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Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros
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We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting
nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the
generating function allows one to identify the population of different many body states much in the same way as
the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to
phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants
and discuss when an approximation based on “dominant” zeros is valid. We show that, for generic values of
the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population
of the many body states which is dependent on the initial conditions. We study in particular the effect of the
switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium
increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial
conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative
agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we
discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states
population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the
quench dynamics and control the state of the system.
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I. INTRODUCTION

The physics of superconducting devices is receiving re-
newed attention in parallel with ongoing proposals of appli-
cations in quantum technologies [1]. While most common
designs are based on conventional tunnel junctions, proposals
based on hybrid nanostructures like those being explored in the
search of Majorana bound states are generating great research
activity [2,3].

In these devices a challenging issue is to avoid decoherence
for certain low energy states while at the same time being able
to manipulate them coherently by means of external fields [4].
An important source of decoherence arises from quasiparticle
tunneling [5–8]. The so-called quasiparticle “poisoning” can
become an obstacle towards the implementation of Majorana
qubits [9–14]. Conversely, long lived states arising from
trapped quasiparticles in Andreev bound states (ABS) [15,16]
have been suggested as possible realizations of a spin qubit
[17,18].

Superconducting nanodevices are also of fundamental
interest as an example of an interacting open quantum system,
which can be driven out of equilibrium by different means
and can exhibit highly nontrivial dynamical behavior [19].
While the theory has traditionally focused on the stationary
transport properties, advances in single electron sources and
detection techniques are allowing one to explore the response
of nanodevices in the time domain over increasingly smaller
time scales [20–22]. Moreover, it is becoming clear that
the dynamics of open quantum systems can exhibit singular
features which are not necessarily reflected in their stationary
properties [23–25]. These features can be revealed from
the full counting statistics (FCS) analysis of time-integrated
observables [26]. The analogy between equilibrium statistical
mechanics and FCS methods suggests that the behavior of the
zeros of the generating function in FCS theory could allow one
to identify dynamical transitions much in the same way as the

Yang-Lee zeros [27,28] of the partition function are connected
to phase transitions in the static case [29–31].

Few channels superconducting nanojunctions, as those
implemented by superconducting atomic contacts [32] or by
superconducting quantum dots [33], provide ideal test systems
for the theory of mesoscopic transport. In the stationary regime
each channel in a phase biased nanojunction is characterized by
a pair of ABSs as depicted in Fig. 1. Four different many-body
states can be defined depending on the population of these
ABSs (right panel in Fig. 1). In the ground state, hereafter
denoted by |−〉, the lower ABS is filled; adding an extra
quasiparticle results in two spin-degenerate odd states |odd1,2〉.
Finally there is an excited even state |+〉 corresponding to
transferring a quasiparticle from the lower to the upper ABS.
While this picture is clearly established for describing the
stationary case, one may wonder whether a description in
terms of the population of these states is valid when the system
evolves after a sudden change or quench of a given parameter.
One may also wonder about the role of the continuum states
in the system dynamics.

In a recent work we have presented a FCS analysis of
the quench dynamics in the formation of a superconducting
nanojuction [34]. We showed that, under rather general
conditions, all the above mentioned many body states get
a significant population and that their relaxation towards
thermal equilibrium requires the interaction with external
degrees of freedom. In the present work we further explore
this phenomenon and discuss it from the broader perspective
which is provided by analyzing the dynamics of the FCS
Yang-Lee zeros. In contrast to previous works in this direction
[35–38], we consider the system evolution at time scales
shorter than the typical Markovian times [15]. We study the
connection between the structure of the dynamical Yang-Lee
zeros (DYLZ) in the complex plane and the formation of
metastable many body states.
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FIG. 1. Left panel: Andreev bound states spectrum for a typical
single channel nanojunction as a function of the superconducting
phase difference φ. In the inset we show a scheme of a phase biased
superconducting nanojunction. Right panel: schematic representation
of the four many body states which can be generated by changing the
population of the ABSs (see text).

The main results of our work are the following. In Sec.
II we give an exact expression for the connection between
the DYLZ and the charge transfer cumulants of arbitrary
order. Then, in Sec. III, we explore in detail the transient
dynamics in quantities like the mean charge and current. The
influence of the initial conditions in the formation of ABSs
and their effect in the system charge and current evolution is
also analyzed, showing that it decreases with an increasing
coupling to the leads. We also explore in this section the effect
of the switching rate in the contact formation. Section IV is
devoted to the FCS analysis of the quench dynamics. This
analysis predicts an evolution from a Poissonian distribution
at short times into a three-modal distribution at larger times
which can be associated to the formation of the different many
body states. We discuss how a coarse grained representation
can be defined in the long time limit and how the population
of the many body states can be extracted from it. We then
give the analysis of the evolution of the DYLZ showing
how the different many body states can be identified from
their accumulation in the complex plane. An explicit relation
between the many body states population and the asymptotic
position of the DYLZ is given in Sec. IV. It is also shown
that the scaling of the current cumulants at large times can
be extracted from the dominant DYLZ. Moreover, we show
that, by tuning a counting parameter, the current cumulants
tend to exhibit a singular behavior which is reminiscent of
the divergences of correlation functions in a first order phase
transition.

The analysis is then extended to the case of voltage
biased junctions (Sec. V), discussing how the steady state
is reached for quantities such as current and noise. This is
also illustrated from the evolution of the subgap spectral
densities. Furthermore, we study the FCS and analyze the
particular accumulation of DYLZ for this voltage biased
case. Finally, in Sec. VI we demonstrate the possibility of
controlling the population of the different many body states
by a proper selection of the applied bias in a dc voltage switch
off initialization procedure. Section VII is devoted to some
concluding remarks.

II. MODEL AND FORMALISM

Our model consists of a central region represented by a
spin-degenerate quantum level, coupled to two BCS super-
conducting electrodes. Low energy electron transport in this
kind of structure is dominated by multiple Andreev reflections,
leading to the formation of subgap states, located at ±εA in
the zero bias limit. The aim of the present work is the analysis
of the transient transport properties through the system after
a sudden connection at t = 0 of the central region to the
electrodes, which could be phase or voltage biased.

The system Hamiltonian, H = Hleads + H0 + HT , can be
written in terms of Nambu spinors �̂

†
j = (c†j↑,cj↓), where

j = kν,0 denotes the ν = L,R lead and the central level
states, respectively. The uncoupled Hamiltonians are given by
H0 = �̂

†
0ĥ0�̂0, Hleads = ∑

kν �̂
†
kν ĥkν�̂kν , while the tunneling

term is HT = ∑
k,ν [�̂†

kνV̂ν(t)�̂0 + H.c.], where ĥ0 = ε0σz

and ĥkν = εkνσz + �νσx (σz and σx denote here Pauli matrices
in the Nambu space). The superconducting gap parameter will
be taken equal for both electrodes, �L = �R ≡ �, and used
as the energy unit. For describing the connection between the
system and the electrodes we use V̂ν(t) = f (t)V 0

ν σze
iσzφν (t)/2,

where f (t) is a function controlling the abruptness of the
connection as discussed below and φL(t) − φR(t) = φ(t)
determines the phase difference between the leads.

