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First-principles-based Landau-Devonshire potential for BiFeO3
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The work describes a first-principles-based computational strategy for studying structural phase transitions,
and in particular, for determination of the so-called Landau-Devonshire potential—the classical zero-temperature
limit of the Gibbs energy, expanded in terms of order parameters. It exploits the configuration space attached to
the eigenvectors of the modes frozen in the ground state, rather than the space spanned by the unstable modes of
the high-symmetry phase, as done usually. This allows us to carefully probe the part of the energy surface in the
vicinity of the ground state, which is most relevant for the properties of the ordered phase. We apply this procedure
to BiFeO3 and perform ab initio calculations in order to determine potential energy contributions associated with
strain, polarization, and oxygen octahedra tilt degrees of freedom, compatible with its two-formula unit cell
periodic boundary conditions.
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Phenomenological models, taking into account important
structural order parameters and coupling between them, can
greatly help to grasp the physical mechanisms involved in
various crystal structure based phenomena, such as piezoelec-
tricity, ferroelectricity, electrostriction, etc. Typically, when
simple models for structural phase transitions are derived from
first-principles calculations, the microscopic order parameters
relevant for a structural phase transition are selected from
unstable phonon modes of the high-symmetry reference phase.
Then, the configurational space attached to the Landau-
Devonshire (LD) potential (the zero temperature limit of the
Gibbs free energy functional) is defined by perturbation of
the high-symmetry state along the coordinates associated with
these unstable modes [1–5].

Here we present an alternative approach consisting of the
adjustment of the LD potential landscape in the vicinity of
the ground state configuration, which is the most relevant
region of the order parameter space when the ordered phase
itself is the focus of interest. This is particularly important
when the high-temperature phase and the ordered ground state
have rather distinct atomic and electronic structures. It actually
happens for many materials showing phase transitions at high
temperatures.

An interesting material, where such an approach is
desirable, is the ferroelectric BiFeO3—an insulating material
with a metallic paraelectric phase, known by its large
spontaneous polarization and a high TC [6–8]. The symmetry-
breaking order parameters of its ferroelectric Pm3̄m > R3c

phase transition, namely the ferroelectric polarization vector
P and the oxygen-octahedron tilt vector A, are in our approach
associated with the atomic displacement patterns frozen in
the fully relaxed ground state. Therefore, the eigenvectors of
the high-symmetry phase dynamical matrix are not used here.
Actually, in this particular case, the atomic-displacement
patterns associated with the P and A vectors together with
the spontaneous deformation tensor e define the difference
between the reference and the ground state completely.

The energy profiles along selected paths connecting the
reference paraelectric state with (P = 0, A = 0, and e = 0)
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to the ab initio ground state (P = Ps, A = As, and e = es),
defined in Table I, are shown in Fig. 1. We believe that the
numerical values of the LD potential parameters given in this
work can be readily used for a variety of purposes such as
an estimation of nonlinear electromechanical properties of
BiFeO3, evaluation of the influence of the epitaxial strain, or
in a range of phase-field modeling tasks.

Analytic form of the potential. The LD potential (zero-
temperature potential density) f considered here is expanded
around the reference paraelectric state in the usual form
of the symmetry-restricted Taylor expansion in terms of
12 independent variables, covering the selected set of or-
der parameters P = (Px,Py,Pz), A = (Ax,Ay,Az), and e =
(exx,eyy,ezz,eyz,exz,exy). The resulting form can be expressed
as a sum

f = f (e)
a [{Pi}] + f

(e)
b [{Ai}] + f

(e)
t [{Pi,Ai}] + fest[{Pi,eij }]

+ frst[{Ai,eij }] + fela[{eij }]. (1)

