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Finite-time scaling at the Anderson transition for vibrations in solids
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A model in which a three-dimensional elastic medium is represented by a network of identical masses connected
by springs of random strengths and allowed to vibrate only along a selected axis of the reference frame exhibits
an Anderson localization transition. To study this transition, we assume that the dynamical matrix of the network
is given by a product of a sparse random matrix with real, independent, Gaussian-distributed nonzero entries and
its transpose. A finite-time scaling analysis of the system’s response to an initial excitation allows us to estimate
the critical parameters of the localization transition. The critical exponent is found to be ν = 1.57 ± 0.02,
in agreement with previous studies of the Anderson transition belonging to the three-dimensional orthogonal
universality class.
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I. INTRODUCTION

The phenomenon of Anderson localization—the cessation
of wave transport due to disorder—has been studied intensively
for almost 60 years since its discovery by Anderson in 1958
[1–3]. First considered a quantum effect specific to electrons
in disordered solids at low temperatures [1], it was later given a
simpler and more appropriate interpretation as an interference
effect that can take place for any wave in the presence
of sufficiently strong disorder [4–6]. Even though quantum
systems continue to be a playground for the study of Anderson
localization, with particularly impressive successes using cold
atoms [7–9], an increasing amount of new knowledge in this
field is now being acquired from experiments with “classical”
waves, such as microwaves [10–12], light waves [13–17], or
sound waves [18–21]. The latter allow for easier and less
expensive experiments requiring neither low temperatures
(because classical waves can have long coherence lengths
at room temperatures) nor small sample sizes (because
coherence lengths of several meters or even longer can
be readily achieved). Despite the difficulties inherent in these
experiments, such as, e.g., the absorption of wave energy by the
disordered sample [22] or inelastic-scattering effects [23], they
have the undeniable advantage of allowing for more versatile
studies of Anderson localization because measurements of
scattered wave fields can be readily performed with spatial,
angular, temporal, and frequency resolution.

Mechanical vibrations in elastic solids constitute an ex-
ample of wave excitations that demonstrates unequivocally
the classical nature of the Anderson localization phenomenon.
Indeed, the localization of vibrational modes can be fully un-
derstood based on a model derived from the Newton equation,
which is the “most classical” equation in physics. Numerous
experimental studies of localization of vibrational modes exist
in one [24,25] and two [26,27] dimensions, where theoretical
analysis, both analytical and numerical, is also easier to carry
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out [28–30]. In contrast, experiments clearly demonstrating
Anderson localization of vibrations in three-dimensional (3D)
disordered solids are scarce and relatively recent [18–21];
the analytic theory is hard to develop and often relies on
crude approximations [4,31–33], and the numerics requires
a great deal of computer resources [34–39]. Nevertheless, the
3D case is the most interesting because, in contrast to lower
dimensions where all modes are localized regardless of the
disorder strength [40], a localization transition is expected in
three dimensions [41,42]. Not only does this transition have
a number of interesting critical properties (critical exponents,
multifractality of critical modes, etc.), but it also constitutes a
link between different disordered physical systems (electrons
in disordered solids, cold atoms in random potentials, light in
disordered dielectrics, vibrations in solids, etc.), which are all
expected to exhibit the same, universal critical behavior at the
Anderson transition despite their differences [42].

In the present paper, we propose a numerical approach to
study Anderson localization of vibrations in disordered solids.
Our approach differs from previous ones in two important
aspects. First, it is based on the use of sparse random matrices
with independent elements obeying Gaussian statistics. This
makes the corresponding theoretical model potentially suitable
for analytic treatments. Second, the critical properties of the
localization transition are determined using a procedure of
finite-time scaling, to be contrasted with the more common
procedure of finite-size scaling [43–45] (see Ref. [46] for a
review). The latter has gained of lot of popularity in studies of
Anderson localization via numerical simulations, but its basic
principles are difficult or even impossible to put into practice
in a realistic experiment, where preparing a set of disordered
samples of different sizes but with identical disorder statistics
and strengths may represent an insurmountable difficulty. In
contrast, the finite-time scaling approach can be applied to
experimental data obtained on a single disordered sample
provided that time-dependent measurements are performed
in a sufficiently wide temporal range. This approach was used
recently to study the Anderson transition in a cold-atom system
[8,47], and it has the potential to be applied to the time-
dependent experimental data of Refs. [18,21]. Thus, our work

2469-9950/2017/96(17)/174209(7) 174209-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.174209