For simplicity we consider a constant normal density of
states ρL,R in the leads with a finite bandwidth W taken as the
largest energy scale in the model. We define the stationary
tunneling rates as 	ν = π (V 0

ν )2ρν , and 	 = 	L + 	R . For
later use, we also define the normal transmission coefficient as
τ = 4	L	R/(	2 + ε2

0 ). Depending on the relative value be-
tween the tunneling rates and the superconducting gap, two
regimes can be identified: the quantum dot (QD) regime,
corresponding to 	 � �, and the quantum point contact (QPC)
regime, where 	 � �. Finally, the central level initial charge
will be denoted by nσ (0), where σ ≡ ↑, ↓. Hereafter, we
assume h̄ = e = 1.

The time-dependent transport properties of the system are
fully characterized by the generating function (GF) defined on
the Keldysh contour as [39]

Z(χ,t) =
〈
TKexp

[
−i

∫
C

dt ′HT,χ (t ′)
]〉

0

, (1)

where TK is the contour time order operator and χ ≡ χν(t)
are counting fields entering as phase factors modulating the
hopping terms in HT , having opposite values ±χν on the two
branches of the Keldysh contour. The average in Eq. (1) is
taken over the decoupled system. The GF gives access to
the charge transfer cumulants, i.e., Cn(t) = (i)n∂nS/∂χn�0,
where S(χ,t) = ln Z(χ,t). The charge cumulants through
the left (right) electrodes can be computed by imposing
χL = χ and χR = 0 (χL = 0 and χR = −χ ), and for the
symmetrized charge cumulants χL = χ/2 and χR = −χ/2.
The corresponding current cumulants are given by I n(t) =
∂Cn/∂t . The symmetrized cumulants will be denoted 〈I n〉,
using 〈S〉 = 〈I 2〉 for the symmetrized shot noise. As shown in
[40,41], the occupied density of states (DOS) in the transient
regime can be computed from the current to an empty normal
electrode, weakly coupled to the central region.
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FIG. 2. Keldysh contour considered to analyze the transient
regime. χ indicates the counting field changing sign on the two
branches of the contour and δt corresponds to the time step in the
discretized calculation of the dot Green function and the generating
function Z(χ,t).

It can be shown that Z(χ,t) can be computed as a Fredholm
determinant on the Keldysh contour [42–47]. A straightfor-
ward extension of this formalism to the superconducting case
[34] leads to

Z(χ,t) = det[G(χ = 0)G(χ )−1], (2)

where G = −i〈TK�0(t)�†
0(t ′)〉 is the Green function of the

dot coupled to the leads defined in Keldysh-Nambu space.
Using the Dyson equation, Eq. (2) can be written as

Z(χ,t) = det
[
G

(
g−1

0 − �̃
)]

, (3)

where g0 denotes the uncoupled central level Green function
and �̃ = �̃L + �̃R corresponds to the leads self-energy in
which the counting field χ is included. The Keldysh-Nambu
components of the self-energy are given by

�̃
αβ

ν,jk(t,t ′) = f (t)f (t ′)sαsβsj sk

(
V 0

ν

)2
ei(sj −sk )φν/2

× ei(sαsj −sβ sk )χν/2g
αβ

jk (t − t ′), (4)

where αβ ≡ ± are the Keldysh indexes, j k ≡ ± are the
Nambu ones, ν = L,R denote the leads, s± = ±1, sj =
(−1)(j+1), and g

αβ

jk (t − t ′) are the uncoupled leads Green
functions. Equation (2) has to be integrated numerically by
discretizing the Keldsyh contour as depicted in Fig. 2 (for
details see Supplemental Material in Ref. [34]). Analytical
results, which can be obtained in certain limits, will allow us
to further clarify our findings as described below.

On the other hand, the GF can be decomposed as

Z(χ,t) =
∑

n

Pn(t)eiχn, (5)

where Pn(t) can be associated with the probability of transfer-
ring n charges in the measuring time t [19]. In the supercon-
ducting case, the charge in the leads is not well defined, and
Pn(t) can eventually take negative values [48–50]. The Pn(t)
are therefore referred to in this case as quasiprobabilities.

Relation between DYLZs and cumulants

In their seminal papers, Lee and Yang demonstrated the
connection between thermodynamical phase transitions and
the behavior of the roots of the partition function [27,28].
They discussed how these roots accumulate to form branches
in the complex plane of a given variable, z, dependent on
the system’s temperature. The phase diagram of the system
is determined by the interceptions of these branches with the

positive real axis in the thermodynamical limit (i.e., as the
volume tends to infinity). The crossing points correspond to
situations where two (or more phases) coexist. These ideas,
originally developed for equilibrium statistical mechanics,
have recently been applied to the study of the time evolution
of open quantum systems [37,51], with the time playing the
extensive role of the volume, the GF of Eq. (5) the role of the
partition function, and z ≡ eiχ . By analogy, the roots of the GF
in the complex z plane are referred to as dynamical Yang-Lee
zeros (DYLZs). The position of the DYLZs, denoted by zj (t),
fully characterize the transport properties through the system,
and Eq. (5) can be rewritten as

Z(z,t) =
∏
j

(z − zj (t)). (6)

In a previous work we derived exact expressions for the
charge cumulants of arbitrary order [52]. In terms of the
DYLZs these can be written as

Cn(t) = −
∑

j

Li1−n

(
1

zj (t)

)
, (7)

where Lij denotes the polylogarithm function of order j [53].
The main contribution to the charge cumulants is provided by
the DYLZs close to z = 1, where the functions diverge. For
the higher order cumulants, the exact expression Eq. (7) can
be well approximated by [54–56]

Cn(t) ≈ (−1)n−1(n − 1)!
∑

j

2 cos{n arg[zj (t) − 1]}
|zj (t) − 1|n . (8)

Additional information can be obtained from the so-
called factorial cumulants, which are a generalization of the
conventional ones, defined by shifting the measurement point
in the z plane. These quantities provide valuable information
about the interactions in mesoscopic systems [56–58]. The
factorial generating function (FGF) can be written as

ZF (z,t ; s) =
∑

n Pn(z + s)n∑
n snPn

, (9)

where s is a biasing field. Notice that the denominator is a
normalization factor and does not contribute to the transport
properties, since it does not depend on the counting field. One
can also define the DYLZs of the FGF, which are just the
original zj (t) shifted by s. Thus the factorial cumulants are
given by

Cn
F (t ; s) = −

∑
j

Li1−n

[
1

zj (t) + s

]
, (10)

The current cumulants (I n) and the factorial current
cumulants (I n

F ) can be then computed by deriving Eqs. (7)
and (10) with respect to time, respectively. Again we shall
define 〈I 2

F 〉 = 〈SF 〉 for the symmetrized factorial shot noise.

III. TRANSIENT DYNAMICS

In this section we analyze the time evolution of single
particle observables (charge, current, and spectral densities)
after a sudden switch on of the central level-leads coupling
for the phase biased case. Parameters are chosen in order
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FIG. 3. Top panel: time evolution of the central level population
for three different initial configurations: (n↑(0),n↓(0)) = (0,0) (red
line), (1,1) (blue line), where n↑(t) = n↓(t), and (0,1) [black line,
using solid line for n↑(t), and the dashed one for n↓(t)]. Lower panels:
time evolution of the occupied density of states (DOS) for the (0,0)
and (0,1) initial configurations. We consider a perfect transmitting
junction in the quantum dot regime with 	 = 0.5 (in units of �) and
φ = 2.

to study the different behavior from the QD to the QPC
regimes. Unless stated differently, we consider in this section
the electron hole-symmetric case ε0 = 0 and 	L = 	R . This
choice corresponds to a case of perfect transmission where
the nonequilibrium effects that we are interested in are more
pronounced.

