as models of structures of noninteger
dimension for comparing scaling properties to results given by
the usual theory of renormalization in which dimensionality
plays a crucial role. Translational invariance is an important
hypothesis of the renormalization approach, not satisfied by
structures of noninteger dimension which are generally scale
invariant rather than translationally invariant. Then unusual
behavior may be expected.

The Sierpiński carpet [1], and its generalizations to any
scale invariance ratio, is one of the simplest infinitely ramified
fractal structures. An infinite ramification order is a mandatory
condition to get a nonzero critical temperature to phase
transitions [2,3]. An appropriate choice of the scale invariance
ratio and of the number and positions of removed sites at
each iteration allows one to approach any noninteger value
comprised between 1 and 2 for the fractal dimension and a large
range of topologies. Then the combination of Sierpiński car-
pets and the Ising model, one of the simplest models of phase
transitions, has been extensively studied to investigate the
properties of phases transitions in noninteger structures, even
if recently other topologies have been also investigated [4].

Calculations involve different methods including the real
space renormalization group (RSRG) [3,5–8]; high tempera-
ture expansions [8]; Monte-Carlo simulations either with the
Metropolis or with the Wolf or the Swendsen-Wang algorithms
combined with a finite size scaling analysis (MCFS) [9–18];
Monte-Carlo simulations combined with a renormalization
group (MCRG) [19]; and Monte-Carlo simulations combined
with short time dynamic scaling (MCSD) [20–23]. According
to references, spins are located either on the center of the sites
[12–18,21–23] or on the vertices of the lattice [2,3,5–12,20].
Some attempts have been done also on structures extending
Sierpiński carpets in three dimensions: the Menger sponge and
its generalizations to any scale invariance ratio [10,15]. One
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important goal was to compare the critical properties of the
Ising model to those obtained by the analytical continuation
of ε expansions of the renormalization approach in noninteger
dimensions [24], critical exponents, and scaling relations.

One of the difficulties of the Monte-Carlo simulations is to
obtain an accurate estimation of the critical temperature, which
is necessary to perform the finite size scaling analysis. As
fractals are not translationally invariant, the topology changes
between two successive iterations (or segmentation steps) of
the fractal structure. The mean number of nearest neighbors is
not the same [16,25]) and consequently critical temperatures
are also different, leading to “topological scaling corrections”
[16]. Moreover, Pruessner et al. [17] questioned the relevance
of finite size scaling performed on the successive segmentation
steps of a single site, arguing that the size of the structure is
not large enough to exceed the correlation length in the critical
region. These authors developed an alternative approach based
on the juxtaposition of several identical networks in the two
dimensions of space to increase the size of the elementary cell
before applying the usual periodic boundary conditions. For a
scale invariance ratio n = 3 with a single centered removed
site, the values of the critical temperatures obtained after
this modification are close to those obtained previously, but
significantly different according to their respective accuracy,
1.50 instead of 1.48. Table I summarizes the values from
literature of the critical temperature of various Sierpiński
carpets, with periodic boundary conditions (PBC) and spins
located on the center of sites, which corresponds to the case
treated in this paper. Estimations concentrate close to the
same two previous significantly different values, either 1.48
[13,14,16,19] or 1.50 [17,21,23], leaving a debate opened.

To bring some light on this question, we calculate analyti-
cally the critical temperature of several Sierpiński carpets by a
path counting method. We first remember the loops counting
method on square lattices (lacunary or not) which has been
introduced by Kac and Ward [26] as an alternative to the
algebraic method of Onsager [27] to calculate the partition
function of the two dimensional Ising on the square lattice.
Then this method is applied to Sierpiński carpets with a central
hole, but the method is suitable also for other topologies.
This leads to the exact calculation of the critical temperatures
for values of the segmentation ratio n from 3 to 1000, a
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TABLE I. Previous estimations of critical temperatures of
SC(n,p) with PBC and spins on the center of sites.

SC Authors Tc Method kmax

Bonnier et al. [12] 1.54 MCFS 3
Monceau et al. [14] 1.482(15) MCFS 7
Carmona et al. [13] 1.481(1) MCFS 7

SC(3,1) Monceau et al. [16] 1.4795(5) MCFS 8
Pruessner et al. [17] 1.4992(11) MCFS 6

Hsiao et al. [19] 1.47946(16) MCRG 8
Bab et al. [21] 1.4945(50) MCSD 6
Bab et al. [23] 1.495(5) MCSD 6

Bonnier et al. [12] 1.25 MCFS 3
Carmona et al. [13] 1.077(3) MCFS 6

SC(4,2) Monceau et al. [16] <1.049 MCFS 6
Monceau et al. [18] 1.13873(8) MCFS 6

Bab et al. [22] 1.10(1) MCSD 6
Bab et al. [23] 1.10(1) MCSD 6

Bonnier et al. [12] 2.06 MCFS 3

SC(5,1) Monceau et al. [16] 2.0660(15) MCFS 5
Bab et al. [23] 2.067(2) MCSD 6

Monceau et al. [16] <0.808 MCFS 5
SC(5,3) Monceau et al. [18] 0.96143(11) MCFS 5

Bab et al. [23] 0.83(2) MCSD 5

SC(6,4) Bab et al. [23] 0.70(5) MCST 4

number p of removed sites at each step from 1 to n − 2
and up to to 8 iterations fractal steps. The full spectrum of
the partition function on several Sierpiński carpets is also
calculated and illustrated up to five iterations fractal steps.
Finally thermodynamic functions of the Ising model on these
structures are addressed.