Y. M. BELTUKOV AND S. E. SKIPETROV PHYSICAL REVIEW B 96, 174209 (2017)

represents a useful step toward an experimental realization
of finite-time scaling for mechanical vibrations in disordered
solids by demonstrating single-parameter scaling in a model
system describing mechanical vibrations and yielding a value
of the critical exponent of the localization transition that is
compatible with the value obtained previously using the finite-
size scaling approach. In addition, our computational method
is quite efficient and may compete, in terms of calculational
efficiency, with the now standard transfer-matrix techniques
used in finite-size scaling calculations. Our results may have
practical applications in the field of thermal transport in
amorphous or other disordered materials, to which vibrational
modes (phonons) contribute [34,48].

II. THE MODEL

Consider a 3D cubic lattice of N identical point masses
m = 1 (atoms) connected by harmonic springs. The equations
of motion for displacements ui(t) = ri(t) − Ri of atoms from
equilibrium positions Ri can be written as [49]

üα
i (t) = −

∑
jβ

M
αβ

ij u
β

j (t), (1)

where M
αβ

ij are elements of the dynamical matrix M̂ . In the
following, we apply the scalar approximation, in which indices
α and β of Cartesian coordinates are omitted. Simply speaking,
in the scalar approximation atoms are allowed to move only
along a selected axis of the reference frame. The displacements
ui then become scalar ui .

Eigenvalues of the dynamical matrix M̂ = {Mij }N×N are
squared eigenfrequencies ω2

n. Thus, the dynamical matrix of a
mechanically stable system is positive semidefinite, which is
possible if and only if the dynamical matrix can be represented
as M̂ = ÂÂT [49]. Off-diagonal matrix elements Aij (i �= j ),
describing interactions between nearest-neighbor atoms, are
assumed to be independent, zero-mean Gaussian variables
with identical variances �2. Aij = 0 for atoms that are not
nearest neighbors. The diagonal elements Aii are obtained
by a sum rule Aii = −∑

j �=i Aji , which ensures that the total
potential energy is invariant upon translation of the system as a
whole. Hence, the random matrix Â has 7N nonzero elements
(coupling with six nearest neighbors for each of the N atoms,
plus N diagonal elements), of which only 6N are statistically
independent. We set � = 1, which fixes the frequency and
time units.

In the framework of the model described above, we run a
series of calculations for a large system (N = 2003) starting
with a homogeneously excited left half of the sample x < 0.
Initial velocities u̇i(0) are taken to be Gaussian random
numbers if xi < 0 and zeros otherwise. Initial displacements
ui(0) are set to zero. We calculate atomic displacements
ui(t) and atomic velocities u̇i(t) using Verlet integration,
and we observe spreading of the vibrational energy from the
left (x < 0) to the right (x > 0) half of the system as time
increases. This process is a superposition of many individual
harmonic processes, corresponding to different frequencies ω.
Previous calculations have shown that spreading of vibrational
energy with time slows down with increasing frequency and
eventually comes to a halt beyond some critical frequency

ωc � 5.5, which may serve as a first estimation of the
critical energy of the localization transition (mobility edge)
in our system [49]. The energy carried by excitations with
frequencies below the mobility edge ωc spreads in space
diffusively with a diffusion coefficient D(ω), whereas the
spread of the energy of excitations with frequencies above
the mobility edge slows down with time and eventually stops
in the limit of long times, due to Anderson localization. The
diffusion coefficient cannot be defined at these frequencies,
and the localized excitations are characterized by their local-
ization lengths ξ (ω).

Displacements of atoms in a harmonic system can be
represented as superpositions of eigenmodes ei(ωn):

ui(t) =
∑

n

vn

ωn

ei(ωn) sin(ωnt), (2)

where the initial velocity for each eigenmode is given by

vn =
∑

i

u̇i(0)ei(ωn). (3)

However, a direct analysis of eigenmodes ei(ωn) via diagonal-
ization of the dynamical matrix M̂ requires unreasonably large
computational resources growing rapidly with the matrix size
N . Therefore, in order to analyze the behavior of excitations
as a function of their frequency ω, we perform a windowed
Fourier transform

ui(ω,t) = 2
∫ ∞

−∞
ui(t − t ′)W (t ′) cos(ωt ′)dt ′, (4)

where W (t) is a symmetric window function with a normaliza-
tion 2π

∫ ∞
−∞ W 2(t)dt = 1. For negative times t , ui(t) is defined

as ui(−t) = −ui(t), reflecting the time-reversal symmetry of
the Newton equation (1). Because Eq. (1) is linear, ui(ω,t)
is its solution for any given frequency ω. Therefore, ui(ω,t)
can be considered as a quasimonochromatic excitation of
frequency ω.