A. Central level charge evolution and ABSs formation

In Fig. 3 we show results for the charge per spin and
the subgap occupied spectral density evolution after a sudden
connection, i.e., f (t) = θ (t), for three different initial config-
urations, (n↑(0),n↓(0)) = (0,0),(1,1) and (0,1) and 	 = �/2.
At short times, t � 1/�, the initial excess charge tends to relax
through the electrodes. A change in this tendency is observed
at times of the order t ∼ 2/� coinciding with the incipient
formation of the ABSs inside the gap which blocks the excess
charge relaxation. While for the initial configurations (0,1) or
(1,0) the system gets trapped in a metastable magnetic state,
with n↑ �= n↓, for the initial configurations (0,0) and (1,1) the
charge oscillates but the system remains nonmagnetic. The
period of the oscillation is ∼π/|εA|, where εA 
 	 cos(φ/2)
corresponds to the ABS energy in the QD regime. It should
be also noticed that the oscillations corresponding to the (0,0)
and the (1,1) configurations are displaced in half a period.
Remarkably, as we show in the next subsection, in all these
cases the system exhibits the same symmetrized current.

As shown in Ref. [34], one can get an analytical insight
on this behavior as the spectral weight in this QD regime is
mainly concentrated on the ABSs and the retarded dot Green
function can be approximated by just the contribution from

FIG. 4. Time evolution of the level population for three different
initial configurations: (n↑(0),n↓(0)) = (0,0) (red line), (1,1) (blue
line), and (0,1) (black line, using solid line for the population of
spin up electrons and the dashed one for spin down). The dotted
line in the upper panel shows the comparison to the approximation
described in Appendix A. We show the evolution of the behavior of
the population for three different couplings between the central level
and the electrodes 	 = 0.05, 0.5, and 2, from top to bottom, for a
phase difference φ = 2.

these states. In Ref. [34] we analyzed the charge evolution
starting from the initial magnetic configuration (0,1). The
corresponding analysis for an arbitrary initial configuration
is given in Appendix A. As we show in this Appendix the dot
charge oscillations for the (0,0) case can be approximated as
2|P12|2[1 − cos(2εAt)], where

|P12|2 = (1 − 	/�)2 − ε2
0/ε

2
A

4
(
1 + ε2

A/�2
) . (11)

These oscillations remain undamped unless an additional re-
laxation mechanism is included. The amplitude is determined
by the coupling between the two ABSs (P12), generated by
the initial conditions. This behavior is also reflected in the
occupied DOS, shown in the middle panel of Fig. 3 for the (0,0)
initial condition. We show that the dot’s charge oscillations
are correlated with an intermittent behavior of the population
of the ABSs. This behavior is absent in the half-filled initial
condition (lower panel in Fig. 3).

In Fig. 4 we show the charge evolution for the same initial
configurations studied in Fig. 3 for three different couplings to
the electrodes, 	 = 0.05, 0.5, and 2 (in units of �), from
top to bottom. As commented before in the QD regime,
	 � �, for initially trapped quasiparticles [i.e., (0,0) and (1,1)
configurations], the population exhibits large oscillations. The
amplitude of these oscillations is monotonously reduced when
increasing the hybridization, 	. In the QPC regime, 	 � �,
the initial condition is almost fully relaxed at very short times
(t ∼ 1/	) and the population tends to reach the expected
stationary value nσ ∼ 0.5. However, as shown in Ref. [34],
this relaxation of the initial excess charge does not imply a full
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FIG. 5. Left current evolution for three different initial configura-
tions (n↑(0),n↓(0)) = (0,0) (dashed red line), (1,1) (dotted blue line),
and (0,1) (solid black line). The parameters are the same as in Fig. 3.
In the inset we show the independence on the initial conditions of the
symmetrized current.

thermalization of the system. This would be further analyzed
in Sec. IV.

B. Current evolution

In this subsection we analyze the main results for the
transient current flowing through the system after a sudden
contact formation. In the main panel of Fig. 5 we show the
current evolution at the left interface for the three initial
configurations studied before. For the case with an initially
trapped quasiparticle (blue and red curves), this current
exhibits similar oscillations as found in the charge evolution,
while for the (0,1) case it approaches the mean value of the
previous two cases (solid black like). On the other hand, the
transient current becomes independent on the initial charge
configuration when it is left-right symmetrized, as shown in
the inset of Fig. 5. This fact demonstrates that most of the
oscillatory behavior arises from the symmetric transfer of
quasiparticles between the central region and the electrodes,
which cancel out when the current is symmetrized. From now
on we will focus on the properties of the symmetrized current.

Another characteristic of the current flowing through the
system is that the long-time asymptotic value does not reach
the expected limit for a thermal equilibrium situation. The
characterization of this metastable state has already been
done in Ref. [34] for a sudden quench of the coupling to
the electrodes. An issue not addressed in that work was the
effect of a decreasing switching rate. In Fig. 6 we show
the current evolution in the point contact limit (	 � �)
assuming f (t) = θ (t)[1 − exp(−αt)], α being the connection
rate. For a sufficiently fast connection, we recover the results
of Ref. [34] (dashed black curve). Surprisingly, for slower
connection rates, the system gets trapped in a metastable state
which deviates more strongly from the equilibrium situation,
with a supercurrent which is even inverted for the smaller
connection rates. This indicates that the trapping of the system
in a metastable state is not an artifact of the abrupt connection,
but is a rather general result. The behavior is better understood

FIG. 6. Transient current as a function of the switching rate α of
the coupling between the electrodes and the central region (see text)
for the case 	L = 	R = 5. The dashed black curve shows the quench
evolution, compared with three different connection rates, α = 5, 1,
and 0.25, from top to bottom. The rest of the parameters are the same
as Fig. 3.

from the discussion of the Andreev states population in the
next section.

C. Andreev states population

A property that can be accessed from the transient current
behavior is the population of the two ABSs. Using the
symmetrized current and the fact that, in average, the two
ABSs have to be half-filled, their population can be extracted.
The set of equations used to extract the population are

〈I 〉 = (nd − nu)IA + Ic,
(12)

1 = nd + nu,

nu and nd being the population of the upper and lower ABS,
respectively, IA the equilibrium supercurrent supported by the
lower ABS, and Ic the contribution from the continuum to the
current. The long time average occupation of the two ABSs
after a quench of the central region-leads coupling is shown
in Fig. 7. For 	 � �, the upper ABS is more populated than
the lower one, leading to a current flowing in the opposite
direction to the expected stationary value. This behavior is
inverted at 	 ∼ �, as predicted by the analytical insight
described in Appendix A. For 	 � � the system reaches a
universal behavior, represented by the discontinuous lines.
This universal behavior can be extracted from simple rate
equations, assuming transition rates of the order of the distance
between the continuum and the final states (see Supplemental
Material of Ref. [34]).