Notations used in this paper are the following: SQ(N ) is
the usual square lattice (without empty sites) of size N×N .
Parameters concerning the square lattice at the limit N → ∞
will be indexed by sq. Generally the lacunary or fractal lattices
investigated in this paper are obtained by the juxtaposition
of N2 identical patterns in a translationally invariant way in
both directions of the plane. The reproduced pattern will be
called the generating pattern. The number n is devoted to
internal characteristics of the generating pattern. SL(N,n)
is the lacunary (nonrandom) square lattice of size N×N

with periodic holes of size (n − 1)×(n − 1) separated by
a single raw of occupied sites in both directions of the
plane. Figure 1 shows the example of SL(N,3); occupied
sites are in gray, and the generating pattern is in dark gray.

FIG. 1. SL(N,n) for n = 3; occupied sites are in gray, and the
generating pattern is in dark gray.

FIG. 2. The third iteration steps of SC(3,1,3) (left) and SM(3,3)
(right).

We have obviously SQ(N ) = SL(N,1). Sierpiński carpets
of segmentation ratio n, with p2 removed central subsites
at each segmentation step, and after the kth iteration of this
segmentation process, is noted SC(n,p,k). The segmentation
step can be omitted when not necessary for understanding:
SC(n,p). Figure 2 (left) illustrates the third segmentation step
of SC(3,1). We investigate also a different topology: a more
lacunary fractal lattice with the same segmentation ratio n = 3;
the generating pattern is illustrated on Fig. 2 (right). It is not
strictly scale invariant since it is not exactly the reproduction
of the same pattern at each segmentation step; its fractal
dimension is ln [(9 + √

33)/2]/ ln 3 ≈ 1.8184, it will be noted
SM(3,k) (as Sierpiński modified). Sites of the generating
pattern of Sierpiński sets are numbered continuously, row by
row, notwithstanding the empty sites, as illustrated in Fig. 3.
The identity matrix of appropriate dimension is noted as I

and dh is the Hausdorff dimension. FBC means free boundary
conditions.

II. PARTITION FUNCTION OF THE ISING MODEL
AND CLOSED PATHS COUNTING

Generally, the partition function of the Ising model on any
network is [28]

Z =
∑
{si }

∏
i>j

e−βJsi sj ,

where the sum runs over all spin configurations, and the prod-
uct over all pairs of nearest neighbors spins. J characterizes
the strength of the interaction between spins. It is an equivalent
to the problem of counting closed paths (loops) on the
network [26]:

Z = 2N cosh

(
1

T

)Nz ∞∑
l=0

g(l)vl, (1)

FIG. 3. The numbering of sites of a generating pattern of
Sierpinśki sets with a segmentation ratio n.
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where N is the number of spins, Nz is the number
of nearest neighbors pairs, T is the reduced tempera-
ture: 1/βJ , v = tanh(βJ ) = tanh(1/T ), and g(l) is the
number of loops of length l (counted as a multiple
of the distance between two neighboring sites). In the
next developments, we will call P(v) = ∑∞

l=0 g(l)vl the
partition polynomial.

Kac and Ward [26] implemented this method to SQ(N )
in the following way (a variant using Pfaffians has also been
proposed [29,30]). The basic feature is to attribute to each
site a coefficient which connects the direction from where the
path enters the site to the direction it goes out in order that
the product of coefficients of all sites of a closed, non-self-

intersecting path gives −1. The appropriate set of coefficients
are 1 if the path continues in the same direction, e

iπ
4 for a left

turn, e
−iπ

4 for a right turn, and 0 for the backward direction.
On a finite lattice with FBC, this procedure ensures that, when
performing the product over sites of all paths and the sum over
all possible paths, each closed non-self-intersecting loop is
counted the number of times it should be [31,32]. To implement
this counting method on the whole lattice, four 4×4 matrices
are introduced linking each site to its nearest neighbors. They
contain the appropriate coefficients placed according to the
directions “in” and “out,” and they are indexed by the direction
of the site from where the path is coming from, ordered as −x,
−y, y, x:

M−x =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 e

iπ
4 e− iπ

4 1

⎞
⎟⎟⎠, M−y =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

e− iπ
4 0 1 e

iπ
4

0 0 0 0

⎞
⎟⎟⎠,

My =

⎛
⎜⎜⎝

0 0 0 0
e

iπ
4 1 0 e− iπ

4

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, Mx =

⎛
⎜⎜⎝

1 e− iπ
4 e

iπ
4 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (2)

These matrices are themselves placed in a matrix M of all sites and the partition polynomial is

PN (v) =
√

|I − vM| .

The spectrum of the partition function (including the root corresponding to the critical temperature) is given by the set of roots
of this polynomial in the variable v.