The energy E(ω) of the quasimonochromatic excitation
ui(ω,t) is an integral of motion for each frequency ω. It can be
presented as a sum of partial energies carried by eigenmodes:

E(ω) =
∑

n

[K(ω − ωn) + K(ω + ωn)]En, (5)

where En = v2
n/2 is a partial energy carried by the nth

eigenmode in the broadband excitation ui(t). The function
K(ω) is a broadened δ function that selects a narrow frequency
interval near ±ω. Since we consider positive frequencies only,
the term K(ω + ωn) can be neglected. The selective function
K(ω) depends on the window function W (t) as

K(ω) =
[∫ ∞

−∞
W (t) cos(ωt) dt

]2

. (6)

We use the window function of the form W (t) =
(2πτ )−1/2 cos(πt/2τ ) if |t | < τ and W (t) = 0 otherwise. In
this case, K(ω) = 8πτ cos2(ωτ )/(π2 − 4ω2τ 2)2. We set the
half-width of the window function τ = 60, which ensures
a good enough frequency resolution for further numerical
analysis.
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The energy of the quasimonochromatic excitation localized
on the ith atom can be written as

Ei(ω,t) = 1

2
u̇i(ω,t)2 + 1

2

∑
j

Mijui(ω,t)uj (ω,t), (7)

whereas the one-dimensional energy density is

φ(ω,x,t) =
∑

i

Ei(ω,t)δ(x − xi). (8)

The square of the penetration depth of the initial excitation
into the right half of the sample can be defined as

R2(ω,t) = 1

φ0(ω)

∫ ∞

0
xφ(ω,x,t)dx, (9)

where φ0(ω) is the average energy density in the left half of
the system at t = 0. The average energy density can be found
as φ0(ω) = 2E(ω)/Lx , where Lx is the width of the system
in the x direction. The squared penetration depth R2(ω,t) is
averaged over several (typically 10) realizations of disorder to
obtain an ensemble-averaged quantity 〈R2(ω,t)〉, which is used
as a starting point of the finite-time scaling analysis described
in the next section.

III. FINITE-TIME SCALING ANALYSIS

In the following, we will be interested only in the behavior
of our disordered system in the long-time limit (ideally,
t → ∞). Figure 1(a) illustrates the time dependence of

(a)

(b)

FIG. 1. (a) Average square of the penetration depth 〈R2(ω,t)〉 for
a set of frequencies (ω = 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, and 6.25 from
top to bottom) around the localization transition of a 3D system. The
solid and dashed straight lines illustrate 〈R2〉 ∝ t for ω < ωc � 5.5
and 〈R2〉 ∝ t2/3 expected at the mobility edge ω = ωc, respectively.
(b) The same as (a) for a 2D system.

〈R2(ω,t)〉 in different regimes of wave propagation corre-
sponding to different frequencies ω. In the diffuse regime
of propagation (ω < ωc), the ensemble-averaged energy den-
sity obeys a diffusion equation, and we find 〈φ(ω,x,t)〉 =
[φ0(ω)/2] erfc[x/

√
4D(ω)t], yielding 〈R2(ω,t)〉 = 1

2D(ω)t .
On the other hand, 〈R2(ω,t)〉 saturates at a value of the
order of the square of the localization length ξ (ω)2 when
Anderson localization sets in (ω > ωc). At the mobility edge
(ω = ωc) one expects 〈R2(ω,t)〉 ∝ t2/3 [50]. For comparison,
Fig. 1(b) shows results that we obtained for a two-dimensional
(2D) system in which no localization transition is expected
and the growth of 〈R2(ω,t)〉 with time t is sublinear with
a tendency to saturate at long times for all frequencies
ω > 0.