Finally, the dotted lines in Fig. 7 show the Andreev states
population for the smoother connection case, with an effective
tunneling rate, 	eff , dependent on the connection rate α.
We observe similar features to the sudden quench situation,
indicating that the quasiparticle relaxation happens at very
short times (before the ABSs formation). After that initial
stage, the two ABSs move adiabatically to their long time
stationary value without exchanging charge.

165444-5



SOUTO, MARTÍN-RODERO, AND YEYATI PHYSICAL REVIEW B 96, 165444 (2017)

FIG. 7. Occupation of the lower (red) and upper (blue) ABSs for
the perfect transmitting case (ε = 0 and 	L = 	R = 	/2) and φ = 2
as a function of 	. The dashed lines show the asymptotic value in
the point contact regime provided by the rate equation given in the
supplemental material of Ref. [34]. The dotted line represents the
long time population varying the connection rate α, as a function of
the effective tunneling rate 	eff = 	(1 − (1 − exp(−αtA))/αtA), with
tA = √

2/� and 	 = 12.

IV. FULL COUNTING STATISTICS AND DYNAMICAL
YANG-LEE ZEROS

A. Full counting statistics

In the QPC regime and for steady state conditions, the
quantum state of the system can be characterized through
the many body spectrum representation, corresponding to the
four possible occupations of the ABSs [15,59]. In the ground
state (−) only the lower ABS is occupied. An excited state of
the same parity corresponds to populate only the upper ABS
(+). Finally, there are two degenerate excitations involving a
change in the parity of the system state, which will be referred
to as odd states (odd), corresponding to populate or depopulate
both ABSs simultaneously. While this simplified description
does not hold at short times (t < 1/εA) in the transient regime,
as it was shown in Ref. [34], the population of these states
can be inferred by analyzing the evolution of the asymptotic
quasiprobabilities.

The upper panel of Fig. 8 shows the time evolution of
the quasiprobabilities at short times, which evolve from a
unimodal distribution to a trimodal one, related to the three
states described above. In the lower panel of Fig. 8 we
show some cuts before (blue) and just after this transition
(red). At very short times (blue curve) the charge transfer
is a random process that involves charge flowing in both
directions, with similar probabilities. This short time dynamics
can be described as a bidirectional Poisson distribution (see
Appendix B), shown as discontinuous lines in the lower panel
of Fig. 8. The green line shows the probability distribution
at the typical formation time of the ABSs. At this time, the
probability distribution becomes asymmetric exhibiting a net
charge flowing through the junction which deviates from the
fitted bidirectional Poisson distribution (dotted curve). This
fit provides an estimated number of ∼3 electrons crossing
the junction in each direction to create the subgap states. At

FIG. 8. Upper panel: time evolution of the quasiprobabilities,
exhibiting the formation of three different states. In the lower panel we
show some cuts at different times t = 1 (blue), 3 (green), and 6 (red).
At short times, the probabilities can be interpreted as a birth-death
distribution (discontinuous line) with equal birth and death rates (see
Appendix B for details). At times of the order of the creation of the
ABSs, the distribution tends to deviate from the simple bidirectional
Poissonian distribution (comparing green curve to dotted one). At
longer times (red curve), three states are created, related to the many
body representation of the population of the ABSs.

longer times, the distribution exhibits three maxima, indicating
the coexistence between the different many body states, which
in the following will be referred to as (quantum) phases, in
analogy with equilibrium statistical mechanics.

Further insight on the system short time dynamics can be
obtained by analyzing the current noise. In Fig. 9 we show
some results for the symmetrized current noise for different

FIG. 9. Symmetrized shot noise of the transferred charges for
different initial conditions (n↑(0),n↓(0)) = (0,0) or (1,1) (continuous
lines) and (1,0) (dashed lines) for three different dot electrodes
coupling, 	 = 0.05 (red), 0.5 (blue), and 2 (green) showing the
sensitivity of the symmetrized noise to the initial conditions.
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couplings to the electrodes and initial configurations. As can be
observed, differently from the symmetrized transient current
or the ABS population, Eq. (12), the symmetrized noise is
sensitive to the initial conditions. This fact shows that the
actual many body state cannot be inferred solely from mean
single particle properties, but requires the knowledge of higher
order current cumulants. The dashed lines correspond to the
evolution for an initial condition (0,1), while the solid ones
correspond to the evolution for initially trapped quasiparticles
[cases (0,0) and (1,1)]. In all situations, we observe a linear
increase of the noise with time, which can be considered
as a signature of the phase coexistence. The noise becomes
larger for the case of initially trapped quasiparticles, coinciding
with the oscillations observed in the dot population. The
dependence on the initial conditions decreases for increasing
	. This dependence on the initial conditions is present also
in the many body population of the ABSs, which fully
characterize the state of the system.

B. Coarse grained statistics

At long times a simplified coarse grained representation
of the FCS can be introduced, where we approximate the
probability map as three maxima disregarding their width.
Their weights (P−, P+, and Podd) can be computed by
integrating the quasiprobabilities around their maxima. The
three peaks evolve with time as Iμt (μ = −,+,odd) with

I− = −I+ = IA + Ic, Iodd = Ic. (13)

This representation provides an accurate description of the
transport properties in the long time regime, where the width
of the three probability peaks becomes negligible compared to
their separation. The long time GF can then be written as

Z(χ ) ≈ P−eiχI− t + P+eiχI+ t + Podde
iχIodd t . (14)

From this expression, the asymptotic position of the DYLZs
can be obtained as

α± = z
IAt
± ≈ −Podd ± √

Podd − 4P−P+
2P−

, (15)

which corresponds to two branches, converging to the unitary
circle centered in the coordinate’s origin. In the thermodynam-
ical limit, a similar shape has already been reported in Ref. [28]
for the Ising model, which describes the system undergoing a
phase transition at z = 1. The point z = 0 is also a root of the
GF with a degeneracy of I+t . Using Eq. (7), simple expressions
can be derived for the current cumulants, i.e.,

〈
I n

〉 ≈ n In
A tn−1

∑
±

Li1−n

(
1

α±

)
, (16)

which describe the way the cumulants diverge with time. For
instance, this equation characterizes the linear increase in the
noise shown in Fig. 9. As it was pointed out in Ref. [34], the
long time current and noise (together with the normalization
condition) provide a complete set of equations for determining
the population of each of the three phases. Extrapolating this
reasoning to the case of p coexistent phases, the population of
each of the phases could be determined by measuring the long
time behavior of the first p − 1 cumulants.

FIG. 10. Short time behavior of the modulus of the inverse of the
GF [1/|Z(z,t)|] as a function of the z complex variable. At short times
(top panel) we observe the zeros in the real negative axis, consistent
with a noninteracting situation. At times of the order of t ∼ �−1,
the superconducting correlations become important and the zeros can
appear as complex conjugate pairs. At longer times, the dominant
DYLZs approach the measurement point, z = 1. For clarity, we use
the squares and diamonds to mark the dominant zeros. The parameter
values are 	 = 2, ε = 0, � = 1, and φ = 2 and the time values are
t = 0.5, 1, and 7/� (from top to bottom).