This process may be extended to any planar lacunary square lattices, setting to 0 the 4×4 matrices corresponding to empty
sites. We calculate here the partition function of SL(N,n). The generating pattern has 2n − 1 occupied sites (Fig. 1); the
dimension of the matrix MN,n is 4N (2n − 1). PBC make MN,n cyclic which allows one to calculate |I − vMN,n| as the
product of N2 4(2n − 1)×4(2n − 1) determinants according to a process which has been explained in many references for n = 1
[26,28,33]. Let us note

M ′
−x = e

ipπ

N M−x, M ′
−y = e

iqπ

N M−y,

M ′
y = e− iqπ

N My, M ′
x = e− ipπ

N Mx ;

the corresponding determinant is the product over p and q varying from 1 to N of determinants of the following matrices:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 . . . n − 1 n n + 1 n + 2 . . . 2n − 2 2n − 1
1 0 M−x 0 . . . 0 M ′

x M−y 0 . . . 0 M ′
y

2 Mx 0 M−x 0 . . . . . . . . . . . . . . . . . . 0

3 0 Mx 0
. . .

. . .
...

...
... 0

. . .
. . .

. . .
. . .

...

n − 1 0
...

. . .
. . . 0 M−x

. . .
...

n M ′
−x

...
. . . Mx 0 0

. . .
...

n + 1 My

...
. . . 0 0 M−y

. . .
...

n + 2 0
...

. . . My

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . . 0

2n − 2 0
...

. . .
. . . 0 M−y

2n − 1 M ′
−y 0 . . . . . . . . . . . . . . . . . . 0 My 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Given that their eigenvectors of eigenvalue λ are V = (Vi)1�i�2n−1 where the (2n − 1) four-vectors Vi (one by site of the
generating pattern) have the following structure,

for 1 < i � n, for n < i � 2n − 1,

V1 =

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠, Vi =

⎛
⎜⎜⎝

aλ(n−i+1)e
2iπp

N

0
0

dλ(i−1)

⎞
⎟⎟⎠, Vi =

⎛
⎜⎜⎝

0
bλ(2n−i)e

2iπq

N

cλ(i−n)

0

⎞
⎟⎟⎠,

and noting

M(N,p,q) = M ′
−x + M ′

−y + M ′
y + M ′

x , (3)

the final product is

PN,n(v)=
⎡
⎣ N∏

p,q=1

|I − vnM(N,p,q)|
⎤
⎦

1
2

=
⎡
⎣ N∏

p,q=1

(1+ v2n)2 − 2vn(1− v2n)f (N,p,q)

⎤
⎦

1
2

, (4)

with f (N,p,q) = cos 2pπ

N
+ cos 2qπ

N
.

It should be noticed that PN,n(v) = PN,1(vn). The lacunary
square lattice is equivalent to a filled square lattice in which the
parameter v is replaced by vn. That results from the structure
of the generating pattern of the lacunary square lattice which
funnels paths going through in a single direction, either Ox

or Oy. Changes of direction can occur only on the first site of
the pattern, as if there was a single site. Compared to a single
site pattern, only the length of paths changes, not the topology.
This equivalence will be exploited later for the calculation of
the magnetization.

However, PN,n(v) is not exactly the partition polynomial
PN,n(v) of the Ising model on SL(N,n). The process of
indexing loops is rigorously demonstrated for FBC while PBC
are necessary to calculate the determinant. PBC introduce
loops looping the torus (Fig. 4) for which the product of all
sites coefficients is 1 and not −1 as it should be.

These boundary effects vanish at the limit (N → ∞) giving
the exact partition function of the infinite lattice, but they
cannot be ignored when finite size lattices are concerned.
For this reason, we will call PN,n(v) the pseudopartition
polynomial. Additional terms necessary to obtain the exact
partition polynomial Pn,N of the Ising model on SQ(N ) with
PBC have been subsequently calculated [34]; however they
will not play a role in the next developments of this paper.

FIG. 4. Two paths looping the torus which are wrongly counted
in PBC.

A consequence is that the spectrum of the pseudopartition
polynomial of SL(N,n) is immediately deduced from the
spectrum of the pseudopartition polynomial of SQ(N ). For
any value of N , all roots vn are located on two circles
in the complex plane, centered, respectively, on −1 and 1
and of radius

√
2 [35]. Figure 5 shows these two circles

and plots of the spectrum of the pseudopartition polynomial
P5(v) (squares) and of the exact partition polynomial P5(v)
(triangles) of SQ(5). The spectrum ofPN (v) converges toward
the two circles when N → ∞.

Figure 6 shows the plot of PN,n(v) versus vn for N = 1 to
N = 7. For all values of N , PN,n(v) vanishes for the same value
of vn. Indeed, all PN,n(v) share the common factor P1,n(v), the
partition polynomial of a “single pattern lattice” (a “single
site” lattice when n = 1):

P1,n(v) = 1 − 2vn − v2n, (5)

whose positive real root is vc = (
√

2 − 1)1/n, giving the critical
temperature at the thermodynamic limit (this root is the same
for all N ; then also for the limit N → ∞):

Tc = 1

Atanh(vc)
= 2

ln
(

1+(
√

2−1)
1
n

1−(
√

2−1)
1
n

) . (6)

For n = 1, vcsq = √
2 − 1 gives the well known value:

Tcsq = 2

ln(1 + √
2)

≈ 2.2692.

FIG. 5. Combined plots in the complex plane of the roots of
P5(v) (squares), P5(v) (triangles) and the two circles which contains
the roots of PN (v), for all N .
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FIG. 6. The pseudopartition polynomial PN,n(v) of the Ising
model on SL(N,n) versus vn for 1 � N � 7.