The first three contributions describe the energy expansion
in terms of the ferroelectric polarization and the oxygen
octahedron tilt only. They have been expanded till eighth
order because stopping at the sixth order did not reproduce
the ab initio calculated potential landscape satisfactorily. The
ferroelectric part of the Landau energy f (e)

a contains all
symmetry-allowed terms

f (e)
a = aiP

2
i + a

(e)
ij P 2

i P 2
j + aijkP

2
i P 2

j P 2
k + aijklP

2
i P 2

j P 2
k P 2

l ,

(2)

and the same holds for the f
(e)
b , which has the same form but in

terms of angles {Ai} and coefficients b. The coupling between
polarization and oxygen octahedron tilt is described by

f
(e)
t = t

(e)
ijklPiPjAkAl + t42

ijklmnPiPjPkPlAmAn

+ t24
ijklmnPiPjAkAlAmAn

+ t44
ijklmnpqPiPjPkPlAmAnApAq

+ t62
ijklmnpqPiPjPkPlPmPnApAq

+ t26
ijklmnpqPiPjAkAlAmAnApAq, (3)
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TABLE I. Paths in the order-parameter space, sampled by a path
parameter ξ , for which the first-principles energies were evaluated
and plotted in Fig. 1. The last column corresponds to the position of
the calculated point on the horizontal axis in Fig. 1.

Pi/(Ps)i Ai/(As)i eij /(es)ij x

1 (ξ,ξ,ξ , 0,0,0, 0,0,0,0,0,0) ξ

2 (0,0,0, ξ,ξ,ξ , 0,0,0,0,0,0) ξ

3 (0,0,0, 0,0,0, ξ,ξ,ξ,ξ,ξ,ξ ) ξ

4 (1,1,1, ξ,ξ,ξ , 0,0,0,0,0,0) 1 + ξ

5 (1,1,1, 0,0,0, ξ,ξ,ξ,ξ,ξ,ξ ) 1 + ξ

6 (ξ,ξ,ξ , 1,1,1, 0,0,0,0,0,0) 1 + ξ

7 (0,0,0, 1,1,1, ξ,ξ,ξ,ξ,ξ,ξ ) 1 + ξ

8 (ξ,ξ,ξ , 0,0,0, 1,1,1,1,1,1) 1 + ξ

9 (0,0,0, ξ,ξ,ξ , 1,1,1,1,1,1) 1 + ξ

10 (ξ,ξ,ξ , 1,1,1, 1,1,1,1,1,1) 2 + ξ

11 (1,1,1, ξ,ξ,ξ , 1,1,1,1,1,1) 2 + ξ

12 (1,1,1, 1,1,1, ξ,ξ,ξ,ξ,ξ,ξ ) 2 + ξ

13 (ξ,ξ,ξ , ξ,ξ,ξ , ξ,ξ,ξ,ξ,ξ,ξ ) 3ξ

we have included all symmetry allowed terms up to the
sixth order, while the eighth order terms were limited to the
pair interaction between single Pi and single Ai components
only. On the other hand, since the strain contribution to the
ground state LD energy is rather small, only the lowest-order
coupling and self-energy terms in strain were introduced. Their
role is to describe electrostriction, rotostriction (introduced
in an obvious analogy to electrostriction), and elastic energy
contributions, respectively:

fest = −qijkleijPkPl, frot = −rijkleijAkAl,

fela = 1
2Cijkleij ekl . (4)

Let us note that the term including all three order parameters
is not included and that the adopted potential form allows
a straightforward analytical elimination of the strain degree

FIG. 1. Energy profiles along selected paths in the order-
parameter space of BiFeO3, connecting the cubic reference state
(REF) and the ground state (Ps,As,es). Point symbols stand for direct
first-principles calculations, lines are evaluated from the present LD
potential. Individual path segments are depicted in the inset and
described in detail in Table I.

of freedom using linear equations of mechanical equilibrium
[9,10], which facilitates considerations about a mechanically
free crystal.

The superscript (e) marks the terms and parameters which
are renormalized upon such strain elimination, and it empha-
sizes that they are related to a material clamped to the reference
cubic shape.