C. Dynamical Yang-Lee zeros

An alternative approach to the problem is provided by
the analysis of the behavior of the DYLZs, which according
to Eq. (7) fully characterize the transport properties of the
system. In Fig. 10 we plot 1/|Z(z,t)|, where the bright
spots correspond to the DYLZs. At short times (t � 1/�),
the zeros are distributed along the negative real axis, a
signature of uncorrelated electron transport [29,56,60,61]. At
intermediate times (t ∼ 1/�), superconducting correlations
become important, and the zeros appear as complex conjugate
pairs, shown by the green squares in the middle panel. At
longer times (t � 1/�), two pairs of complex conjugated
zeros (represented by the symbols in the lower panel of Fig. 10)
approach the measurement point z = 1. These DYLZs will be
referred to as dominant zeros, since they provide the main
contribution to the cumulants given by Eq. (7). In Fig. 11 we
show the accumulation of the DYLZs in the complex z plane in
the long time limit forming branches, for two different values
of the tunneling rate. The dominant zeros tend to accumulate
along the coarse grained result, given by Eq. (15), which
describes two concentric circles (black lines). The description
of the zeros located farther from the origin is poorer, since they
may depend on details, such as the peak’s width, not included in
the simplified model. The regions delimited by the two circles
can be associated to states where the system is in a single
phase, while the circles describe the phase coexistence lines
[27,28]. The nature of each of the phases can be inferred from
their transport properties. In the limit t → ∞, the two circles
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FIG. 11. Long time (t ∼ 25/�) behavior of 1/|Z| illustrating the
accumulation of DYLZs around two circles which can be described
by the coarse grained expression of Eq. (15). We show two different
situations for 	 = 2 (top panel) and 0.5 (bottom panel). The other
parameters are the same as in Fig. 10.

tend to converge to the unitary one (|z| = 1), leading to the
coexistence of three phases at the measurement point, z = 1,
which thus becomes a triple point. This image is consistent
with the one provided by the quasiprobabilities in Fig. 8. We
would like to emphasize that the radius of the two circles in
Fig. 11 is controlled by the divergences at the superconducting
gap of the leads BCS density of states. A small broadening of
these divergences, which, as discussed in Ref. [34], causes the
relaxation of the system towards the equilibrium stationary
state, reduces the radius of the circle moving the transition
point towards smaller |z| values.

In Fig. 12 we show the shot noise computed from the
dominant zeros, using Eq. (7). The time scaling of the shot
noise is well described by the four dominant zeros marked
with symbols in Fig. 10. This result is at variance with the case
analyzed in Ref. [28], where only two phases coexist and thus
only two dominant zeros are needed. In our case, however, two
branches of DYLZs are needed, since z = 1 becomes a triple
point when t → ∞.

Finally, in Fig. 13 we show the first two factorial cumulants
(current and noise) as a function of the measurement point
over the positive real z axis, parametrized by the bias field
s, see Eq. (10), for increasing times. The parameters are
the same as in the lower panel of Fig. 11. In the factorial
current, we observe a tendency to the formation of a jump at
the measurement point, s = 0, indicated by a dashed line in
Fig. 13. This figure provides information about the nature of
each of the phases: for s > 0 (outside the two circles in Fig. 11)
the current is positive, which for the choice of parameters is a
signature of the dominance of the ground state. In contrast,
for s < 0 (inside the two circles) the current is negative,
indicating the dominance of the even excited state, while for
s 
 0, i.e., between the two circles in Fig. 11, the current

FIG. 12. Rebuilt noise evolution from the position of the dom-
inant zeros. The green line corresponds to the noise evolution
considering only the two dominant zeros (red squares in Fig. 10).
For the blue line we consider four zeros (the two dominant and two
subdominant ones, blue diamonds in Fig. 10), recovering the slope of
the noise at short times. The dashed red line shows the convergence
to the full result (black line) when considering a higher number of
zeros (in this case around 10).

almost vanishes. On the other hand, the factorial noise tends
to exhibit two maxima approaching the measurement point
(s ∼ 0) marked with arrows in the lower panel of Fig. 13,
corresponding roughly to the condition s + α± = 1 associated
to the intersections with the phase coexistence lines (i.e.,
the circles indicated in Fig. 11). Again the increasing noise

FIG. 13. Factorial current (top) and noise (bottom panel) as a
function of the bias field s. We show the evolution for three times,
t = 10 (blue), 25 (green), and 50 (red). The factorial current tends
to exhibit jump around the measurement point (black dashed line)
while the factorial noise tends to diverge at this point, which can
be considered a signature of a dynamical first order transition. The
factorial noise also exhibits two maxima (marked with the arrows)
associated to the intersection between the real z axis and the two
circles (see Fig. 11). The parameters are the same as in the lower
panel of Fig. 11.
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FIG. 14. Time evolution of the current of a biased voltage
nanojunction. We show the convergence to the stationary current as a
function of the time, for V = 4, 2, 1, and 0.25�, from top to bottom.
We study the point contact regime, 	 = 10, for a perfect transmitting
junction (ε = 0 and 	L = 	R = 5). In the right panel we show the
convergence of the long time current [68,69].

for t → ∞ is a signature of phase coexistence as shown in
Fig. 12. Although not shown, there is another divergence
at s ≈ −1 which corresponds to the point z = 0, where a
divergence naturally occurs due to the presence of charge
transfer processes in the opposite direction to the mean current;
see Eq. (14).

V. VOLTAGE BIASED JUNCTION

In this section we summarize the main results when
a voltage bias is symmetrically applied to the junction
(μL = −μR = V/2). Some previous works have analyzed
time resolved transport in superconducting nanojunctions,
although focusing on the single particle properties [62–66].
The voltage bias can be incorporated in the superconducting
phase, using a gauge transformation, leading to φν(t) =
φν(0) + μνt (ν = L,R).

A. Current evolution

In Fig. 14 we show the time evolution of the mean current
for different bias voltages in the 	 � � regime. Different
from the phase-biased situation, the system relaxes to the
stationary regime, with a relaxation time of the order of
t ∼ π/V . At longer times, the ac current oscillates around
its mean value, represented in the right panel of Fig. 14. The
oscillations with period π/V correspond to the ac Josephson
effect. In Fig. 15 we show the long time averaged (dc) current
in the QPC regime for different transmission values. These
results are in excellent agreement with the dc current obtained
by standard stationary methods in Refs. [67–69], shown as
dashed lines in the figure. This agreement is poorer in the low
bias regime V � �/10, where the convergence time to reach
the steady state becomes larger and the calculation becomes
computationally more demanding.

In Fig. 16 we show the dc current for a voltage biased
junction in the QD regime. As in the QPC regime, we observe
a remarkable agreement between the stationary calculation

FIG. 15. Long time averaged current for different transmissions
(τ = 1, 0.99, 0.98, 0.96, and 0.9, from top to bottom) in the QPC
regime (we have chosen 	 = 60�), compared to the dc stationary
values (dashed lines) [68,69]. Inset: zoom on the low bias limit.

results [70–72] and the results obtained in this work in the long
time limit. In the inset we show results for voltages smaller
than the superconducting gap, exhibiting the expected subgap
structure due to multiple Andreev reflections.