Then a fast and easy way to calculate the critical tem-
perature of any square lattice (lacunary or not) at the limit
N → ∞ is to find the real positive root of the pseudopartition
polynomial of a single pattern lattice. The pseudopartition
polynomial can be considered as a partition polynomial
renormalized of the boundaries effects. This property will be

used to calculate the critical temperature of Sierpiński carpets,
which is the purpose of the next section.

III. PARTITION FUNCTION OF THE ISING
MODEL ON SC(n, p,k)

Investigated lattices are composed by the juxtaposition
of N2 patterns SC(n,p) in the two directions of the plane,
with PBC. The generating pattern has (n2 − p2)k occupied
sites. The matrix MSC(n,p,k) is obtained from the matrix
M(nN)2k of the corresponding square lattice by setting to 0
the 4×4 matrices of each removed site. Lines and columns
corresponding to these empty sites can be omitted, which
reduces the dimension of the matrix to 4N2(n2 − p2)k . As
for the square lattice, the determinant may be factorized by
translational invariance in a product of N2 determinants of
dimension 4(n2 − p2)k . Detailed calculations are performed
for SC(3,1,1); other values of n, p, and k are treated in a
similar way.

A. The pseudopartition polynomial of SC(3,1,1)

In SC(3,1,1) a single site is removed. Once reduced by
translational invariance, the pseudopartition polynomial is the
square root of the product of the N2 32N2×32N2 determinants
of the following matrices (the site number 5, which is the single
empty site, is omitted):

MN,SC(3,1,1)(p,q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 6 7 8 9
1 0 M−x M ′

x M−y 0 M ′
y 0 0

2 Mx 0 M−x 0 0 0 M ′
y 0

3 M ′
−x Mx 0 0 M−y 0 0 M ′

y

4 My 0 0 0 M ′
x M−y 0 0

6 0 0 My M ′
−x 0 0 0 M−y

7 M ′
−y 0 0 My 0 0 M−x M ′

x

8 0 M ′
−y 0 0 0 Mx 0 M−x

9 0 0 M ′
−y 0 My M ′

−x Mx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

leading to the pseudopartition polynomial

PN,SC(3,1,1)(v) =
N∏

p,q=1

|I − v.MN,SC(3,1)(p,q)| 1
2

=
N∏

p,q=1

[
Q1(v) + Q2(v)

(
cos

(
2πp

N

)
+ cos

(
2πq

N

))
+ Q3(v) cos

(
2πp

N

)
cos

(
2πq

N

)

+Q4(v)

(
cos

(
2πp

N

)2

+ cos

(
2πq

N

)2)] 1
2

, (8)

where

Q1(v) = (1 + v2)2(1 − 2v2 + 13v4 − 8v6 + 126v8 + 108v10 + 474v12 + 248v14 + 57v16 + 6v18 + v20),
Q2(v) = −4v3(1 − v2)2(1 + 3v2)(1 + v2 + 2v4)(1 + 2v2 + 8v4 + 4v6 + v8),
Q3(v) = −4v6(1 − v2)4(1 + v2)(7 + 11v2 + 13v4 + v6),
Q4(v) = +4v6(1 − v2)5(1 + v2)(1 + 3v2).

The critical temperature is given by the real positive root of

P1,SC(3,1,1)(v) = 1 − 4v3 + 5v4 − 16v5 − 10v6 − 20v7 + v8 − 24v9 + 2v10 + v12, (9)

which is vc ≈ 0.4960 giving Tc = 1/Atanh(vc) ≈ 1.8384.
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FIG. 7. SC(3,1,1) with site numbers (down) and the correspond-
ing part of the ith eigenvector of MSC(3,1,1) (up).

For small values of n and/or small values of k, P1,SC(n,p,k)

may be calculated explicitly and roots are calculated numeri-
cally. For higher values of n or k, the spectrum may be deduced
directly from the numerical evaluation of the eigenvalues of
the exact matrix. But for very large values of n or k, the
dimension of the matrix increases quickly. To get access to the
spectrum of the partition function, the dimension of the matrix
should be reduced and this can be achieved in two ways. First
exploiting the square symmetry of the generating pattern, that
is, its invariance under the group D4 (especially the rotation of
angle π/4). Second, by removing the zero eigenvalues which
come from dangling bonds of sites contiguous to empty sites.
We will investigate successively these two ways.

B. Rotational invariance

The appropriate four dimensional representation of a
rotation of π/4 is generated by a 4×4 matrix of the form

σ = α

⎛
⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎠, (10)

which achieves a circular permutation of the four directions
in the plane, with the constraint that σ 4 = I leading to the
condition α4 = 1. There are four possible values of α: α1 = 1,
α2 = −1, α3 = i, α4 = −i and four corresponding matrices
σi , according to Eq. (10).

The eigenvectors of the matrix M1,SC(n,p,k) are com-
posed of (n2 − p2)k four-vectors numbered according to sites
V1,V2, . . . ,Vn2 (with the exclusion of empty sites) which can be
associated four by four as the images of an initial eigenvector
by the successive rotations σi , σ 2

i , σ 3
i . For SC(3,1,1), this

gives (Fig. 7)

Vi = (
V1,V2,σi .V1,σ

3
i .V2,σi .V2,σ

3
i .V1,σ

2
i .V2,σ

2
i .V1

)
.