It is convenient to analyze a ratio 〈R2(ω,t)〉/t2/3, which is
expected to be independent of time at the mobility edge. We
thus introduce a scaling function

F (ω,t) = ρ(ω)2/3 〈R2(ω,t)〉
t2/3

, (10)

where the density of states ρ(ω) is introduced to make F

dimensionless. In the diffuse regime of transport (ω < ωc),
F (ω,t) grows with time t , whereas at frequencies ω > ωc

at which eigenstates are localized, we expect F (ω,t) to be
a decreasing function of t . At the critical point ω = ωc,
〈R2(ω,t)〉 ∝ t2/3 [50,51] and F (ωc,t) = const independent
of time. It is instructive to define an effective length scale
L(ω,t) = [t/ρ(ω)]1/3 and rewrite Eq. (10) as

F (ω,t) = 〈R2(ω,t)〉
L2(ω,t)

. (11)

We now introduce a single-parameter scaling hypothesis
(which will be justified a posteriori but remains an assumption
at this point) that consists in assuming that in the vicinity of the
localization transition, F is a function of a single parameter
L/ξ . Here ξ = ξ (ω) denotes the localization length for ω > ωc

and the correlation length of critical fluctuations for ω < ωc.
It diverges at the transition as ξ (ω) ∝ |ω − ωc|−ν , where ν is
the critical exponent of the transition. The single-parameter
scaling hypothesis can be conveniently reformulated in terms
of a new variable ψ = L1/ν(ω − ωc)/ωc ∝ (L/ξ )1/ν : F =
F (ψ). The procedure of finite-size (or finite-time, in our case)
scaling consists in estimating the critical parameters of the
localization transition (ωc and ν) from the best fits of the above
expression to numerical (or experimental) data. The finite-size
scaling analysis is used extensively in the theoretical studies
of the Anderson transition; a recent review of related research
can be found in Ref. [46]. In contrast, the finite-time scaling
has been applied to the localization problem only recently
[47]. Several improvements of the basic scaling procedure
described above have been proposed: the dependence of ψ on
w = (ω − ωc)/ωc may be nonlinear, and a dependence of F on
an additional, irrelevant scaling variable, which is supposed to
account for weak deviations from the single-parameter scaling,
may be introduced [46]. The final definitions of functions to
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be used for fits to numerical data are then the following:

ψi = fi(w)Lαi , (12)

fi(w) =
mi∑

j=0

bijw
j , (13)

ln F (ψ1,ψ2) =
n1∑

j1=0

n2∑
j2=0

aj1j2ψ
j1
1 ψ

j2
2 , (14)

where ψ1 = ψ , i = 1,2, and the (yet unknown) functions
fi(w) and ln F (ψ1,ψ2) have been expanded in Taylor series.
The relevant scaling exponent is α1 = 1/ν, whereas the
irrelevant one is α2 = y < 0. The latter condition ensures that
the role of the irrelevant scaling variable ψ2 decreases when
the effective “size” of the system L (or, equivalently, time t)
increases. Therefore, the single-parameter scaling is restored
in the limit of L,t → ∞.

To demonstrate the localization transition in our model and
estimate its critical parameters, we determine F (ω,t) using
Eq. (10) from the numerically computed 〈R2(ω,t)〉. Within
numerical errors, dependencies ln F (ω) plotted for a set of
different times t between 100 and 25 600 cross in a single point
(ω̃c, ln F̃c), which is clear evidence of critical behavior. We
restrict our consideration to the vicinity of the crossing point

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

− 4.0

− 3.5

− 3.0

− 2.5

5.1 5.2 5.3 5.4 5.5 5.6 5.7

− 3.8

− 3.6

− 3.4

− 3.2

− 3.0

FIG. 2. Best fits to numerical results for two widths of the critical
region: � = 0.5 (a) and 1 (b). Different colors correspond to different
times t : 100 (black), 200 (red), 400 (green), 800 (blue), 1600 (orange),
3200 (purple), 6400 (cyan), 12 800 (magenta), and 25 600 (brown).
The fits were performed using Eqs. (12)–(14) with m1 = 2, n1 = 1,
and m2 = n2 = 0 (a) and m1 = 3, n1 = 2, and m2 = n2 = 0 (b). The
best-fit values of the mobility edge ωc are shown by vertical dashed
lines. The best-fit values of the critical exponent ν are written in the
plots.

and fit the data falling in the range ln F ∈ [ln F̃c−�, ln F̃c+�]
to Eqs. (12)–(14) (see Appendix for details). To ensure that
only the vicinity of the mobility edge is analyzed, we choose
� to be small: � = 0.5 or 1. The critical parameters of the
localization transition—the mobility edge ωc and the critical
exponent ν—are obtained as the best-fit parameters; their
uncertainties δωc and δν are also provided by the fitting routine
[52], and the fit results are reported as ωc ± δωc and ν ± δν in
the following. The fits are repeated with different orders mi,ni

of Taylor expansions in Eqs. (13) and (14), and using only the
data corresponding to times t larger than some minimum tmin.
The quality of the fits is characterized by the χ2 statistics (see
Appendix).