The convergence to the stationary situation is also illus-
trated in the time evolution of the occupied DOS in the QPC
regime. In Fig. 17 we show the results for the case of a
subgap voltage. Different from the phase biased situation,
the generated nonequilibrium quasiparticles relax when the
ABSs approach the continuum of states. After a few cycles,
the system reaches the stationary condition with the states
pumping charge from the lower to the upper continuum of
states [72]. In addition to the two main features, which can
be associated to the evolution of the ABSs, more structure
appears as replicas (or satellites) of the ABSs, due to their
nonadiabatic evolution.

FIG. 16. Long time averaged current for different positions,
ε = 0 (red), 0.5 (green), and 1 (blue) in units of � (corresponding
to transmission values τ = 1, 0.8, and 0.5, respectively) for the QD
regime (we have chosen 	 = �), compared to the stationary values
(dashed lines) [70]. Inset: zoom on the low bias limit. Curves are
shifted up for clarity.

165444-9



SOUTO, MARTÍN-RODERO, AND YEYATI PHYSICAL REVIEW B 96, 165444 (2017)

FIG. 17. Time evolution of the occupied DOS for a bias voltage
nanojunction in the QPC regime. We consider the perfect transmitting
situation with two bias voltage, V = 0.25 (top panel) and 2� (bottom
panel). For a small voltage we observe an adiabatic evolution of the
states (showed by the green dashed line), exchanging charge at their
crossing points. This charge is relaxed to the continuum of states,
generating quasiparticles which are able to decay in a time period.
For a voltage bigger than the superconducting gap (bottom panel), the
dynamics of the ABSs cannot be resolved in time. In this situation,
the generated quasiparticles are not able to relax in a time period,
leading to an almost constant density of states in the voltage window.

In the regime of V > �, the evolution of the states becomes
strongly nonadiabatic, being progressively difficult to resolve
in the DOS. In this regime, we observe a density of excited
quasiparticles which is unable to relax in a time period. In the
limit V � �, we observe an almost homogeneous density of
states, in the voltage window.

For a nonperfect transmitting junction, an energy gap opens
between the two ABSs which increases with decreasing τ

as �A = 2�
√

1 − τ . This situation was discussed in the
stationary and low voltage regime in Refs. [68,72]. In these
works the authors demonstrated that the system evolves
adiabatically except when V � �A Landau-Zener transitions
between the states, which happens with a probability P =
exp[−π�(1 − τ )/V ]. In Fig. 18 we show the time evolution
of the occupied DOS for a nonperfect transmitting case with a
voltage comparable (top panel) to and much smaller (bottom
panel) than the Andreev gap. In the first case, where the
transition probability between the ABSs is ∼0.5, we observe
some finite population of the upper ABS. In the second case,
the transition probability is negligible and the upper ABS
remains almost unpopulated. Remarkably, we observe in both
cases a convergence to the steady state, independent from the
initial conditions.

B. Full counting statistics and dynamical Yang-Lee zeros

In this subsection we present the FCS results for a voltage
biased nanojunction after the sudden quench of the tunneling
rates. In the upper panel of Fig. 19 we show the time evolution

FIG. 18. Time evolution of the occupied DOS for a bias voltage
nanojunction in the QPC regime, with transmissions τ = 0.96 (top
panel) and τ = 0.8 (bottom panel), illustrating the convergence to the
steady state independent from the value of the Andreev gap, �A. The
remaining parameters are the same as in the top panel of Fig. 17.

of the quasiprobabilities for the case V < �. At very short
times, smaller than the inverse of the Josephson frequency
(t � π/V ), three maxima are observed, i.e., a signature of
a phase coexistence between the three many body states
described above. At longer times, the slopes of the three peaks
become equal, reflecting the convergence to the stationary
regime characterized by the presence of a single quantum

FIG. 19. Full counting statistics of a dc-biased junction for the
same parameters as in the top panel of Fig. 17. In the top panel
we show the time evolution of the probability after the contact
formation. In the lower panel we show the evolution of the shot
noise, which exhibits the linear divergence of the shot noise, due to
phase coexistence, which is relaxed in the time when the state reaches
the continuum and quasiparticles are relaxed.
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FIG. 20. Long time averaged noise for different transmissions
(τ = 1, 0.99, 0.98, 0.96, and 0.9, from top to bottom) in the QPC
regime (we have chosen 	 = 60�), compared to the stationary values
(dashed lines) [73–75]. Inset: zoom on the low biased junction.

phase. The observation of these three maxima in the GF
is related to the fact that the probabilities are accumulated
quantities, but it is no longer reflecting a coexistence between
three phases at long times. Although not shown, for voltages
V � �, the initially trapped quasiparticles are able to relax
before the ABSs are fully developed, avoiding the short time
phase coexistence, and exhibiting a single quasiprobability
maximum evolving linearly in time.

In the lower panel of Fig. 19 we show the time evolution
of the current second cumulant, which can be related to the
shot noise, for different bias voltages. At very short times,
a linear increase in the noise is observed, consistent with
the coexistence between the three phases. At longer times,
when the phase coexistence disappears, the noise relaxes to
the stationary situation. In the stationary regime, the shot noise
exhibits an oscillatory behavior, where the maxima correspond
to the subgap states approaching the gap edge leading to a
maximum quasiparticle transfer.

The long time averaged shot noise behavior in the QPC
regime is shown in Fig. 20, comparing our numerical results
(solid lines) with the expected stationary value (dashed lines)
[73–75], for different transmission coefficients. As can be
more clearly observed in the inset, where we show the shot
noise in an enlarged scale for subgap voltages, the agreement
with the stationary results is quite remarkable, except for the
extremely small voltages where the relaxation time becomes
too long to be reached in our simulations. The effect of a finite
	 value has also some influence in the deviation between
both calculations observed in the limit V → 0 and τ → 1, as
the stationary calculation corresponds strictly to the 	 → ∞
limit. As already discussed in Refs. [73–75], the Fano factor
〈S〉/〈I 〉 diverges in the V → 0 limit, reflecting the increase in
the effective transmitted charge due to the multiple Andreev
reflection processes of increasing order.

In Fig. 21, we present the results for the long time averaged
noise for the QD regime for three different level positions.
In the inset we show the behavior for small voltages in an
enlarged scale. These results can be relevant to describe recent
experiments [76]. A detailed analysis of the observed features

FIG. 21. Long time averaged noise for different positions,
ε0 = 0, 0.5, and 1 (corresponding to transmissions τ = 1, 0.8, and
0.5, respectively) in the QD regime (we have chosen 	 = �). Inset:
zoom on the low biased junction where the curves are shifted up for
clarity. The parameters are the same as in Fig. 16.

will be the subject of future work. It is worth remarking that
the time-resolved technique used in the present work allows
us to obtain results for the steady state properties in parameter
regimes which could be inaccessible for other methods.

In Fig. 22 we show the evolution of the DYLZs for a
voltage biased junction with V > �. As in the phase driven
situation, the zeros appear as complex conjugate pairs for times
of the order of the inverse of the superconducting gap (upper
panel of Fig. 22). There is a relaxation of the initially trapped
quasiparticles in the ABSs when they approach the continuum
at t ∼ π/V . This relaxation manifests itself in the appearance
of an additional DYLZ in the negative real axis, marked with a
black circle, which is absent in the phase biased case (middle
panel of Fig. 10). When this zero becomes dominant (i.e.,
when it approaches the coordinates origin), the rest of the
dynamical zeros approach the negative real axis (middle panel
of Fig. 22). At longer times we observe that the zeros tend to
converge to the negative real axis, showing a small imaginary
part close to z = 0, which decreases with increasing 	. In the
inset of the lower panel, we show in detail in a different scale
the convergence of the DYLZs to the real axis, exhibiting
a higher density close to z = 0. This result is in qualitative
agreement with the steady state zeros (shown as green dots in
the lower panel of Fig. 22), computed using the CGF described
in Refs. [74,75] and shown as green dots in Fig. 22.