Then, for SC(n,p,k) (a single pattern lattice) with a
total number of nonempty sites (n2 − p2)k , the 4(n2 −
p2)k×4(n2 − p2)k determinant is transformed in the product
of four (n2 − p2)k×(n2 − p2)k determinants. For SC(3,1,1),
we obtain the four matrices

MSC(3,1,1),i(v) =
(

Mx.σi + My.σ
3
i M−x + M−y.σ

3
i

Mx + M−x.σi My.σ
2
i

)
.

The pseudopartition polynomial of SC(3,1,1) is

P1,SC(3,1,1)(v) =
√√√√ 4∏

i=1

|I − vMSC(3,1,1),i | .

Polynomials |I − vMSC(3,1,1),i | are equal two by two:

|I − vMSC(3,1,1),1| = |I − vMSC(3,1,1),3| = Q−
SC(3,1,1)(v),

|I − vMSC(3,1,1),2| = |I − vMSC(3,1,1),4| = Q+
SC(3,1,1)(v),

with

Q±
SC(3,1,1)(v) = 1 ±

√
2v + (1 ±

√
2)v2 ±

√
2v3

+ (5 ± 3
√

2)v4 ± 2
√

2v5 + v6,

so that Eq. (9) can be written

P1,SC(3,1,1)(v) = Q+
SC(3,1,1)(v).Q−

SC(3,1,1)(v).

For all investigated lattices SC(n,p,k), a single real root
of the pseudopartition polynomial occurs between 0 and 1,
which avoids any ambiguity to identify the critical temperature
among all other roots, and it is always a root of Q−.

C. Dangling bonds

To each site contiguous to an empty site, the direction
of a path going to the empty site gives a zero eigenvalue
corresponding to an eigenvector with all components equal to
zero except the four components located on the position of the
corresponding site. According to the position of the empty site
relative to the position of the considered site: −x, −y, y, x, the
four nonzero components of the eigenvectors are V−x , V−y , Vy ,
Vx , respectively, with their illustration below (the considered
sites in black; occupied sites in gray; the empty sites in white):

⎜⎜⎜⎝
0

e− iπ
4

e
iπ
4

−1

⎟⎟⎟⎠,

⎜⎜⎜⎝
e

iπ
4

0

−1

e− iπ
4

⎟⎟⎟⎠,

⎜⎜⎜⎝
e− iπ

4

−1

0

e
iπ
4

⎟⎟⎟⎠,

⎜⎜⎜⎝
−1

e
iπ
4

e− iπ
4

0

⎟⎟⎟⎠.

Factorizing the part of the matrix corresponding to these
eigenvectors reduces the dimension of the determinants (al-
ready reduced by rotational invariance) by two times the
number of dangling bonds, that is, from (n2 − p2)k to

(n2 − p2)k − 2p
(n2 − p2)k − nk

n2 − p2 − n
+ 2p2 (n2 − p2)k−1 − nk−1

n2 − p2 − n

for n − p = 2, or

(n2 − p2)k − 2p
(n2 − p2)k − nk

n2 − p2 − n

for other values of n − p.
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TABLE II. Critical temperatures of the Ising model on SC(3,1,k) for all investigated values of k. Values which are between two columns
correspond to evaluations obtained from crossing of Binder cumulants of two successive segmentation steps.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = ∞
Monceau and Perreau [16] 1.486 1.482 1.480 1.4795
Carmona et al. [13] 1.724 1.590 1.538 1.511 1.497 1.481
Pruessner et al. [17] 1.5266 1.5081 1.4992
This work 1.83842 1.65386 1.57659 1.52566 1.50446 1.49331 1.48719 1.48371 1.4803

IV. CRITICAL TEMPERATURES
OF SIERPIŃSKI CARPETS

Critical temperatures of SC(3,1) for finite values of k and
their extrapolations to k → ∞ from the literature (the few
references which give the detailed values for each investigated
finite k) and from this work are compared in Table II. Values
obtained by Pruessner et al. [17] are the most accurate with
a difference less than 0.27%. This is coherent since it is the
single reference which uses multiple translationally invari-
ant reproductions of a generating pattern. For Tc(k = ∞),
references obtaining results close to 1.48 [13,14,16,19] are
more accurate that those obtaining results close from 1.50
[21,23].

Table IV in the Appendix gives all calculated critical
temperatures for a wide range of values of n, p, and k.
The corresponding values of vc − vcsq are plotted versus the

segmentation step k for p = n − 2, p = n − 4, p = n − 6,
and p = n − 8 in Fig. 8. vc − vcsq fits quite reliably a power
law of exponent −k:

vc − vcsq = vc −
√

2 + 1 = a(1 + b−k), (11)

where the parameters a and b depend on n and p and are listed
in Table III. The least square linear fits are shown in dotted
lines and have determination coefficients R2 which differ from
1 by less than 10−4. However, no such power law is satisfied
by SM(3,1,k); the strict scale invariance seems necessary to
get Eq. (11).