The analysis of the fit results shows that all fits yield
consistent values of critical parameters. For any m1,n1 � 3,
m2 � m1, n2 � n1, tmin = 100–1600, and the two values of �

used, the best-fit values of ωc remain in the range 5.462–5.518
and the best-fit values of ν are in the range 1.214–1.987.
However, extreme values in these ranges are obtained either
when mi,ni are not large enough and the fit quality is poor (χ2

statistics much larger than 1) or when they are too large and
Eqs. (12)–(14) overfit the data (χ2 below 1). “Optimal” fits
that require a minimum number of free fit parameters and, at
the same time, yield χ2 ∼ 1 are obtained with m1 = 2, n1 = 1
for � = 0.5 and m1 = 3, n1 = 2 for � = 1, without using
the irrelevant scaling variable (m2 = n2 = 0). Introducing the
irrelevant variable improves the quality of the fits only slightly
and leads to a significant spread of best-fit values of ωc and ν

FIG. 3. Best-fit values of the mobility edge ωc as functions of the
minimum time tmin used in the fit procedure and for two different
widths of the critical region: � = 0.5 (a) and 1 (b). Error bars show
the standard errors of the best-fit values, the horizontal dashed lines
show the values 〈ωc〉 of ωc averaged over all tmin, and the gray shaded
regions show the errors of 〈ωc〉.
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FIG. 4. Best-fit values of the critical exponent ν as functions of
the minimum time tmin used in the fit procedure and for two different
widths of the critical region: � = 0.5 (a) and 1 (b). Error bars show
the standard errors of the best-fit values, the horizontal dashed lines
show the values 〈ν〉 of ν averaged over all tmin, and the gray shaded
regions show the errors of 〈ν〉.

obtained for different tmin. We thus judged using the irrelevant
scaling variable inappropriate for our numerical data. The op-
timal fits to all available data (tmin = 100) are shown in Fig. 2.

A better idea of the accuracy of the estimates of critical pa-
rameters following from the fits can be obtained by analyzing
the best-fit values of ωc and ν obtained for different tmin. The
latter are shown in Figs. 3 and 4, respectively. We obtain the
final estimates of critical parameters 〈ωc〉 and 〈ν〉 consistent
with all tmin as averages over ωc and ν obtained for different
tmin. These estimates are given in Figs. 3 and 4.

IV. DISCUSSION

The analysis presented in Sec. III was based on an important
hypothesis of single-parameter scaling that was assumed
without justification. We now can check if our numerical
data are consistent with this hypothesis by plotting the data
of Fig. 2 as a function of a single parameter L(ω,t)/ξ (ω),
where ξ (ω) = const± × |f1(w)|−ν (see Fig. 5). The numerical
constants const± cannot be determined from a scaling analysis.
Figure 5 clearly confirms that the hypothesis of single-
parameter scaling is justified because all points resulting from
our numerical analysis fall on a single master curve. The latter
has two branches: the first one corresponding to extended states
(ln F growing with L/ξ ) and the second one corresponding
to localized states (ln F decreasing with L/ξ ). The cusp at
which the two branches join corresponds to the critical point
of Anderson transition where ξ tends to infinity and ln F is
independent of L.

− 8 − 6 − 4 − 2

− 3.8

− 3.6

− 3.4

− 3.2

− 3.0

− 10 − 8 − 6 − 4 − 2 0
− 4.5

− 4.0

− 3.5

− 3.0

− 2.5

FIG. 5. Data of Fig. 2 represented as a function of a single
parameter L/ξ . All data points (symbols) fall on a single master curve
following from Eq. (14) (black solid line) justifying the hypothesis
of single-parameter scaling.