In Fig. 23 we show results for the DYLZs for a subgap
bias. At short times (upper and middle panels) the zeros tend
to converge to the unitary circle, which is a signature of
a phase coexistence. Similar to the case of voltages bigger
than the superconducting gap, the DYLZs converge to their
steady state, represented by the green lines in the lower panel
of Fig. 23 and computed as above from the steady state
results of Refs. [74,75]. The number of stationary branches is
related to the number of different multiple Andreev processes
contributing to the charge transport through the system at the
corresponding bias, roughly given by 2�/V .
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FIG. 22. DYLZs in the voltage biased situation for a perfect
transmitting junction, 	 = 10, V = 2�. We observe how the phase
coexistence is broken when the ABSs approach the continuum of
states. In the top panel we show the result for the dominant zeros,
marked as green squares and blue diamonds, as in the middle panel of
Fig. 10. We observe an additional DYLZ related to the quasiparticle
relaxation, marked with a black circle. For longer times, middle panel,
their process becomes dominant and the zeros tend to converge to the
negative real axis (bottom panel), showing a small imaginary part
close to z = 0, which decreases with increasing 	. In the lower panel
we show also the stationary result, computed using the CGF described
in Refs. [74,75], as green dots. The inset of the lower panel shows a
zoom close to the real axis, in order to show the convergence of the
DYLZs to the negative real axis, showing a higher density close to
z = 0, in qualitative agreement to the stationary result.

FIG. 23. Same as Fig. 22, but with V = 0.25. In the lower panel
we compare the long time distribution of DYLZs with the stationary
value, obtained from the CGF described in Refs. [74,75].

FIG. 24. Formation of the ABSs after a dc pulse of amplitude
V = 2, initializing the system in the ground state with a final phase
difference φ = 2. The other parameters are the same as in Fig. 14.

VI. INITIALIZATION AFTER A dc PULSE

A. Current and ABS population

The convergence to the stationary regime in the voltage
biased case can be used to initialize the system in a given
state, by applying short dc voltage pulses to the junction.
This mechanism resembles the antidote protocols proposed
in Ref. [15] to overcome quasiparticle poisoning. In Fig. 24
we show the occupied DOS after a bias voltage sudden switch
off, in the low voltage regime V � �. We observe how the
subgap states evolve towards their stationary values with an
almost thermal equilibrium population after the pulse. There is
still some small probability of populating the upper state, given
by the decaying quasiparticles from the upper continuum. It is
important to note that the populated state is the one which has a
positive dispersion relation (moving from negative to positive
energies). It means that the upper ABS can be populated if the
final phase is in the interval π < φ < 2π .

If a larger bias voltage is chosen (V � �, 	), a higher
density of quasiparticles is generated and they are no longer
relaxing to the expected thermal equilibrium situation after a
sudden voltage switch off. These two opposite behaviors are
illustrated by the time evolution of the mean current in Fig. 25,
showing a convergence to the thermal equilibrium situation for
V � �, and to memoryless quench dynamics for V � �, 	.

B. Full counting statistics and dynamical Yang-Lee zeros

The final state of the system can be better understood by
analyzing the population of the many body states of the ABSs.
This is illustrated in Fig. 26. For small voltage pulses (left
panel), we observe a probability of populating the ground
state (red line) of more than ∼90%. There is still some small
probability of populating the odd state, given by the decaying
quasiparticles in the upper continuum. Remarkably, there is no
probability of populating the excited even state, meaning that
the probability of the charge to be excited from the lower of
the upper state is negligible in this regime. When the voltage
is increased, we observe an evolution towards the universal
quench result (right panel).
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FIG. 25. Current after a bias voltage switch off at t = 0 and
a phase difference φ = 2. From top to bottom, V = 2, 16, and
100�, showing the transition from the convergence to the stationary
current represented by the black arrow (V � �) to the quench result
represented by the discontinuous line (V � �). In the inset we show
the current evolution during and just after the dc pulse.

Finally, in Fig. 27 we show the dynamical Yang-Lee zeros
after a voltage quench. The system starts from the situation
described in the lower panel of Fig. 22, with most of the DYLZs
accumulated at two points close to the origin. With increasing
time, we observe the generation of a single circle, converging
to the unitary one at long times. This image is compatible
with the two phases coexistence, as in the left panel of
Fig. 26.

VII. CONCLUSIONS

We have presented a comprehensive analysis of the transient
dynamics associated with the formation of superconducting
nanojunctions. We have shown how information on the mean
transport quantities and on the many body states population
can be extracted from the generating function of the FCS.
In particular, we have shown how these properties can be
related to the evolution of the zeros of the generating function.
More precisely Eqs. (7) and (15) relate respectively the charge
transfer cumulants and the population of the many body
Andreev states to the position of these zeros. We have studied

FIG. 26. Long time populations of the many body states after the
voltage switch off. We show the same three situations represented
in Fig. 25, which illustrates the transition from the equilibrium state
(left) to the quench result (right) as the voltage is increased.

FIG. 27. Poles after a voltage pulse. We observe how gradually
the zeros tend to describe a single circle, signature of coexistence
between two phases (see left panel of Fig. 26). Parameters: 	 = 10,
τ = 1, amplitude of the pulse V = 2�, and final phase φ = 2.

the quench dynamics both in the cases of phase and voltage
biased nanojunctions. In the first case the system typically
gets trapped in a metastable state which is dependent on the
switch-on rate of the connection to the leads. There is also
a sensitivity to initial conditions which is more pronounced
in the QD regime. In this case we have shown that either
magnetic or nonmagnetic metastable states can be produced.
In the second case, the formation is accompanied by strong
oscillations in the dot charge. Although the symmetrized
current is not dependent on the initial conditions, their effect
can be observed in the higher order cumulants and in the
many body states population. In the voltage biased case
the system converges to the steady state, independent from
the initial conditions. The results thus obtained for current and
noise are in quantitative agreement with those obtained using
conventional stationary methods. We have also analyzed the
possibility of coherently controlling the system state using a dc
voltage drop. For small voltages (V � �), the quasiparticles
initially trapped in the system relax, and the system reaches
the thermal equilibrium state. For large voltages (V � �),
we recover the sudden connection result, providing a feasible
experimental way to access the quench dynamics and to control
the many body states population. We would like to remark
that the method developed in this work can be used to
study more complex situations which cannot be accessed by
conventional stationary approaches, such as the one involving
more terminals with noncommensurate applied bias [77–79]
or the role of the interactions in the system.

Finally it is worth noticing the connection between our work
and the recent intense activity on the phenomenon of many
body localization (for recent reviews see [80,81]). Although
these works are focused on closed many body systems, there
is an analogy in the fact that the system does not necessarily
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reach the thermal equilibrium state in the absence of coupling
to an external bath, preserving the memory of the initial state.
We thus believe that our approach could be of interest also in
connection to this fundamental field of research.