First-principles-calculations details. The total-energy cal-
culations are based on density functional theory (DFT)
within the local spin-density approximation with Hubbard U -
correction (LSDA+U ), as implemented in the Vienna ab initio
simulation package (VASP) [11,12]. The projector-augmented
plane-wave method was used [13]. There were 15 explicitly
treated electrons for Bi (5d10 6s2 6p3), 14 for Fe (3p6 4s1

3d7), and 6 for oxygen (2s2 2p4). The energy cutoff for
plane waves was set to 500 eV. The Brillouin-zone integrations
were carried out using 3×3×3 Monkhorst-Pack k-point mesh
[14]. Gaussian broadening of 0.1 eV was applied [15]. The
antiferromagnetic (AFM) G-type order on Fe atoms has been
taken into account. The LSDA+U method is applied in all
calculations, with the Hubbard term [16] added to the iron d

orbitals. In the used Dudarev [17] approach the difference U -J
was set to 3.0 eV in order to reproduce the structural properties
of BiFeO3.

All calculations presented here were performed using a
10-atom rhombohedral supercell of BiFeO3 compatible with
the G-type AFM order. The two perovskite cells in the
supercell host two oppositely rotated oxygen octahedra. The
tilt vector A discussed in the text always refers to the axial
rotation vector of the oxygen octahedron in the first cell, while
the rotation in the other cell is automatically opposite (−A).
Polarization vector P is the same in both perovskite cells.

Microscopic representation of the selected order parame-
ters. As a starting point in the presented procedure the atomic
structures of the reference cubic state and the rhombohedral
ground state of the BiFeO3 were determined. These are fully
optimized using first-principles calculations within the cubic
and R3c symmetries, respectively. The cubic unit cell is
characterized by a = 5.438 Å and α = 60◦, while the R3c

ground state is described by the cell with a = 5.517 Å and
α = 59.866◦ and fractional atomic coordinates Bi(2a)x = 0,
Fe(2a)x = 0.227, and O(6b) = (0.541, 0.942, 0.395), in a
good agreement with the available theoretical [8,18] and
experimental [19] data.

The difference between the ground state and the ref-
erence configurations can be specified by differences in
fractional atomic coordinates �us and by the change of the
supercell lattice vectors. Evaluation of the strain tensor is
a straightforward procedure, because the lattice vectors of
any slightly distorted unit cell described by the tensor of
deformation e can be obtained by applying the 1 + e matrix
multiplication operation to the three reference-state lattice
vectors. However, the �us (which is a 30-component vector
for the ten-atom BiFeO3 supercell) requires more attention.
It can be further decomposed into two parts, �u(a)

s + �u(b)
s .

The first part, which transforms as the (111) component of
the F1u Brillouin-zone-center polar mode of the parent cubic
phase, defines displacements �u(a)

s related to the spontaneous
ferroelectric polarization Ps ‖ (111), while the remaining part
�u(b)

s , transforming as the Brillouin-zone-corner irreducible
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representation, defines the spontaneous oxygen octahedron tilt
As ‖ (111). This decomposition is thus unique.

Furthermore, we have assumed that the space of vectors P
are attached to a single zone-center mode, i.e., to a mode with a
fixed atomic pattern. In other words, the atomic displacements
corresponding to the polarization P = ξPs are given by
�u(a) = ξ�u(a)

s and the atomic displacements corresponding
to the polarization P equal to the spontaneous one but directed
along, say (100) Cartesian direction, are obtained by rotation
of each individual atomic displacement vector comprised in
�u(a)

s by the same proper rotation that turns (111) into (100)
direction in the space of the attached polarization vectors
P. Similar procedure is applied to relate �u(b)

s with A. This
construction defines a consistent linear subspace of the atomic
coordinates, compatible with the Z = 2 supercell boundary
conditions.

Fitting parameters of the Landau-Devonshire potential.
The described procedure establishes a one-to-one correspon-
dence between a point in the order-parameter space and the
atomic structure. Using this link, it is possible to sample
the parameter space, to use first-principles calculations to
determine energies, and to fit the energy surface in order to
obtain parameters of the potential.