Once a and b determined, the critical temperature for k →
∞ can be extrapolated from Eq. (11): vc(∞) = vcsq + a. The
values are listed in the last column of Table III. Figure 9 (left)
shows the plots of ln[Tc(∞)] versus dh for p = n − 2, n − 4,
n − 6, and n − 8. The curves are approximately linear giving

FIG. 8. vc − vcsq versus (1 + b−k) for SC(n,p,k). Slopes a and values of b are given in Table III.
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TABLE III. Values of a, b of Eq. (11) and of Tc(k = ∞).

p = n − 2 p = n − 4

n a b Tc(∞) n a b Tc(∞)

3 0.1747 1.892 1.4803 5 0.0355 3.60 2.0647
4 0.3013 1.789 1.1131 6 0.0628 3.77 1.9264
5 0.3909 1.790 0.8985 7 0.0846 3.80 1.8258
6 0.4579 1.770 0.7453 8 0.1023 3.85 1.7496
7 0.4996 1.810 0.6451 9 0.1177 3.85 1.6869
8 0.5204 1.865 0.5905 10 0.1309 3.86 1.6356
9 0.5365 1.96 0.5438 15 0.1778 3.90 1.4690
10 0.5501 2.00 0.4990 20 0.2080 3.90 1.3725
15 0.3828 2.35 0.4459 25 0.2286 4.00 1.3107

p = n − 6 p = n − 8

n a b Tc(∞) n a b Tc(∞)

7 0.0154 5.00 2.1767 9 0.0086 6.8 2.2168
8 0.0286 5.50 2.1021 10 0.0165 7.4 2.1703
9 0.0394 5.80 2.0441 15 0.0430 8.3 2.0253
10 0.0486 6.00 1.9965 20 0.0594 8.6 1.9429
15 0.0813 6.10 1.8405 25 0.0712 8.7 1.8867
20 0.1019 6.25 1.7513 50 0.1033 9.2 1.7454
50 0.1575 6.65 1.5384

the following power laws:

for p = n − 2, Tc(∞) ≈ 2.48 10−3 (30.0)dh ,

for p = n − 4, Tc(∞) ≈ 0.184 (3.36)dh ,

for p = n − 6, Tc(∞) ≈ 0.400 (2.30)dh ,

for p = n − 8, Tc(∞) ≈ 0.566 (1.95)dh . (12)

Figure 9 (right) shows the plot of the logarithm of vc versus
1/n for SC(n,n − 2,k). For k = 2, the plot is approximately
linear, at least for large values of n. A linear fit gives

ln(vc) ≈ −0.8132

n
(R2 = 0.9998).

However, such a linear approximation does not hold for
k �= 2 or p �= n − 2.

V. SPECTRA OF THE PARTITION FUNCTION
OF SIERPIŃSKI CARPETS

Not only the critical parameter vc but also the full spectrum
of the pseudopartition function may be calculated. Several
examples of spectra of Sierpiński carpets are plotted in the
complex plane on Fig. 10. They may be compared to other
fractal spectra obtained in hierarchical models [36].

Figure 11 shows a magnification of the area of the spectrum
located in the vicinity of the critical parameter vc for SC(3,1)
at steps k = 5 and k = 6. It has been suggested (especially for
lattices with random impurities [35,37–39]) that the topology
of this area of the spectrum may be related to the critical
behavior of thermodynamic functions. Several similar patterns
occur at different scales, but with differences which are stable
with the segmentation step. The scale invariance is not rigorous
since the patterns do not clearly converge towards an exact
scale invariant structure for k → ∞.

Figure 10 shows also that coherently, when the structure
becomes more dense, and the proportion of voids decreases,
from p = n − 2 to p = n − 8, the spectrum aggregates along
the two circles of Fig. 5.

VI. THERMODYNAMICS

A. Internal energy and specific heat on SL(∞,n)

The generating pattern of SL(N,n) contains 2n − 1 sites
and 2n bonds. The total number of sites is N = (2n − 1)N2

and from (4), the pseudopartition function of SL(N,n) is

Z = 2N cosh(βJ )2nN2
PN,n(v) = 2NPN,n(v)

(1 − v2)nN2

= 2N
N∏

p,q=1

[
R1(n,v)−R2(n,v)

(
cos

2pπ

N
+ cos

2qπ

N

)] 1
2

,

(13)
where

R1(n,v) = (1 + v2n)2

(1 − v2)2n
and R2(n,v) = 2vn(1 − v2n)

(1 − v2)2n
.

FIG. 9. Plots of ln[Tc(∞)] versus dh (right) and ln(vc) versus 1/n (for p = n − 2) (left). Dotted lines are linear fits.
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FIG. 10. Spectra of several examples of Sierpiński carpets.

Calculations of the filled square Ising model are extended in a straight line to the lacunary square lattice. The free energy F is
obtained taking the logarithm of (13), dividing by N , and, at the limit N → ∞, replacing the double sum by a double integral:

βF = − ln 2 − 1

8(2n − 1)π2

∫∫ 2π

0
ln [R1(n,v) − R2(n,v)(cos x + cos y)]dxdy. (14)
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FIG. 11. The vicinity of the real axis in the critical region of the spectrum of SC(3,1,k).