ACKNOWLEDGMENTS

We acknowledge discussions with W. Herrera, T.
Jonckheere, and J. P. Garrahan and financial support by
Spanish MINECO through Grant No. FIS2014-55486-P and
the “María de Maeztu” Programme for Units of Excellence in
R&D (Grant No. MDM-2014-0377). We also acknowledge
Santander Supercomputacion support group and the Spanish
Supercomputing Network (RES) for providing access to the
supercomputer Altamira at the Institute of Physics of Cantabria
(IFCA-CSIC).

APPENDIX A: ANALYTICAL RESULTS FOR THE MEAN
CHARGE IN THE CENTRAL REGION

For the calculation of the mean charge and current it is
convenient to use the Keldysh formalism in the triangular
form, where only the retarded, advanced, and Keldysh +−
components are involved in the Dyson equation. For an abrupt
connection between the leads and the central region, the
retarded (advanced) Green functions have a simple form in
Nambu space

ĜR(A)(t,t ′) = θ (t)θ (t ′)ĜR(A)
stat (t − t ′), (A1)

where Ĝ
R(A)
stat (t − t ′) denotes the stationary retarded (advanced)

Green function. This expression is completely general for an
abrupt connection in the absence of interactions, and it reduces
to the expression provided in Ref. [82] for normal electrodes.
In the frequency domain the stationary retarded (advanced)
Green function can be written as

Ĝ
R(A)
stat (ω) =

(
ω − ε0 − 	g

R(A)
11 (	LeiφL + 	ReiφR )gR(A)

12

(	Le−iφL + 	Re−iφR )gR(A)
12 ω + ε0 − 	g

R(A)
22

)−1

, (A2)

where g
R(A)
αβ are the BCS Green functions of the uncoupled

electrodes [33].
Ĝ

R(A)
stat (ω) have poles for |ω| � � plane, which correspond

to the ABSs at ±εA(φ). In the limit 	/� � 1 the contribution
from the continuum spectrum for |ω| > � becomes negligible
and ĜR,A(t,t ′) can be approximated by

ĜR(A)(t,t ′) 
 θ (t)θ (t ′)
∑
±

(
p± ±p12

±p∗
12 p±

)
e±iεA(t−t ′), (A3)

where |p12| = √
p+p−. The ABS energies and the weights

p± adopt a simple form when ε0 < 	, i.e., εA =√
ε2

0 + 	2 cos2(φ/2) + (	L − 	R)2 sin2(φ/2) and

P± = �

2
√

�2 + ε2
A

(
1 − 	

�
∓ ε0

εA

)
. (A4)

The time-dependent level charge can then be ob-
tained through the Dyson equation for the Keldysh Green
function Ĝ+−,

Ĝ+− = ĜR�̂+−ĜA + (1 + ĜR�̂R)ĝ+−
0 (1 + �̂AĜA),

(A5)

where ĝ+−
0 is the Keldysh Green function of the uncoupled

central level in Nambu space,

ĝ+−
0 (t,t ′) = i e−iε0(t−t ′)

(
n↑(0) 0

0 1 − n↓(0)

)
. (A6)

�̂+− is the self-energy coupling the level to the electrodes,

�̂+− =
∑

ν

(GR�R)0νg
+−
ν (�AGA)ν0, (A7)

where g+−
ν (t,t ′) are the BCS Green functions of the super-

conducting electrodes, given in the Supplemental Material of
Ref. [34].

For simplicity, the time arguments in Eq. (A5) have not been
included and all the products represent time convolutions. For
an initial condition (n↑(0),n↓(0)) = (0,1) only the first term in
the equation contributes to n↑(t). Substitution of Eq. (A3) in
Eq. (A5) then yields

n↑(t) =
∑
±

n±(t) + n+−,

n±(t) = −2p±
π

∫ −�

−∞

ω	 ∓ 4p+p−�εA√
ω2 − �2ω∓

[1 − cos (ω∓t)]dω,

n+− = 2(p+ − p−)

π

∫ −�

−∞

4p+p−�εA

ω+ω−
√

ω2 − �2
[1 + cos(2εAt)

− cos(ω+t) − cos(ω−t)]dω, (A8)

where ω± = ω ± εA [the spin down population is simply given
in this limit by n↓(t) = 1 − n↑(t)]. As can be observed, the
central level occupation is composed by contributions from
the upper and lower ABS denoted by n± and predicts for
	 � � and this initial condition a long time magnetic solution.
Additionally there is an interference term n+−, which vanishes
for the electron-hole symmetric situation (ε0 = 0). This last
term is well approximated at times t > 1/� as [34]

n+−(t) 
 − ε0

π�

(
1 − ε2

0

ε2
A

)[
1 + cos(2εAt)

+
√

2π

�t
cos(εAt) sin

(
�t − π

4

)]
. (A9)

For a different initial condition, (n↑(0),n↓(0)) = (0,0)
or (n↑(0),n↓(0)) = (1,1) there is a contribution from the
second term in Eq. (A5). For an initially empty level the
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FIG. 28. Scheme of the birth-death process. The birth process
(which has a probability b) allows one to go from n to n + 1 charges
transferred through the junction. In the short time limit, we consider
b = d , due to the absence of bias voltage.

solution is nonmagnetic [n↑(t) = n↓(t)], and we have nσ (t) =∑
± n±(t) + n+− + nσ,00, where

nσ,00(t) = 2|p12|2[1 − cos(2εAt)], (A10)

which describes undamped oscillations (see Fig. 4). Similar
expressions can be derived for the other initial fully occupied
configuration.

APPENDIX B: BIDIRECTIONAL POISSON DISTRIBUTION

In this section we show the calculation details for the
bidirectional Poisson distribution, also known in the literature
as birth-death processes [83]. We assume that, starting from
an initial population, n, there is a birth rate (b) and a death rate
(d), which connects the subspaces with different population
(see Fig. 28). The distribution supposes that birth and death
processes occur with a fixed probability, independent from the
history of the system. In our case, the population will describe
the number of electrons transferring through the junction, with

the initial population being n = 0. Then, a positive (negative)
population is interpreted as a net charge flowing from the left
(right) electrode to the right (left) one. The results for the short
time dynamics can be found in the lower panel of Fig. 5, where
equal birth and death probability rates are considered (b = d).

The calculation of the population is done in the fol-
lowing way. We start with an initial population P (0) =
(. . . ,0,1,0, . . .)T . The recursive expression for computing the
probability distribution can be written as P (t + dt) = MP (t),
with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . a b dt

d dt a
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and a = 1 − (b + d)dt is the probability of staying at the
same subspace after dt . The discontinuous dots mean that
we consider enough probabilities to make the border effects
negligible. In our problem, the short time state of the system
is fully characterized by the parameter n→(t) = b dt = d dt ,
which is the mean charge transfer in one of the directions of the
junction (without considering charges flowing in the opposite
direction). For fitting Fig. 8 at short times, we have taken
n→(t) ∼ 1 for the discontinuous line and n→(t) ∼ 3 for the
dotted one. Then, the mean number of electrons crossing the
junction necessary for the ABS to be formed is surprisingly
small (they are of the order of three electrons crossing the
junction in both directions of the junction).
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