The individual terms in (1) are fitted separately. For each
term, a suitable set of paths was chosen. For example,
to fit the parameters a’s in the f (e)

a ({Pi}), several paths
along the high symmetry directions in the polarization space
were chosen, while keeping the oxygen octahedra tilt and
strain zero. Angular dependence of energy on polarization
vector was probed employing circular paths around the
paraelectric reference state with several different diameters
and orientations of the circles. Similar procedure was then
adopted for f

(e)
b ({Ai}). In evaluation of the coupling terms,

e.g., between polarization and tilt, we subtract the already
determined contribution of polarization and tilt and fit only
the energy difference corresponding to the coupling energy.
The so obtained set of parameters is consequently utilized as
an initial condition for fitting of all parameters together under
an additional constraint ensuring that the position of the global
minimum of the potential corresponds exactly to the ground
state obtained from first principles. This fitting procedure has
been conveniently accomplished in dimensionless variables
normalized to the ground state values of �u(a)

s , �u(b)
s , and es.

The final set of the numerical values defining the LD potential
parameters of BiFeO3 were rescaled with spontaneous values
(es)xx = 0.136, (es)xy = 0.0012, As = |As| = 14.355 deg (our
ab initio data), and Ps = |Ps| = 0.91 C/m2 (adopted from
Ref. [20]). Resulting Landau-Devonshire model for BiFeO3

is given in Table II.
The energy profiles of the LD potential along several

important directions in the order-parameter space (paths listed
in Table I) are displayed in Fig. 1. The direct ab initio-
calculated energies, presented as dots in the figure, exhibit
visually perfect agreement with the predictions of the fitted
LD potential. Therefore, it can be expected that the present
potential also describes well the various linear response
properties, in particular within its ground state. For example,
the elastic tensor of BiFeO3 predicted by second-order strain
derivatives of the present LD potential in its rhombohedral
ground state compares fairly well with other literature data (see

TABLE II. Coefficients of the LD potential for BiFeO3. The
second column provides one representant of symmetry-equivalent
terms associated with the respective coefficient, and the third column
gives the numerical value of the coefficient or its simple multiple,
indicated in the first column.