Let us now verify whether the values of the critical
parameters—the mobility edge ωc and the critical exponent
ν obtained in Sec. III—are in agreement with the available
well-established results for the 3D Anderson transition [42].
First, the mobility edge ωc is often believed to follow from
the celebrated Ioffe-Regel criterion of Anderson localization:
k(ωIR)�(ωIR) = 1, where k(ω) is the wave number and �(ω) is
the scattering mean free path for an excitation of frequency
ω [53]. The Ioffe-Regel frequency ωIR determined from this
criterion is often expected to be a more or less reliable
estimation of ωc. However, the model considered in the present
work is quite singular because, as was shown previously in
Ref. [49], it does not have macroscopic rigidity. As a result,
some characteristic frequencies—such as, e.g., the Ioffe-Regel
frequency ωIR—become equal to zero. The Ioffe-Regel crite-
rion is, therefore, not a good criterion of Anderson localization
in our system, and the mobility edge ωc cannot be estimated
from it. It is important to realize that the impossibility of
estimating ωc from the Ioffe-Regel criterion is not an artifact of
having zero rigidity. The latter can be readily introduced in our
model in several ways [49,54] and produces nonzero values of
ωIR. However, even in this case ωIR turns out to be considerably
lower than the critical frequency of the Anderson transition ωc.
As a matter of fact, ωIR 
 ωc is a usual situation for vibrations
in amorphous dielectrics [35,55,56]. Under such conditions,
we do not expect the macroscopic rigidity to significantly mod-
ify vibrational properties at frequencies ω ∼ ωc, which justi-
fies the use of a model with a vanishing rigidity in our analysis.

The estimation of the critical exponent ν = 1.57 ± 0.02
that follows from our calculations [57] is in agreement with
the values obtained previously for both spinless electrons [46]
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and mechanical vibrations [38] in solids using the finite-size
scaling approach, as well as with the results of finite-time
scaling analysis of the kicked rotator model [47]. This confirms
that the localization transition in the considered vibrational
system belongs to the same orthogonal universality class as
the transitions in the three systems listed above. Our results
also validate the use of the finite-time scaling approach as a
valuable alternative to the final-size one in mechanical systems
with disorder. Such a validation is particularly important in
view of the possible application of finite-time scaling analysis
to experimental data.

V. CONCLUSIONS

In this work, we have presented a finite-time scaling
approach to study the Anderson localization transition for
vibration in 3D solids. Application of the approach to a model
system in which vibrations are allowed only along a given
direction in space (scalar model) has allowed us to estimate
the critical frequency and exponent of the transition. The value
of the critical exponent is in agreement with the values that
were found previously for different 3D physical systems in
which localization transitions belong to the same universality
class. This validates the use of the finite-time scaling approach
instead of the better known finite-size scaling method. Finite-
time scaling analysis may be particularly interesting for
the analysis of experimental data because obtaining time-
dependent data for a single disordered sample may be easier
than repeating measurements on an ensemble of statistically
equivalent samples of different sizes, as would be required for
the use of the finite-size scaling analysis. Our approach can also
be applied to the analysis of more realistic, vectorial models
in which displacements of masses constituting a disordered
sample are three-dimensional vectors [58].
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APPENDIX: DETAILS OF THE PROCEDURE APPLIED
TO FIT THE NUMERICAL DATA

In this Appendix, we provide the details of the procedure
applied to fit the numerical data for the scaling function
F (ω,t). First, we plot ln F as a function of ω for a set of
different times t . We observe that within numerical errors, all
lines corresponding to different times cross in a single point
(ω̃c, ln F̃c). We now restrict our consideration to the vicinity
of the crossing point, and we fit the data falling in the range
ln F ∈ [ln F̃c − �, ln F̃c + �], with � � 1, to Eqs. (12)–(14)
with fixed mi,ni . To reduce the sensitivity of the results to
the starting values of the fit parameters, we repeat the fitting
procedure 100 times for each � and each set of mi,ni with
random starting values of ωc within ±20% of ω̃c, ν ∈ [0,10],
y ∈ [−10,0], a00 within ±20% of ln F̃c, and bij ,aj1j2 in a wide
range [−10,10] (except for b10 = 0 and a01 = a10 = 1; see
Ref. [46]). The fits are accepted if the best-fit value of ωc

falls within ±20% of ω̃c, y < −1, and the contribution of
the irrelevant scaling variable does not exceed 10%. Among
the accepted fits, the best fit is chosen as the one having the
minimum value of the χ2 statistic:

χ2 = 1

Ndata

Ndata∑
i=1

[
ln F

(data)
i − ln F

(fit)
i

]2

σ 2
i

, (A1)

where Ndata is the total number of data points corresponding to
different times and frequencies, the superscripts “(data)” and
“(fit)” denote the values of ln F obtained from the data using
Eq. (10) and from the fit function (14), respectively, and σi is
the statistical error of ln F

(data)
i .
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