Differentiating a first time, we obtain the internal energy U = ∂βF

∂β
. Let us note R′

1 and R′
2, the derivatives of R1 and R2 with

respect to v:

U = − 1

8(2n − 1)π2

dv

dβ

∫∫ 2π

0

R′
1 − R′

2(cos x + cos y)

R1 − R2(cos x + cos y)
dxdy = − (1 − v2)

128

[
R′

2

R2
+ 2

π

(
R′

1

R1
− R′

2

R2

)
K

(
2R2

R1

)]

= n

(2n − 1)

[
(v2n+2 + 3v2n − 3v2 − 1)

2v(1 − v2n)
+ (1 − v2)(v4n − 6v2n + 1)

πv(1 − v4n)
K

(
4vn(v2n − 1)

(v2n + 1)2

)]
,

where K is the elliptic integral of the first kind.
Differentiating a second time, we obtain the specific heat C = −β2 ∂2βF

∂β2 :

C = nβ2

2(2n − 1)π

[
(2(v2 + 1)(v6n − 7v4n + 7v2n − 1) + n(v2 − 1)(v6n + 11v4n + 11v2n + 1))

v2(v2n − 1)2(v2n + 1)
K

(
4vn(1 − v2n)

(v2n + 1)2

)

− n(v2 − 1)(v2n − 2vn − 1)2

v2(v2n − 1)2
E(

4vn(1 − v2n)

(v2n + 1)2
) − π (4(n − 1)v2n+2 + v4n+2 − 3v4n − 4(n − 1)v2n + 3v2 − 1)

v2(v2n − 1)2

]
, (15)

where E is the elliptic integral of the second kind.
The internal energy U and the specific heat C are plotted in Fig. 12 for n = 1 to 5 and n = 10.
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FIG. 12. The internal energy and specific heat of SL(∞,n) versus temperature for n = 1 to 5 and 10.

B. Internal energy and specific heat on Sierpiński carpets

The generating pattern of SC(3,1,2) has 8 sites and 14 bonds; then the pseudopartition function of SC(3,1,1) is

Z = 28N2 PN,SC(3,1,1)(v)

(1 − v2)7N2 .

From (8) and taking the limit as N → ∞, the free energy per site is

βF = − ln 2 − 1

64π2

∫∫ 2π

0
ln[R1(v) + R2(v)(cos x + cos y) + R3(v) cos x cos y + R4(v)(cos2 x + cos2 y)]dxdy, (16)

where Ri(v) = Qi (v)
(1−v2)14

Calculations have been performed also for the second segmentation steps SC(3,1,2) and SM(3,2). Their pseudopartition
polynomials have nine terms and their degrees are, respectively, 84 and 64. They are explicitly given as Supplemental Material
[40]. The internal energy and specific heat of SC(3,1,1), SC(3,1,2), and SM(3,2) are plotted in Fig. 13.

C. Magnetization of the Ising model on SL(∞,n)

The magnetization m of the square lattice without an external field has been explicitly calculated in [41]. The method has been
subsequently refined [42,43] and adapted to the loops counting method we are using in this paper [34]. The basic principles is to
evaluate the asymptotic limit of average correlations between two spins when their distance become infinite. The calculation is
generally performed within a row of spins:

m = lim
k→∞

〈s1,sk+1〉.

In terms of the matrices M involved in the calculations of the partition function, correlations within one row of sites are
calculated from matrices elements of (I − vM)−1.

FIG. 13. The internal energy and specific heat of SC(3,1,1), SC(3,1,2), and SM(3,2) versus temperature.
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For SQ(N,n), using the translational invariance [44] and the further reduction already used for the calculation of the partition
polynomial, the matrix involved is the inverse of the matrix of Eq. (3), replacing 2πp

N
and 2πq

N
, respectively, by x and y,

M(N,p,q) → M(x,y) (expressions are taken for N → ∞):

	(v,x,y)[I − vnM(x,y)]−1 =

⎛
⎜⎜⎜⎝

γ1(v,x,y) γ2−(v,−x,y) γ2+(v,−x,−y) γ3(v,−x,−y)

γ2+(v,−y,x) γ1(v,y,x) γ3(v,−y,x) γ2−(v,−y,−x)

γ2−(v,y,x) γ3(v,y,−x) γ1(v,−y,x) γ2+(v,y,−x)

γ3(v,x,y) γ2+(v,x,y) γ2−(v,x,−y) γ1(v,−x,y)

⎞
⎟⎟⎟⎠, (17)

where
	(v,x,y) = |I − vnM(x,y)|

= (1 + v2n)2 − 2vn(1 − v2n)(cos x + cos y),

γ1(v,x,y) = 1 + v2n − vn(1 − v2n)eix − 2vn cos y,

γ2±(v,x,y) = e± iπ
4 vn(eix − vn − vneix+iy − v2neiy),

γ3(v,x,y) = 2v2neix sin y. (18)

From these expressions, similar calculations as for n = 1
[34,42], with the substitution v → vn, leads to the magnetiza-
tion:

m =
[

1 − (1 − v2n)4

16v4n

] 1
8

=
[

(1 − v2n)2P1,n(v)P1,n(−v)

16v4n

] 1
8

, (19)

which is plotted on Fig. 14 for n = 1 to 5 and n = 10.
When taking the first term of the expansion of m in

the vicinity of the critical parameter vc = (
√

2 − 1)
1
n , the

magnetization writes

m8 = 4n
√

2(
√

2 + 1)
1
n (v − vc) + O(v − vc)2. (20)

It would be tempting to extend Eq. (19) to Sierpiński carpets
by substituting P1,SC(n,p,k)(v) to P1,n(v) and adapting the
powers of other factors accordingly. Unfortunately, the passage
from the first line to the second in (19) implicitly involves
the invariance under Kramers-Wannier’s transformation [45]
which is still valid for the lacunary square lattice provided
the change v → vn, but does not hold for SC(n,p,k). The

FIG. 14. The magnetization of the lacunary square lattice
SL(∞,n), for n = 1 to 5 and n = 10.

calculation of the magnetization of Sierpiński carpets requires
one to start back from the inversion of the matrix (7) which
goes beyond the scope of this paper.