Type SI Unit

a1 P 2
x −3.362 × 109 J m C−2

a
(e)
11 P 4

x 2.646 × 109 J m5 C−4

2a
(e)
12 P 2

x P 2
y 3.274 × 109 J m5 C−4

a111 P 6
x −5.960 × 108 J m9 C−6

3a112 P 4
x P 2

y 2.634 × 108 J m9 C−6

6a123 P 2
x P 2

y P 2
z −7.132 × 109 J m9 C−6

a1111 P 8
x 9.043 × 107 J m13 C−8

4a1112 P 6
x P 2

y −2.284 × 108 J m13 C−8

6a1122 P 4
x P 4

y 4.636 × 108 J m13 C−8

12a1123 P 4
x P 2

y P 2
z 1.493 × 109 J m13 C−8

b1 A2
x −1.585 × 107 J m−3 deg−2

b
(e)
11 A4

x 5.396 × 104 J m−3 deg−4

2b
(e)
12 A2

xA
2
y 6.314 × 104 J m−3 deg−4

b111 A6
x −6.598 × 101 J m−3 deg−6

3b112 A4
xA

2
y −5.203 × 101 J m−3 deg−6

6b123 A2
xA

2
yA

2
z −5.910 × 101 J m−3 deg−6

b1111 A8
x 4.890 × 10−2 J m−3 deg−8

4b1112 A6
xA

2
y 1.598 × 10−2 J m−3 deg−8

6b1122 A4
xA

4
y 1.194 × 10−1 J m−3 deg−8

12b1123 A4
xA

2
yA

2
z 1.002 × 10−1 J m−3 deg−8

t
(e)
1111 P 2

x A2
x 1.720 × 107 J m C−2 deg−2

t
(e)
1122 P 2

x A2
y 2.273 × 107 J m C−2 deg−2

4t
(e)
1212 PxPyAxAy −2.844 × 107 J m C−2 deg−2

t42
111111 P 4

x A2
x 2.371 × 106 J m5 C−4 deg−2

t24
111111 P 2

x A4
x −5.689 × 104 J m C−2 deg−4

t42
111122 P 4

x A2
y −9.069 × 106 J m5 C−4 deg−2

t24
112222 P 2

x A4
y −4.608 × 104 J m C−2 deg−4

6t42
112233 P 2

x P 2
y A2

z −8.438 × 106 J m5 C−4 deg−2

6t24
112233 P 2

x A2
yA

2
z −2.421 × 104 J m C−2 deg−4

6t42
112211 P 2

x P 2
y A2

x 6.805 × 106 J m5 C−4 deg−2

6t24
111122 P 2

x A2
xA

2
y 2.594 × 104 J m C−2 deg−4

8t42
111212 P 3

x PyAxAy −1.954 × 107 J m5 C−4 deg−2

24t42
123312 PxPyP

2
z AxAy 2.660 × 107 J m5 C−4 deg−2

8t24
121112 PxPyA

3
xAy −8.314 × 103 J m C−2 deg−4

24t24
121233 PxPyAxAyA

2
z −5.457 × 104 J m C−2 deg−4

t62
11111111 P 6

x A2
x −2.573 × 106 J m9 C−6 deg−2

t26
11111111 P 2

x A6
x 1.132 × 102 J m C−2 deg−6

t62
11111122 P 6

x A2
y 1.370 × 106 J m9 C−6 deg−2

t26
11222222 P 2

x A6
y 5.255 × 101 J m C−2 deg−6

t44
11111111 P 4

x A4
x 4.747 × 104 J m5 C−4 deg−4

t44
11112222 P 4

x A4
y 1.888 × 104 J m5 C−4 deg−4

q1111 exxP
2
x 1.447 × 1010 J m C−2

q1122 exxP
2
y 4.776 × 109 J m C−2

2q1212 exyPxPy 7.186 × 109 J m C−2

r1111 exxA
2
x 2.319 × 107 J m−3 deg−2

r1122 exxA
2
y −4.886 × 106 J m−3 deg−2

2r1212 exyAxAy −2.526 × 107 J m−3 deg−2

C1111 e2
xx 2.666 × 1011 Pa

C1122 exxeyy 1.435 × 1011 Pa
C1212 e2

xy 9.548 × 1010 Pa
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TABLE III. Elastic stiffness constants of rhombohedral BiFeO3

ground state (the sign of C14 depends on adopted coordinate system).

C11 C12 C13 C14 C33 C44 C66

LD potential (this work) 278 122 95 −22 228 57 78
LDA calculations (this work) 264 147 63 −16 132 53 54
Borissenko et al. [21], LDA 249 151 75 9 160 44 49
Shang et al. [22], GGA 222 110 50 16 150 49 56

Table III). As an even more representative performance test, we
have generated 300 random configurations with the 12 order-
parameter components falling within ±20 percent around their
spontaneous values and calculated their total energies from
the LD potential as well as from the first principles. The
agreement is also satisfactory (see Fig. 2). Moreover, since the
present potential goes well behind the so far adopted quartic
anharmonicity in the polarization and tilt degrees of freedom
[23–27], one can expect that the this LD potential will be more
appropriate when dealing with nonlinear responses.

To conclude, we present a comprehensive and efficient
procedure for extraction of the Landau-Devonshire-type po-
tential from quantum-mechanical calculations. We believe
that this scheme, based on the microscopic content of order
parameters derived from the full-amplitude distortions of
the low-symmetry phase ground state, will enable a real
methodological progress for systematic development of mod-
els for a large family of materials with structural phase
transitions. In the specific case of the prototypical multiferroic
material BiFeO3, we present a carefully engineered Landau-
Devonshire potential, which can be readily used for analytical
calculations or numerical simulations, for which realistic
intrinsic properties are crucial. By accurate fitting and taking
into account an extensive form of the potential, we have
targeted to enhance the scope of its applicability to various

FIG. 2. Comparison of first-principles and LD-predicted energies
for 300 randomly selected points in the order-parameters space in
the vicinity of the rhombohedral ground state (coordinates falling
within 20 percent around the ground state values). Monotonously
increasing function stands for the direct first-principles data, ordered
by the increasing total energy, while the fluctuating curve connects
the corresponding energies, calculated from the LD potential.

metastable configurations. We believe that the potential and
its applications will improve understanding of BiFeO3, serve
as a basis for further development, as well as open an avenue
for computationally supported engineering of BiFeO3-based
functional structures, such as heterostructures or thin films.
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