VII. DISCUSSION AND CONCLUSION

At this step, we are facing the problem of taking the
thermodynamic limit in fractal systems. Sierpiński carpets
are obtained by the iteration of a segmentation rule step
by step (which is noted k in this paper). But at each finite
step, reproducing the generating pattern periodically N2

times restores an artificial translational invariance. In a strict
meaning, the thermodynamic limit should be taken setting
k → ∞. That is done in this paper in Secs. IV and V for the
calculation of critical temperatures and spectra. But for a finite
segmentation step k, calculations of thermodynamic functions
(Sec. VI) have been done by setting N → ∞. In this way, basic
symmetries are the same as the square lattice and the critical
exponents are the same, which obviously results from Eqs. (16)
and (20). This is a general characteristic of lattices which have
translational invariance, whatever the period, that the critical
behavior is the same as the usual square lattice as previously
pointed out in periodic layered lattices [46]. Moreover, the
amplitude of the logarithmic divergence of the specific heat
decreases as the size of the generating pattern (the period)
increases and/or the proportion of voids increases, a situation
noticed analogously in lattices with random impurities [47].

To compare critical exponents with simulations as done
for critical temperatures in Table II, scale invariance should
be implemented in order to get a fully solvable model of the
Ising ferromagnetism on fractal lattices at the limit k → ∞.
Presently, no recursion formula linking the matrices of two
successive segmentation steps is available. This question is
also linked to relations between the topology of the spectrum
in the vicinity of the critical region and the critical behavior
of thermodynamic functions. Both questions are still open for
further investigations.
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APPENDIX: CRITICAL TEMPERATURES OF SC(n, p,k)

Table IV gives all calculated critical temperatures for a wide
range of values of n, p, and k.
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TABLE IV. The critical temperatures of Sierpiński carpets SC(n,p,k) for 3 � n � 1000 and 1 � p � n − 2.

p = n − 2 p = n − 4 p = n − 6

n dh Tc n dh Tc n dh Tc

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3

4 1.7925 1.6213 1.3689 1.2502 1.1845 5 1.9746 2.1193 2.0790 2.0690 2.0667 7 1.9894 2.1942 2.1798 2.1774
5 1.7227 1.4875 1.19857 1.0579 0.9882 6 1.9343 2.0097 1.9469 1.9323 8 1.9690 2.1310 2.1072 2.1036
6 1.6720 1.3946 1.0832 0.9309 0.8429 7 1.8957 1.9286 1.8512 1.8334 9 1.9464 2.0803 2.0499 2.0454
7 1.6332 1.3252 0.9997 0.8431 0.7556 8 1.8617 1.8656 1.7773 1.7571 10 1.9243 2.0386 2.0031
8 1.6025 1.2709 0.9363 0.7793 0.6939 9 1.8320 1.8145 1.7180 1.6956 15 1.8352 1.9016 1.8506
9 1.5773 1.2267 0.8825 0.7308 10 1.8062 1.7721 1.6688 1.6447 20 1.7752 1.8213 1.7623
10 1.5563 1.1899 0.8461 0.6926 11 1.7150 1.6310 1.5080 50 1.6194 1.6246 1.5510
11 1.5384 1.1585 0.8126 0.6621 20 1.6590 1.5479 1.4156 100 1.5330 1.5123
12 1.5229 1.1314 0.7846 25 1.6201 1.4908 1.3531 500 1.3989 1.3103
13 1.5093 1.1076 0.7599 50 1.5211 1.3430 1000 1.3593 1.2389
14 1.4972 1.0864 0.7387 100 1.4472 1.2253
15 1.4864 1.0675 0.7197 0.5787 500 1.3340 0.9812
20 1.4456 0.9954 0.6515 1000 1.3007 0.9474
25 1.4180 0.9460 0.6069 p = n − 8 p = n − 10

30 1.3976 0.9091 0.5748 n dh Tc n dh Tc

50 1.3492 0.8195 0.5007 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3
70 1.3229 0.7693 10 1.9823 2.1834 2.1721 200 1.5606 1.7277
100 1.2988 0.7222 15 1.9093 2.0524 2.0286 500 1.4804 1.6363
200 1.2607 0.6449 20 1.8510 1.9769 1.9467
500 1.2227 0.5642 25 1.8072 1.9253 1.8910
1000 1.2005 0.5150 50 1.6874 1.7932

100 1.5932 1.6895
SM 1.8928 1.8184 1.4677 1.2593 1.1687 500 1.4448 1.50266

1000 1.4008 1.4355
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